Name of the subject:

Name of the Faculty:

Course File

DIGITAL ELECTRONICS (DE)

G Prasanna Kumar

3 1 gl=l{e

Department of Electronics & Communication Engineering

MALLA REDDY ENGINEERING COLLEGE

(Autonomous)

(Approved by AICTE & Affiliated to INTUH)
Maisammaguda, Dhulapally (Post via Kompally), Secunderabad-500 100

www.mrec.ac.inE-mail: mrec.2002@gmail.com

http://www.mrec.ac.in/
mailto:mrec.2002@gmail.com

Malla Reddy Engineering College (Autonomous)

Maisammaguda.

Theory Course File Index

Subject :DIGITAL ELECTRONICS
Staff Incharge :G Prasanna Kumar

Content

o

Nominal Roll

Syllabus

Lesson Plan

Class Timetable

Individual Timetable

Lecture Notes -5 Units

Assignment/Tutorial Questions

© N U~ WIN P =

Sample Assignments/Tutorial papers and Tutorial
Marks

9 Question Bank

10. | Mid — I & Il Exam Question Paper

11. | Mid — | & Il Exam answer key

12. | Mid — | & Il Exam Mark statement

13. | Mid - I1& Il Exam Sample Answer papers 3(Best,
Average & Below Average)

14. | Internal Marks — Final

15. | Question Bank for five modules

16. | Attendance Register with complete update

17. | Content Beyond the Syllabus

18. | Previous Year Question Papers

19. | Course Outcome (CO) Attainment Calculation

Staff In-charge Verified By HOD Principal

MALLA REDDY ENGINEERING COLLEGE B.Tech.
(Autonomous)
DIGITAL ELECTRONICS L T P
Credits: 3 2 1 -

Pre-Requisites: Nil

Course Objectives: This course introduces various number systems and conversion from one number
system to other and also to understand different binary codes, the theory ofBoolean algebra and to study
representation of switching functions using Booleanexpressions and their minimization techniques.
Understanding the combinational logicdesign of various logic and switching devices and their realization,
the basic flip flopsand sequential logic circuits design both in synchronous and Asynchronous modes
forvarious complex logic and switching devices, their minimization techniques and theirrealizations and to
analyze a given sequential circuit by using state tables and statediagrams.

MODULE I: Number systems& Binary codes [8 Periods]

Number systems: Number Systems, Radix conversions, complement of numbers.

Binary codes: Binary codes, Weighted and non-Weighted codes, BCD code, gray code, excess 3 codes -
Error detecting code, Error Correcting code, Hamming Code.

MODULE I1: Boolean Algebra & Boolean functions [10 Periods]

Boolean Algebra: Postulates and Theorems - Canonical and Standard forms: SOP and POS forms,
Minterms and Maxterms —Logic gates: NOT, OR, AND, NOR, NAND,XOR, XNOR - Universal gates
Simplification of Boolean functions: Simplification of functions: Karnaughmap (2,3,4,5,6 Variables) and
Quine McCluskey method (Tabular Method) — Primeimplicants, essential prime implicants.

MODULE I11: Combinational Logic Circuits [10 Periods]

A: Arithmetic circuits: Half adder, full adder, half subtractor, full subtractor, binaryadder, Carry look
ahead adder, BCD adder

B: Code conversion circuits, Comparator, Decoder, Encoder, Priority Encoder,Multiplexers and Design,
De — Multiplexers, ROM, PLA, PAL.

MODULE 1V: Sequential Logic Circuits - | [10 Periods]

Introduction -Latches and Flip flops: Basic Flip flop circuit, RS, D, JK and T Flip-flops— Triggering of
Flip flops: Master Slave Flip flop, edge triggered flip flop — Conversionof one type of Flip flop to
another,Setup time, hold time.

Registers and Counters: Shift Register, Universal Shift Register, Applications of Registers,
Asynchronous counter, Synchronous counter, Mod-N Counter, binary up/downcounter, Ripple counter,
Johnson counter.

MODULE V: Sequential Logic Circuits - 11 [10 Periods]

Analysis of Sequential Logic circuit: State Diagram, state table, reduction of statetable, state Assignment
—- Design procedure of sequential circuits using state diagram,state table and Flip flops. Example design
Sequence detector.

Finite State Machine: Introduction, FSM capabilities and Limitations, Mealy and Mooremodels —
minimization of completely specified and incompletely specified sequentialMachines. Partition techniques
and Merger charts

Text Books:

1. ZviKohavi, “Switching and Finite Automata Theory”, TMH, 2nd edition, 2006.

2. Morris Mano, “Digital Design”, PHI, 3rd Edition, 2009.

3. A.Anand Kumar, “Switching Theory and Logic Design”, PHI 2nd Edition, 2014.
4. John F.Wakerly, “Digital Design Principles & Practices”, PHI/ Pearson Education
Asia, 3rd Ed., 2005.

Reference Books:

1. Stephen Brown and Zvonka Vramesic, “Fundamentals of Digital Logic with VHDL

Design”, McGraw Hill, 2nd Edition, 2008.

2. William I. Fletcher, “An Engineering Approach to Digital Design”, PHI, 1st Edition,

20009.
E-Resources:

. http://ieeexplore.ieee.org/abstract/document/753678/

. http://docshare01.docshare.tips/files/20257/202573063.pdf
. http://nptel.ac.in/courses/117106086/1

. http://nptel.ac.in/courses/117105080/

. http://nptel.ac.in/courses/117106114/

Course Outcomes:

At the end of the course, students will be able to

1. Perform radix conversions

WNEFRP,BRWDNPE

. https://www.researchgate.net/publication/264005171_Digital_Electronics
. https://www.cl.cam.ac.uk/teaching/0708/DigElec/Digital _Electronics_pdf.pdf

2. Minimize a given boolean function by using k-map or tabular method

3. Design a combinational circuit
4. Design a sequential circuit by using various flipflops

5. Analyze and minimize the circuitry of a given sequential circuit and will be able to

design a sequence detector

CO- PO, PSO Mapping

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

coS Programme Outcomes(POs) PSOS

PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3
COl| 2 1 1 1 2 2 1
CO2| 2 3 3 1 1 1 3 2 2
COo3| 3 2 3 2 1 1 1 2 1 3 3 2
CO4 | 2 2 3 3 1 1 1 1 3 1 2 2 2
CO5| 1 1 3 3 1 1 1 1 3 1 3 2 2

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) SECUNDERABAD-500100
DEPARTMENT OF ECE

LESSON PLAN

Department : ECE

Course Title : Digital Electronics Course Code
Compulsory / Elective : | Compulsory

Prerequisites Knowledge

Duration : 4 Months Credit Units : 3
Class / Laboratory 2/1/0 [L T P]
Schedule :
Matching POs and PSOs
Curriculum gap : PO: YES
PSO: YES
"0 provide the knowledge of Basic Number Systems and Boolean Algebra, as
well as solve problems in minimizing the functions using different laws and
theorems.
"o introduce students the basic methodology to perform analysis of different
combinational circuits.
Course Objectives: |0 Make the students understand the basic concepts of designing of

combinational Circuits as well as Multi-Output Minimization.

[0 make the students understand the difference between Combinational and
Sequential Circuits

"0 make the students Analyze and Design Sequential Circuitsand apply them to

different areas of Communication Engineering.

1.Perform radix conversions

2. Minimize a given boolean function by using k-map or tabular method

3. Design a combinational circuit

S (A 4. Design a sequential circuit by using various flipflops

5. Analyze and minimize the circuitry of a given sequential circuit and will
be able to design a sequence detector

Text Books:
1. ZviKohavi, “Switching and Finite Automata Theory”, TMH, 2nd
edition,

2006.
Texts & References: | 2. Morris Mano, “Digital Design”, PHI, 3rd Edition, 2009.
3. A.Anand Kumar, “Switching Theory and Logic Design”, PHI 2nd
Edition, 2014.
4. John F.Wakerly, “Digital Design Principles & Practices”, PHI/ Pearson
Education Asia, 3rd Ed., 2005.
Reference Books:
1. Stephen Brown and Zvonka Vramesic, “Fundamentals of Digital Logic
with VHDL

(*recommended text
book(s))

Design”, McGraw Hill, 2nd Edition, 2008.
2. William I. Fletcher, “An Engineering Approach to Digital Design”,
PHI, 1st Edition,

Student Assessments:

Assignments
Mid test I and 11
Final examination

Outcome Assessment

Assignments and examinations
Course evaluation

Strength: 1- Weak 2 -Moderate 3-Strong

Cco POl | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12
COo1 2 1 1 1
CO2 2 3 3 1 1 1
CO3 3 2 3 2 1 1 1 2 1
Cco4 2 2 3 3 1 1 1 1 3 1
CO5 1 1 3 3 1 1 1 1 3 1
Strength: 1- Weak 2 -Moderate 3-Strong

Cco PSO1 PSO2 PSO3

Co1 2 2 1

Co2 3 2 2

Co3 3 3 2

Co4 2 2 2

CO5 3 2 2

Theory Class:

Module - |

Target Hours

8
ate i ef. Book. emarks
No Reqd. Topics to be Covered completion
1 | 80719 1 Introduction Morris
Mano
2 | 9/07/19 ! Number Systems Morris
Mano
3 | 10/07/19 1| Radix conversions Anand
Kumar
4 1 11/07/19 1 complement of numbers Anand
Kumar
5 | 15/07/19 1 Binary codes, Weighted and non-Weighted | Morris
codes Mano
6 | 16/07/19 . BCD code, gray code, excess 3 codes mg;gs
7 | 17/07/19 1 Error d_etectmg code, Error Correcting code, | Anand
Hamming Code Kumar
g | 18/07/19 1| Revision Using PPT’S Morris
Mano
Theory Class:
Module - Target Hours
T 10
Actual
Sl. Period
completion
1 | 22/07/19 1 Boolean Algebra: Postulates and Theorems Morris
Mano
2 | 23/07/19 1 Simplification of Boolean functions using Anand
boolean algebra Kumar
3 | 24/07/19 1 Canonical and Standard forms: SOP and Morris
POS forms, Minterms and Maxterms Mano
4 | 25/07/19 1 Logic gates: NOT, OR, AND, NOR, NAND, | Morris
XOR, XNOR Mano
5 | 29/07/19 1 Universal gates Anand
Kumar
6 | 30/07/19 1 Simplification of Boolean functions: Anand
Karnaugh map(2,3,4 Variables) Kumar
7 | 31/07/19 1 Simplification of Boolean functions: Morris
Karnaugh map(5,6 Variables) Mano
g | 1/08/19 1 Karnaugh map Problems Anand
Kumar
g | 5/08/19 1 QuineMcCluskey method (Tabular Method | Morris
Mano
6/8/19 1 QuineMcCluskey method (Tabular Method) | Morris
10 -- Prime implicants, essential prime | Mano
implicants, Revision Using PPT’S
Theory Class:
Module - Target Hours
" 10
Sl Dat Period Ref. Date of R «
ate i emarks
No Reqd. Topics to be Covered Book. completion

1 | 7/08/19 1 Half adder, Full adder Morris
Mano
o | 8/08/19 1 Half Subtractor, Full Subtractor Morris
Mano
3 | 13/08/19 1 binary adder Morris
Mano
4 | 14/08/19 1 Carry look ahead adder, BCD adder Anand
Kumar
5 | 19/08/19 1 Code conversion circuits Morris
Mano
6 | 21/08/19 1 | Comparator, Decoder Morris
Mano
7 | 22/08/19 1 Encoder, Priority Encoder Anand
Kumar
26/08/19 Multiplexers and implementation of a Boolean | Morris
8 1| function using Multiplexers, De — Mano
Multiplexers
g | 27/08/19 1 ROM Morris
Mano
10 | 28/08/19 1 PLA ,PAL Morris
Mano
11 | 29/08/19 1 Revision Using PPT’S Anand
Kumar
Theory Class:
Module - Target Hours
1Y 10
Sl Period Date of
No Date Regd. Topics to be Covered Ref. Book. completion Remarks
1 |12/09719 1 | Introduction, Basic Flip flop circuit Anand
Kumar
2 | 16/09/19 1 RS, D, JK and T Flip-flops, Triggering of Flip | Morris
flops Mano
3 | 17/09/19 1 Master Slave Flip flop,Edge triggered flip Anand
flop, Setup time, hold time Kumar
4 | 18/09/19 1 Conversion of one type of Flip flop to another | Morris
Mano
5 | 19/09/19 1 Registers Morris
Mano
6 | 23/09/19 1 Universal Shift Rgisters Anand
Kumar
7 | 24/09/19 1 Ripple counter Anand
Kumar
g | 25/09/19 1 | Synchronous counter Morris
Mano
9 | 26/09/19 1 binary up/down counter Morris
Mano
10 | 30/09/19 1 Johnson counter Anand
Kumar
11 | 1/10/19 1 Revision Using PPT’S
Theory Class:
{\//Iodule i Target Hours 10
Sl. Date Period Ref. Book Date of Remarks

Reqd.

Topics to be Covered

No completion
1 | 3/10/19 Analysis of Sequential Logic circuit: State | Morris
Diagram, state table Mano
2 | 14/10/19 Reduction of state table and state assignment | Morris
Mano
3 | 15/10/19 Design procedure of sequential circuits using | Morris
state diagram, state table and Flip flops Mano
4 | 16/10/19 Design procedure of sequential circuits using | Anand
state diagram, state table and Flip flops Kumar
5 17/10/19 Example design Sequence detector Morris
Mano
6 | 18/10/19 Finite State Machine: Introduction, FSM Anand
capabilities and Limitations Kumar
7 | 21/10/19 Mealy and Moore models Morris
Mano
g | 22/10/19 minimization of completely specified Morris
sequential Machines Mano
23/10/19 minimization of completely incompletely Morris
9 specified sequential Machines, M
ano
10 | 24/10/19 Revision Using PPT’S
FACULTY IN-CHARGE HOD/ECE

Malla Reddy Engineering College (Autonomous)
11 B.TECH -1 Semester (MR18) | MID EXAMNATIONS-Sep-2019
Subject:Digital Electronics
Branch: ECE & EEE Name of the Faculty: G Prasanna Kumar

Compulsory Questions
Module -1

1. Define and explain basic Number System and different types of Number Systems with example
2. Convert the following number according to their Radix

1)(11011.101)2 - ()0
3. Find the r’s complement and (r-1)’s complement of the give binary numbers 01011010 and 00011011
4. Differentiate between Binary to Gray and Gray to Binary conversions with examples
5. Perform the following signed-number arithmetic using 8-bits
+7+14
6. What is a Parity and Hamming Code.

Module — 11

1. Minimize the following function by using Boolean algebra theorems and rules
F= A[B+C(AB+AC)]
2. Create XOR gate functionality by using NAND gate
3. Minimize the following expression using K-Map

F=2m(0,2,3,4,5,6)

4 What is K-Map.

5.Define Logic Gates

6 .Define consensus Theorem

Module — 111
1.Design a Half Adders
2.Design a 2-4 Decoder.
3.What is Priority Encoder.

Choice Questions
Module-I
1.Perform each of the following decimal subtraction in Excess -3 code by using 9’s compliment
methods
i) 879 — 4562 i) 319 - 645

2.a) Convert (9B2.1A) hexadecimal to its decimal equivalent

b) Convert 101101.1101 binary to its octal equivalent
3 Determine the single error correcting code for the information code 10111 for odd parity
4 a) Write short notes on gray code and give advantage of gray code

b) Convert gray code 101011 into its binary equivalent

c¢) Convert 10111011 in binary into its equivalent gray code
5.Explain about Error detecting and correcting code and also write short notes on parity and
hamming code
6. Assume that the even parity. hamming code in example (0110011) is transmitted & that

(0100011) is received. The receiver does not know what was transmitted. Determine bit
location where error has occurred using received code & decode the message.

Module- 11
1.Solve the following functions by using Boolean algebra theorems and rules

a)F= A[B+C(AB’+AC”)]
b)F=AB+AC+A’BC’(AB+C)
c)Xm=(1,3,5,7)
2.Reduce the following Boolean expression into minimal literals
a) A'C'+ABC+AC'
b) ABC +A'B+ABC'
c) A'B (D'+C'D)+B(A+A'CD)
3.Reduce the following four variable function to its minimum sum of products form
Y = A'B'CD' +ABCD' + AB'CD +AB'C'D '+ ABC'D'+ A'B'CD + A'B'C'D'
4.Reduce the following function using K- Map technique
f(A,B,C,D) =nM(0,2,3,8,9,12,13,15)
5.Reduce the following function using K Map technique & implement by using gates
f(AB,C,.D) = =m (5,67,12,13) + xd (4,9,14,15)

6.Reduce the following function using K Map technique & implement by using gates
f(AB,C,D) =%(8,9,10,11,13,15,16,18,21,24,25,26,27,30,31

Module 111
1. Explain the Half Adder circuit with neat Sketch
2. Explain the Full Adder circuit with neat Sketch.
3. Draw the circuit for full Subtractor and Explain it

Signature of the Faculty Signature of HOD

Malla Reddy Engineering College (Autonomous)
11 B.TECH - | Semester (MR18) I MID EXAMNATIONS-Sep-2019
Subject:Digital Electronics

Branch: ECE Name of the Faculty: G Prasanna Kumar

1 Convert the following decimal number to 8-bit binary.187 A

101110112

110111012

101111012

101111002

2 Convert binary 111111110010 to hexadecimal.

A
EE216

FF216

2FE16

FD216

Convert the binary number 1001.00102 to decimal.

90.125

9.125

125

12.5

Convert 59.7210 to BCD.

111011

01011001.01110010

1110.11

0101100101110010

Convert 8B3F16 to binary.

35647

011010

1011001111100011

1000101100111111

Which is typically the longest: bit, byte, nibble, word?

Bit

Byte

Nibble

Word

If a typical PC uses a 20-bit address code, how much memory can the CPU address?

20 MB

10 MB

1 MB

580 MB

Which of the following is the most widely used alphanumeric code for computer input
and output?

Gray

ASCII

Parity

EBCDIC

Assign the proper odd parity bit to the code 111001.

1111011

1111001

0111111

0011111

10

Convert decimal 64 to binary.

01010010

01000000

00110110

01001000

11

Convert hexadecimal value C1 to binary.

11000001

1000111

111000100

111000001

12

Convert the following octal number to decimal.

51

82

57

15

13

Convert the following binary number to octal.
0101111002

1728

2728

1748

2748

14

The sum of 11101 + 10111 equals

110011

100001

110100

100100

15

The decimal number 188 is equal to the binary number

10111100

0111000

1100011

1111000

16

How many bits are in an ASCII character?

16

10

8

7

17

Convert 11001010001101012 to hexadecimal

121035

CA35

53AC1

530121

18

Convert the following decimal number to octal.281

1348

4318

3318

1338

19

When using even parity, where is the parity bit placed?

Before the MSB

After the LSB

In the parity word

After the odd parity bit

20

An analog signal has a range from 0 V to 5 V. What is the total number of analog
possibilities within this range?

100

5

200

Infinite

21

Hexadecimal letters A through F are used for decimal equivalent values from

1 through 6

9 through 14

10 through 15

11 through 17

22

A decimal 11 in BCD is

00001011

00001100

00010001

00010010

23

What is the resultant binary of the decimal problem 49 + 01 = ?

01010101

00110101

00110010

00110001

24

The difference of 111 — 001 equals

100

111

110

101

25

Convert the binary number 1100 to Gray code

0011

1010

1100

1001

26

The binary number 11101011000111010 can be written in hexadecimal as

DD63A16

1D63A16

1D33A16

1D63116

27

Which of the following is an invalid BCD code?

0011

1101

0101

1001

28

What decimal number does 25 represent?

10

31

64

32

29

Convert the Gray code 1011 to binary

1011

1010

0100

1101

30

The 1's complement of 10011101 is

01100010

10011110

01100001

01100011

31

Convert the decimal number 151.75 to binary.

10000111.11

11010011.01

00111100.00

10010111.11

32

3428 is the decimal value for which of the following binary-coded decimal (BCD)
groupings?

11010001001000

11010000101000

011010010000010

110100001101010

33

The binary-coded decimal (BCD) system can be used to represent each of the 10 decimal
digits as a(n):

4-bit binary code

8-bit binary code

16-bit binary code

none

34

The 2's complement of 11100111 is

11100110

00011001

00011000

00011010

35

Express the decimal number —37 as an 8-bit number in sign-magnitude.

10100101

00100101

11011000

11010001

36

The American Standard Code for Information Interchange (ASCII) uses how many
individual pulses for any given character?

1

2

7

8

37

The weight of the LSB as a binary number is

1

2

3

4

38

The base of the hexadecimal system is

1

8

16

32

39

Assign the proper even parity bit to the code 1100001

11100001

1100001

01100001

01110101

40

Which of the following is the primary advantage of using the BCD code instead of
straight binary coding?

Fewer bits are required to represent a decimal number with the BCD code.

The relative ease of converting to and from decimal.

BCD codes are easily converted to hexadecimal codes.

BCD codes are easily converted to straight binary codes.

41

What is the decimal value of the hexadecimal number 777?

191

1911

19

19111

42

Convert the following BCD number to decimal.
010101101001bcd

539

2551

569

1552

43

What is the result when a decimal 5238 is converted to base 16?

327.375

12.166

1388

1476

44

Digital electronics is based on the numbering system

decimal

octal

binary

hexadecimal

45

An informational signal that makes use of binary digits is considered to be

solid state

digital

analog

non-oscillating

46

The binary number 101110101111010 can be written in octal as

515628

565778

656278

565728

47

Convert 45710 to hexadecimal

711

2C7

811

1C9

48

Determine the decimal equivalent of the signed binary number 11110100 in 1's
complement.

116

=12

11

128

49

What is the base value in octal code

2

8

16

10

50

What is the base value in decimal code

2

8

16

10

51

An n variable K-map can have

n? cells

2" cells

n" cells

n? cells

52

Each term in the standard SOP form is called a

minterm

maxterm

don’t care

literal

53

Each term in the standard POS form is called a

minterm

maxterm

don’t care

literal

54

The binary number designations of the rows and columns of the K-map are in

binary code

BCD code

Gray code

Excess-3 code

55

An 8-square eliminates

2 variables

3 variables

4 variables

8 variables

56

The terms which cannot be combined further in the tabular method are called

implicants

prime implicants

essential prime implicants

selective prime implicants

57

The implicants which will definitely occur in the final expression are called

prime implicants

essential prime implicants

selective prime implicants

redundant prime implicants

58

The number of cells in a 6 variable K-map is

6

12

36

64

59

The Quine-McClusky method of minimization of a logic expression is a
(i)Graphical method (ii) Algebraic method (iii) Tabular method (iv) A computer-oriented
method

(iii) and (iv)

(ii) and (iv)

(i) and (iii)

(i) and (ii)

60

In simplification of a Boolean function of n variables, a group of 2m adjacent 1s leads to
a term with

m-1 literals less than the total number of variables

m+1 literals less than the total number of variables

n+m literals

n-m literals

61

The number of adjacent cells each cell in an n variable K-map can have is

n-1

n

n+1

2n

62

A 16-square eliminates

2 variables

3 variables

4 variables

8 variables

63

In K-map simplification, a group of four adjacent 1s leads to a term with

One literal less than the total number of variables

Two literals less than the total number of variables

Three literals less than the total number of variables

Four literals less than the total number of variables

64

The NAND-NAND realization is equivalent to

AND-NOT realization

AND-OR realization

OR-AND realization

NOT-OR realization

65

The NOR-NOR realization is equivalent to

AND-OR realization

NOT-AND realization

OR-NOT realization

OR-AND realization

66

AND-OR realization of a combinational circuit is equivalent to

NAND-NOR realization

NAND-NAND realization

NOR-NOR realization

NOR-NAND realization

67

OR- AND realization of a combinational circuit is equivalent to

NAND-NOR realization

NAND-NAND realization

NOR-NAND realization

NOR-NOR realization

68

A combinational circuit can be designed using only

AND gates

OR gates

OR and X-NOR gates

NOR gates

69

A combinational circuit can be designed using only

AND gates

OR gates

OR and X-NOR gates

NAND gates

70

The NAND gate can function as a NOT gate if

All inputs are connected together

Inputs are left open

One input is set to 0

One inputis setto 1

71

The NOR gate can function as a NOT gate if

All inputs are connected together

Inputs are left open

One input is set to 0

Oneinputissettol

72

An Exclusive-NOR gate is logically equivalent to

Inverter followed by an X-OR gate

X-OR gate followed by an inverter

NOT gate followed by an X-OR gate

Complement of a NOR gate

73

Which of the following is known as a mod-2 adder?

X-OR gate

X-NOR gate

NAND gate

NOR gate

74

What is the minimum number of two-input NAND gates used to perform the function of
2-input OR gate?

One

Two

Three

Four

75

NOT gates are to be added to the inputs of which gate to convert it to a NAND gate?

OR

AND

NOT

X-OR

76

NOT gates are to be added to the inputs of which gate to convert it to a NOR gate?

OR

AND

NOT

X-OR

77

What logic function is produced by adding inverters to the inputs of an AND gate?

OR

NOR

NAND

X-OR

78

What logic function is produced by adding inverters to the inputs of an OR gate?

NOR

NAND

AND

X-NOR

79

What logic function is produced by adding an inverter to each input and output of an
AND gate?

NOR

NAND

X-OR

OR

80

What logic function is produced by adding an inverter to each input and output of an OR
gate?

NAND

NOR

AND

X-OR

81

How many NOR gates are required to obtain AND operation?

2

3

4

1

82

What is the minimum number of NAND gates required to realize an X-OR gate?

3

4

5

6

83

What is the minimum number of NOR gates required to realize an X-OR gate?

3

4

5

6

84

A bubbled AND gate is equivalent to

OR gate

NAND gate

NOR gate

X-OR gate

85

A bubbled OR gate is equivalent to

AND gate

NAND gate

NOR gate

X-OR gate

86

A bubbled NAND gate is equivalent to

OR gate

NAND gate

NOR gate

X-OR gate

87

A bubbled NOR gate is equivalent to

AND gate

NAND gate

NOR gate

X-OR gate

88

The output of logic gate is LOW when atleast one of its inputs is HIGH. This is true for

AND

NAND

NOR

OR

89

The output of logic gate is HIGH when atleast one of its inputs is LOW. This is true for

X-OR

NAND

NOR

OR

90

The output of logic gate is LOW if and only if all its inputs are HIGH. This is true for

AND

X-NOR

NOR

NAND

91

The output of logic gate is HIGH if and only if all its inputs are LOW. This is true for

NOR

X-OR

NAND

X-NOR

92

The most suitable gate for comparing two bits is

AND

OR

NAND

X-OR

93

Which of the following gates cannot be used as an inverter?

NAND

AND

NOR

X-NOR

94

The output of a logic gate is 1 when all its inputs are at logic 1. The gate is either

a NAND or a NOR

an AND or an OR

an OR or an X-OR

an AND or a NOR

95

The output of a logic gate is 1 when all its inputs are at logic 0. The gate is either

a NAND or a NOR

an AND or an X-NOR

an OR or a NAND

an X-OR or an X-NOR

96

For checking the parity of a digital word, it is preferable to use

AND gates

NAND gates

X-OR gates

NOR gates

97

The most suitable gate to check whether the number of 1s in a digital word is even or odd
is

X-OR

NAND

NOR

AND, OR and NOT

98

A+AB+ABC+ABCD+ABCDE+............ =

1

A

A+AB

AB

99

The dual of a Boolean expression is obtained by

Interchanging all Os and 1s

Interchanging all Os and 1s, all + and °.” signs

Interchanging all Os and 1s, all + and ‘.’ signs and complementing all the variables

Interchanging all + and ‘.” Signs and complementing all the variables

100

The complement of a Boolean expression is obtained by

Interchanging all Os and 1s

Interchanging all Os and 1s, all + and °.” signs

Interchanging all Os and 1s, all + and ‘.” signs and complementing all the variables

Interchanging all + and ‘.’ Signs and complementing all the variables

101

The difference output in a full-subtractor is the same as the

Difference output of a half-subtractor

Sum output of a half-adder

Sum output of a full-adder

Carry output of a full-adder

102

on inputs, and produces two binary digits, a sum bit and a carry bit on its outputs?

Full-adder

Half-adder

Serial adder

Parallel adder

103

How many inputs and outputs does a full-adder have?

Two inputs, two outputs

Two inputs, one output

Three inputs, two outputs

Two inputs, three outputs

104

How many inputs and outputs does a full-subtractor have?

Two inputs, one outputs

Two inputs, two output

Two inputs, three outputs

Three inputs, two outputs

105

A full-adder can be realized using

One half-adder, two OR gates

Two half-adders, one OR gate

Two half-adders, two OR gates

Two half-adders, one AND gate

106

The minimum number of 2-input NAND/NOR gates required to realize a half-adder is

3

107

4
5
6
=

is

3

4

5

6

108

The minimum number of 2-input NAND gates required to realize a full-adder/full-
subtractor is

8

9

10

12

109

The minimum number of 2-input NOR gates required to realize a full-sbtractor is

8

9

10

12

110

How many full-adders are required to construct an m-bit parallel adder?

m/2

m-1

m

m+1

111

Parallel adders are

Combinational logic circuits

Sequential logic circuits

Both of the above

None of the above

112

In which of the following adder circuits is the carry ripple delay eliminated?

Half-adder

Full-adder

Parallel adder

Carry-look-ahead-adder

113

To secure a higher speed of addition, which of the following is the preferred solution?

serial-adder

parallel-adder

Adder with a look-ahead-carry

Full-adder

114

A parallel adder in which the carry-out of each full-adder is the carry-in to the next
significant digital adder is called a

Ripple carry adder

Look-ahead-carry adder

Serial-carry adder

Parallel carry adder

115

A serial adder requires only one

Half-adder

Full-adder

Counter

Multiplier

116

In digital systems subtraction is performed

Using half-adders

Using half-subtractors

he minimum number of 2-input NAND/NOR gates required to realize a half-subtractor

Using adders with 1’s complement representation of negative numbers

None of the above

117

In BCD addition, 0110 is required to be added to the sum for getting the correct result if

The sum of two BCD numbers is not a valid BCD number

The sum of two BCD numbers is not a valid BCD number or a carry is produced

A carry is produced

None of the above

118

BCD subtraction is performed by using

1’s complement representation

2’s complement representation

5’s complement representation

9’s complement representation

119

Which logic gate is a basic comparator

NOR

NAND

X-OR

X-NOR

120

The logic gate used in parity checkers is

NAND

NOR

X-OR

X-NOR

121

Which of the following statements accurately represents the two BEST methods of logic
circuit simplification?

Boolean algebra and Karnaugh mapping

Karnaugh mapping and circuit waveform analysis

Actual circuit trial and error evaluation and waveform analysis

Boolean algebra and actual circuit trial and error evaluation

122

The binary numbers A =1100 and B = 1001 are applied to the inputs of a comparator.
What are the output levels?

A>B=1 A<B=0,A<B=1

A>B=0,A<B=1A=B=0

A>B=1A<B=0,A=B=0

A>B=0,A<B=1A=B=1

123

Two 4-bit binary numbers (1011 and 1111) are applied to a 4-bit parallel adder. The carry
input is 1. What are the values for the sum and carry output?

Z4¥3%22%1 =0111, Cout=0

24232221 =1111, Cout=1

24232221 =1011, Cout=1

24232221 =1100, Cout=1

124

The carry propagation can be expressed as

Cp=AB

Cp=A+B

Cp=.lf'|.5

Co=A+B

125

How many 4-bit parallel adders would be required to add two binary numbers each
representing decimal numbers up through 300107

1

2
3
4

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUYS)
Il B.Tech | Semester 11 Mid Question Bank 2019-20
Subject: Digital Electronics Branch:ECE

Name of the Faculty: G Prasanna Kumar

Compulsory Questions
MODULE-III

1. Define Encoder?
List basic types of programmable logic devices
Explain the any two code converters
MODULE-IV
Give the comparison between combinational circuits and sequential circuits.
What are the classification of sequential circuits?
What are the different types of flip-flop?
Draw the logic diagram for SR latch using two NOR gates.
Define skew and clock skew.
What are the different types of shift type?

w N

oUW

MODULE-V
What is state equivalence theorem ?
What do you mean by distinguishing sequences?
Define FSM
Define merger graph.
Define incompatibility
Define state table.

SuhkrwdE

Choice Questions
MODULE-III
1. Draw the logic diagram for 2-bit magnitude Comparator.
2. Draw the logic diagram for BCD-to-Seven Segment Decoder
3. Explain briefly Multiplexers and De-multiplexers with example problem.

MODULE-IV

1. Draw the circuit of master — slave JK flip flop and explain its operation with the help of truth table.
2. Classify the required circuits into synchronous, asynchronous, clock mode, pulse mode with suitable
examples.

3. Convert the following

a) JK Flip Flop to T Flip Flop

b) RS Flip Flop to D Flip Flop

4. Explain about Universal shift register

5. Design a modulo -12 up synchronous counters using flip flops and draw the circuit diagram

6. Design a Modulo-9 counter T flip flops with preset and clear inputs.

MODULE-V

1. Convert the following Mealy machine into a corresponding Moore machine.

PS NS,Z

X=0 X=1
A B,0 E,O
B E,O D,0
C D,1 A,0
D C,1 E,O
E B,0 D,0

2. Distinguish between the Mealy and Moore Machines, and draw the logic diagram for each model.
3. Design logic circuit for 4-input encoder with neat sketch.

4. Covert D-flip-flop to J-K-flip-flop

5. Write clearly finite state machine limitations and capability

6. Design procedure of sequential circuits using state diagram with example.

Signature of the Faculty Signature of the HOD

Malla Reddy Engineering College (Autonomous)
11 B.TECH -1 Semester (MR17) Il MID EXAMNATIONS- -2019
Subject:Digital Electronics
Branch: ECE & EEE Name of the Faculty: Kalpana.B

Which sequential circuits generate the feedback path due to the cross-coupled connection from B
output of one gate to the input of another gate?

Synchronous

Asynchronous

Both

None of the above

What is/are the crucial function/s of memory elements used in the sequential circuits?

Storage of binary information

Specify the state of sequential

Botha &b

None of the above

How are the sequential circuits specified in terms of time sequence?

By Inputs

By Outputs

By Internal states

All of the above

The behavior of synchronous sequential circuit can be predicted by defining the signals at

discrete instants of time

continuous instants of time

sampling instants of time

at any instant of time

Which memory elements are utilized in an asynchronous & clocked sequential circuits
respectively?

Time- delay devices & registers

Time- delay devices & flip-flops

Time- delay devices & counters

Time-delay devices & latches

Why do the D-flip-flops receives its designation or nomenclature as 'Data Flipflops' ?

Due to its capability to receive data from flip-flop

Due to its capability to store data in flip-flop

Due to its capability to transfer the data into flip-flop

None of this

The characteristic equation of D-flip-flop implies that

the next state is dependent on previous state

the next state is dependent on present state

the next state is independent of previous state

the next state is independent of present stated

Which circuit is generated from D-flip-flop due to addition of an inverter by causing reduction
in the number of inputs?

Gated JK- latch

Gated SR- latch

Gated T- latch

Gated D- latch

What is the bit storage binary information capacity of any flip-flop?

1 bit

2 bits

16 bits

infinite bits

10

What is/are the directional mode/s of shifting the binary information in a shift register?

Up-Down

Left - Right

Front - Back

All of the above

11

Which time interval specify the shifting of overall contents of the shift registers?

Bit time

Shift time
Word time
Code time
12 | A counter is fundamentally a sequential circuit that proceeds through the
predetermined sequence of states only when input pulses are applied to it.
register
memory unit
Flip-flop
arithmetic logic unit
13 | What is the maximum possible range of bit-count specifically in n-bit binary counter
consisting of 'n' number of flip-flops?
Oto 2"
0to 2!
0to 2!
0to 2n+1/2
14 | Which property of unit distance counters has the potential to overcome the consequences of
multi-bit change flashing that arises in almost all conventional binary and decimal counters?
one bit change per unit change
two bits change per unit change
three bits change per unit change
four bits change per unit change
15 | What contributes to the triggering of clock pulse inputs for all the flip-flops excluding the first
flip-flop in a ripple counter?
Incoming Pulses
Output Transition
Double Clock Pulses
All of the above
16 | What is the required relationship between number of flip-flops and the timing signals in
Johnson Counter?
No. of flip-flops = 1/2 x No. of timing signals
No. of flip-flops = 2/3 x No. of timings signals
No. of flip-flops = 3/4 x No. of timing signals
No. of flip-flops = 4 x No. of timing signals
17 | Which clock pulses are generated by the microprocessor so as to handle the timing and control
operations related to internal functioning level?
single phase clock pulses
multi-phase clock pulses
anti-phase clock pulses
none of the above
18 | The bus-request control input of micro-processor indicates the temporary suspension of
current operation by driving all buses into
high impedance state
low impedance state
botha &b
none of the above
19 | Which feature conducts the memory transfer by controlling the address and data buses on the

basis of request originated by the device when buses get disabled by the microprocessor?

Indirect Memory Access

Direct Memory Access

Read Memory Access

Write Memory Access

20

By default counters are incremented by

1

2

3

4

21

Simplest registers only consists of

counter

EPROM

latch

flip-flop

22

Three decade counter would have

2 BCD counters

3 BCD counters

4 BCD counters

5 BCD counters

23

A decimal counter has

5 states

10 states

15 states

20 states

24

Memory that is called a read write memory is

ROM

EPROM

RAM

Registers

25

2 left shifts are referred to as multiplication with

2

4

8

16

26

Ripple counters are also called

SSI counters

asynchronous counters

synchronous counters

VLSI counters

27

Transformation to information into registers is called

loading

gated latch

latch

storing

28

Binary counter that count incrementally and decrementally is called

up-down counter

LSI counters

down counter

up counter

29

Shift registers having four bits will enable shift control signal for

2 clock pulses

3 clock pulses

4 clock pulses

5 clock pulses

30

A group of binary cells is called

counter

register

latch

Flip-flop

31

Synchronous counter is a type of

SSI counters

LSI counters

MSI counters

VLSI counters

32

BCD counter is also known as(B)

parallel counter

decade counter

synchronous counter

VLSI counter

33

A 8-bit flip-flop will have

2binary cells

4binary cells

6binary cells

8binary cells

34

Parallel load transfer is done in

1 cycle

2 cycle

3 cycle

4 cycle

35

To start counting enable input should be

0

1

reset

clear

36

Ripple counter cannot be described by

Boolean equation

clock duration

graph

flow chart

37

Time between clock pulses are called

bit duration

clock duration

duration

bit time

38

Parallel loading is done in

1 cycle

2 cycle

3 cycle

4 cycle

39

Control unit in serial computer generates a(B)

reset signal

word-time signal

word signal

clear signal

40

BCD counter counts from

Oto5

1to5

Oto9

1t09

41

J=K=0 will make flip-flops

changed

reversed

unchanged

stopped

42

Special type of registers are

latch

Flip-flop

counters

memory

43

Flip-flops in registers are

present

level triggered

edge triggered

not present

44

Down counter decrement value by

1

2

3

4

45

Ripple counter is a type of

SSI counters

LSI counters

MSI counters

VLSI counters

46

Propagation of signal through counters is in

ripple fashion

serial fashion

parallel fashion

bothaand b

47

Register shifting left and right both is called

unidirectional shift register

bidirectional shift register

left shift register

right shift register

48

A decimal counter has

2 flip-flops

3 flip-flops

4 flip-flops

5 flip-flops

49

Control variable of registers is also called

store control input

load control input

store control output

load control output

50

Time to transfer content of shift register is called

word duration

clock duration

duration

bit time

51

Code conversion circuits mostly uses

AND-OR gates

AND gates

OR gates

XOR gates

52

3 bits full adder contains

3 combinational inputs

4 combinational inputs

6 combinational inputs

8 combinational inputs

53

Nor function is dual of

and function

or function

xor function

nand function

54

Design procedure of combinational circuit involves

4 steps

5 steps

6 steps

8 steps

55

Simplified expression of half adder carry is

C=XY+X

C=y+X

C=Xy+y

C=Xy

56

When both inputs are 1 output of xor is

1

0

X

10

57

Simplified expression of full adder carry is

C=XY+XZ+YZ

C=XYy+XZ

C=Xy+yzZ

C=X+y+z

58

Practical design procedure have some

gate

circuits

constraints

protocols

59

Subtractor also have output to check if 1 has been

complemented

borrowed

shifted

primed

60

Logic gates takes input signals and generates signals to

within gate

input

output

bothaand b

61

Analysis of combinational circuits is

lengthy process

IEVEISE Process

difficult process

invert process

62

Two bit subtraction is done by

demux

mux

full subtract or

half subtract or

63

Dual of nand function is

and function

or function

nor function

nand function

64

In real design procedure we consider

max no of gates

min no of gate

two gates

three gates

65

Full adder performs addition on

2 bits

3 hits

4 hits

5 bits

66

When both inputs are different output of xor is(A)

1

0

X

10

67

Convenient way is to convert NAND logic diagram to its

AND diagram

OR diagram

AND-OR diagram

NOR diagram

68

Result of two bit subtract or is called

difference bit

least significant bit

most significant bit

carry bit

69

If two systems have different codes then circuit inserted between them is

combinational circuit

sequential circuit

combinational sequence circuit

conversion circuit

70

In design procedure input output values are assigned with

numeric values

letter symbols

0's

1's

71

. In analysis procedure information processing task is correlated with

BCD code

excess3 code

map

truth table

72

NAND logic conversion is facilitated using symbols of

invert OR

AND invert

NAND invert

bothaand b

73

Multiple variable xor is defined as

inverted or function

prime function

even function

odd function

74

ASM chart has

4 entrances

3 entrances

2 entrances

1 entrances

75

ASM chart has

4 entrances

3 entrances

2 entrances

1 entrances

76

Conditional box is of shape of

square

rectangle

oval

pentagon

77

Signal that starts operation is indicated by

INITIAL

GO

BEGIN

START

78

One that is not a type of register

storage

shift register

counter

latch

79

Element of state chart diagrams which uses round corner boxes to represent situations of an
object is classified as

life line marker

iteration marker

transitions

state

80

Relationship between two independent data tables is classified as

structural relationships

non-structural relationships

identifying relationships

non-identifying relationships

81

In state chart diagrams, element which is shown with help of double line filled circle with
pointing arrow is classified as

two degree state

initial state

final state

zero degree state

82

In state chart diagrams, element which is shown with help of solid circle with outgoing arrow
is classified as

two degree state

initial state

final state

zero degree state

83

Elements included in state chart diagrams are

transitions

condition markers

iteration markers

lifeline markers

84

Reduction of flip-flops in a sequential circuit is referred to as

reduction

state reduction

next state

bothaand b

85

Latches are

level triggered

edge triggered

clock triggered

pulse triggered

86

M flip-flops produces

2"m-1 states

2-1 states

2" "m+1 states

2\m states

87

Two states are said to be equal if they have exactly same

inputs

next state

output

bothaand b

88

Implication table consists of

squares

triangles

cubes

circles

89

In excitation table of D flip-flop next state is equal to

present state

next state

input state

D state

90

Don’t care condition in a table is represented by

a

b

C

X

91

In T flip-flop when state of T flip-flop has to be complemented T must be

0

1

t

t+1

92

Table that lists inputs for required change of states is called

truth table

excitation table

state table

clock table

93

Which combinational circuit is renowned for selecting a single input from multiple inputs &
directing the binary information to output line?

Data Selector

Data Distributer

Botha &b

None of the above

94

It is possible for an enable or strobe input to undergo an expansion of two or more mux ICs to
the digital multiplexer with the proficiency of large number of

. Inputs

output

selection lines

all of the above

95

Which is the major functioning responsibility of the multiplexing combinational circuit?

Decoding the binary information

Generation of all minterms in an output function with OR-gate

Generation of selected path between multiple sources and a single destination

All of the above

96

What is the normal operating condition of decoder corresponding to input & output states?

E=0 & Outputs at '0' logic state

E =1 & Outputs at '1' logic state

. E= 0 & Outputs at '1' logic state

E=1 & Outputs at '0' logic state

97

Which sequential circuits generate the feedback path due to the cross-coupled connection from
output of one gate to the input of another gate?

Synchronous

Asynchronous

Both(A&B)

None of the above

98

What is/are the crucial function/s of memory elements used in the sequential circuits?

Storage of binary information

Specify the state of sequential

Botha &b

None of the above

99

How are the sequential circuits specified in terms of time sequence?

By Inputs

By Outputs

By Internal states

All of the above

100

The behavior of synchronous sequential circuit can be predicted by defining the signals at

discrete instants of time

continuous instants of time

sampling instants of time

at any instant of time

101

. Which memory elements are utilized in an asynchronous & clocked sequential circuits
respectively?

Time- delay devices & registers

Time- delay devices & flip-flops

Time- delay devices & counters

Time-delay devices & latches

102

Why do the D-flip-flops receives its designation or nomenclature as 'Data Flip-flops' ?

Due to its capability to receive data from flip-flop

Due to its capability to store data in flip-flop

Due to its capability to transfer the data into flip-flop

All of the above

103

The characteristic equation of D-flip-flop implies that

the next state is dependent on previous state

the next state is dependent on present state

the next state is dependent on present state

the next state is independent of present state

104

Which circuit is generated from D-flip-flop due to addition of an inverter by causing reduction
in the number of inputs?

Gated JK- latch

Gated SR- latch

Gated T- latch

Gated D- latch

105

What is the bit storage binary information capacity of any flip-flop?

1 bit

2 bits

16 bits

infinite bits

106

Which time interval specify the shifting of overall contents of the shift registers?

. Bit time

Shift time

Word time

Code time

107

What does the group of bits possessing certain level of significance called as?

code

bite

word

all of the above

108

Which gate configuration permits the application of different independent sources at a given
single node?

OR gate

Non-linear mixing gate

Botha &b

None of the above

109

An OR-gate configuration has an ability to reduce the interaction of the sources on one
another & precisely renowned as

Buffer circuit

Non-linear mixing circuit

coincidence circuit

All of the above

110

Being a universal gate, it is possible for NOR gate to get converted into AND gate by
inverting the inputs

before getting applied to NOR gate

after getting applied to NOR gate

before getting applied to AND gate

before getting applied to AND gate

111

NAND & NOR are considered to be Universal gates because they are capable of performing
the logical functionalities concerned to

AND gate

OR gate

NOT gate

All of the above

112

Which among the below stated Boolean expressions do not obey De-Morgan's theorem ?

X+Y =X.Y

XY=X+Y

XY = X+Y

None of the above

113

Which law of Boolean algebra emphasizes the elimination of brackets from logical expression
along with the re-arrangement of grouping variables ?

Distributive Law

Commutative Law

Associative Law

None of the above

114

According to property of Commutative law, the order of combining terms does not affect

initial result of combination

final result of combination

mid-term result of combination

none of the above

115

Which are the fundamental inputs assigned or configured in the full adder circuit ?

Addend, Augend & Sum

Augend, Sum & Input Carry

Addend, Augend & Input Carry

Addend, Sum & Input Carry

116

Which gate must be interposed between the cascaded stages of a parallel binary adder
comprising full adders for transmission purpose of carry Ci1 or Cy» to the next stage?

OR gate

AND gate

EX-OR gate

NAND gate

117

How does an arithmetic operation take place in binary adders?

By addition of two bits corresponding to 2" digit

By addition of resultant to carry from 2" digit

botha &b

none of the above

118

What are the possible combinations of maxterms comprising 'n' variables with an
accomplishment of an OR gate generation?

2n-1

2n+1

2n

2n+2

119

The boolean functions which can be represented by the sum of minterms and product of
maxterms can be categorized in

standard form

canonical form

botha &b

none of the above

120

Which operation is denoted by the sum-of-product form of boolean expression consisting of
AND terms ?

ANDing

ORing

both

none of the above

121

What are the OR terms present in product of sum form of the boolean expression called as ?

minterms

maxterms

sum terms

product terms

122

Two cross coupled NAND gates make

SR Latch

RS flip-flop

D flip-flop

master slave flip-flop

123

Input clock of RS flip-flop is given to

input

pulser

output

master slave flip-flop

124 | D flip-flop is a circuit having
2NAND gates
3NAND gates
ANAND gates
5NAND gates
125 | SR latch is made by two cross coupled
AND gates
OR gates
NAND gates
NOR gates
MODULE WISE ASSIGNMENT QUESTIONS
Module -1
1. Perform (24)10 — (56)10 in BCD using 9’s complement
2. Convert (97.75)10 to base 2.
3. Convert(2468)10 to ()16
4. Convert the decimal number 250.5 to base 3, base 4

Module - I |

. State De Morgans’s theorems.

2. What are the advantages of tabulation method over K-map?

© N o g~ w0 DR

Prove that xy+x’z+xy’=xy+x’y

Module — 111
Design half adder from 2 to 4 decoder
List the applications of Multiplexers.
Implement two input EX-OR gate from 2 to 1 multiplexer
Realize full adder using two half adders and logic gates
Design 2x4 decoder using NAND gates.
Draw the basic architecture of a PAL?
Design a 4x2 PROM with AND-OR gates.
Give the comparison between PROM, PLA and PAL.

Module — IV

What are applications of Flip-Flop?
What is race around condition? How can minimized in J-K flip-flop

3. Give the comparison between synchronous sequential and asynchronous sequential circuits
Module -V

1. Write capabilities and limitations of Finite- State machine.
2. Distinguish between Moore and Mealy Machines.
3. Draw and explain Moore circuit.
Module -1
Define and explain basic Number System and different types of Number Systems with example
Describe Hamming Code and device a single error correcting codes for a 11-bit group 01101110101

Ll

Illustrate the procedure to convert from one Number System to another Number System.
4. Apply the r’s complement and (r-1)’s complement of the give binary numbers 1011010 and

011011. Also find the 2’s complement addition of the same
5. Differentiate between Binary to Gray and Gray to Binary conversions with examples

Module— 11

1. Solve the following functions by using Boolean algebra theorems and rules

a) F= A[B+C(AB+AC)]
b) F=AB+AC+ABC(AB+C)
c) Im=(1,3,5,7)
2. Implement the following functions using NAND gates.

a) FI=A(B+CD)+ (BC)_
b) F2=w x_+X y (z+w.)
3. Create XOR and XNOR gates functionality by using
a)NAND gate b) NOR gate
4. Simplify the following Boolean expressions using K-map and implement it by using NOR gates.

a) F(A,B,C,D)=AB’C’ +AC+A’CD’

b) FW.,X,Y,Z2)=w’ X’y’z’ + wxy’z’ + w’X’yz + wxyz
5. Simplify the following using tabulation methody(w,x,y,z)=) m(1,2,3,5,9,12,14,15) +d(4,8,11)
6. Minimize the following function using K-map and also verify through tabulation method.

F(A,B,C,D)=>m (1,4,5,7,8,9,12,14)+d (0, 3, 6, 10)
7. Minimize the following expressions using K-Map
a) F=xm(0,2,3.4,5,6)
b) F=nM(0,1,2,3,4,7)
c) F=X+YZ
8. Apply K-Map on the following function and reduce it F=Xm(0,1,2,3,5,7,8,9,10,12,13) in SOP
and POS forms

9. a) Reduce the following function using k-map technique F(A,B,C,D)=7(0,2,3,8,9,12,13,15)
b) Minimize the expression using k-map Y=(A+B+C”) (A+ B+ C) (A’ +B * C °) (A’+ B +C) (A+B+C)
Module— 111

1. a)Define decoder. Construct 3x8 decoder using logic gates and truth table.
b)Define an encoder. Design octal to binary encoder.

2. Design a 4-bit BCD to XS-3 Code Converter.
a)Derive the PLA programming table for the combinational circuit that squares a 3 bitnumber.

b) Implement the following Boolean functions using PAL.

W (A, B, C, D) =rym(0,2,6,7,8,912,13)
X (A, B, C, D) =rym(0,2,6,7,8,12,13,14)
Y (A, B, C, D) =ym(2.3,8,9,10,12,13)
Z (A, B,C,D)=7m (1,3,4,6,9,12,14)

3. a)Design BCD to gray code converter and realize using logic gates.
b) Design a 1:8 demultiplexer using two 1:4 demultiplexer. (8M+8M)
4. a) Implement the following Boolean functions using PLA.

A(x,y,z)=) m(1,2,4,6)
B(x,y,z)= > m(0,1,6,7)
C(x,y,z)=) m(2,6)

b) Design a combinational circuit using PROM that accepts 3-bit binary number and
generates its equivalent excess-3 code.

o s wdh e

MODULE- IV

Describe the Timing and Triggering Considerations of sequential Circuits with example waveforms.
Illustrate the operation of different types of Flop-flops with their circuits and truth tables.

Explain about Race Around Condition and how it is eleminated

Produce the Excitation Tables of different Flop-flops from the Truth Tables and also explain them.
Convert the following

a) JKFFtoSRFF

b) D FF to JK FF

c) SRFFtoTFF

Draw the logic diagram for 4-stage Asynchronous Counter with positive edge triggering Flip-flops. Also
draw the timing diagram.

Design MOD-6 Ripple Counter and Synchronous Counter using JK FF

6. a) Design a mod-10 Ripple counter using T flip flops and explain its operation.
b) What are the different types of registers? Explain the Serial Input Parallel Output shiftregister.

. Distinguish between different types of Shift Registers. Also design Ring Counter using Shift Registers

MODULE-V

Define State Diagram, State Table, Transition Table, Output Table and state Assignment with examples.
Distinguish between Mealy and Moore Machines. Also explain the different rules to convert from Mealy to
Moore as well as Moore to Mealy Machines. Convery the following Mealy Machine to Moore

PS NS,Z

X=0 X=1
A C,0 B,0
B Al D,0
C B,1 Al
D D,1 C,0

3. Construct the Transition Table, State Table and State Diagram for the following Moore sequential circuit

o D =
D |
Q. T
= o p

4.Define State Equivalence Theorem. Also define the terms Successor, Terminal State,
Distinguishable State and Distinguishable Sequence with examples.

5.Minimize this Completely Specified machine using Partition Technique

.PS NS,Z
X=0 X=1
A E,0 D,1
B F,0 D,0
C E,0 B,1
D F,0 B,0
E C,0 F,1
F B,0 C,0

6.Draw the Merger Graph and obtain the Maximum Compatibilities for this incompletely

Specified Sequential Machine

.PS NS,Z
l1 I2 I3 4
A - C1l E,1 B,1
B E,O0 - - -
C F.0 F.1 i i
D - - B,1 -
E - F,0 A0 D,1
F C,0 - B,0 C,1

of Mealy type FSM for serial adder.
b) Draw the circuit for Moore type FSM.

8.Draw a state diagrams of a sequence detector which can detect 010

7.a) Draw the diagram

MALLA REDDY ENGINEERING COLLEGE

(AUTONOMOUS)
B. Tech Il Year | Semester Examinations-Electronics and Communication Engineering
DIGITAL ELECTRONICS
MODEL QUESTION PAPER

Time: 3 Hours Max. Marks: 70
Part B
1. a) Convert (AOF9.0EBA98.0DC)16 to decimal, binary, octal. (7TM)
b) Perform the following addition using excess-3 code i)386+756 i1)1010 + 444 (4M)
c) Perform (24)10 — (56)10 in BCD using 9’s complement (3M)
OR

2. (a)Given the 8bit data word 01011011, generate the 12 bit composite word for the hamming code
that corrects and detects single errors (10M)
b.Convert the given Gray code number to equivalent binary 001001011110010.(4M)

3. a)Simplify the following Boolean expressions using the Boolean theorems.
(A+B+C) (B’+C)'(A'+C)
(A+B) (A+B’) + (A’+B)
b)Why a NAND and NOR gates are known as universal gates? Simulate all the basic Gates.

OR
4. a) Minimize the following expressions using K-map and realize using NAND Gates.
f=Ym(1,3,5,8,9, 11, 15) +d (2, 13). (7M)
b) Simplify the following boolean function using Tabular method.
F(A,B,C,D)=Ym(0,1,2,5,7,8,9,10,13,15) (7M)

5. a)Design a excess-3 adder using 4-bit parallel binary adder and logic gates. (10M)
b)What are the applications of full adders? (4M)
OR
6. a) Design and implement Full adder with PLA (7TM)
b) Write the comparisons between PAL, PLA (7TM)

7. a) Construct a JK flip flop using a D flip flop, a 2x1 multiplexer and an inverter. (7M)
b)Draw the schematic circuit of RS master slave flip flop. Give its truth table and justify the entries in

the truth table. (TM)
OR
8. a) Design a MOD-10 ripple counter. (6M)
b) Design and construct MOD-5 synchronous counter using JK flip flops. (8M)

9.a)Draw the diagram of Mealy type FSM for serial adder. (7M)
b)Draw the circuit for Moore type FSM. (7M)
OR

10. a) What are the capabilities and limitations of finite state machines? Discuss. (7M)
b) Explain the procedure for state minimization using merger graph and merger table.(7M)

CONTENT BEYOND SYLLABUS

CMOS Logic Gates :

Logic gates are implemented via transistors. One popular technology for implementing transistors is Complementary Metal
Oxide Semiconductor (CMOS) technology. Transistors effectively implement switches. There are two types of Metal Oxide
Semiconductor Field Effect Transistors (MOSFETS), namely the n-channel (NMOS) and p-channel (PMOS) transistor.
CMOS uses both NMOS and CMOS transistors to implement logic gates in a complementary way.

Voltages and logic levels :

Logic levels are represented with voltages. The logic level “0” is represented by the lowest voltage (GND) The logic level “1” is
represented by the highest voltage (VDD)Transistors are used as switches to “open” or “close” and connect wires to either VDD
or GND.

NMOS transistor

NMOS transistor :

Simplified NMOS transistor has 3 terminals: 1) the Gate (G); 2) the Source (S) and 3) the Drain (D). The source is at a lower
voltage, The drain is at a higher voltage ,When a high voltage is applied to G (w.r.t. to S) and VGS is above some threshold voltage
VT the “switch” closes and D is connected to S (current flows from D to S). This “pulls down” the voltage at D to the voltage
at S. When the voltage between G and S is less than some threshold voltage VT the “switch” opens and D is disconnected from S
(no current flows from D to S).

=

PMOQOS transistor :

Simplified PMOS transistor has 3 terminals: 1) the Gate (G); 2) the Source (S) and 3) the Drain (D). The
source is at a higher voltage; ,The drain is at a lower voltage. ,When a low voltage is applied to G (w.r.t. to
S) and VSG is above some threshold voltage VT the “switch” closes and S is connected to D (current flows
from S to D). This “pulls up” the voltage at D to the voltage at S.

When the voltage between S and G is less than some threshold voltage VT the “switch” opens and S is
disconnected from D (no current flows from S to D).

S
od
g

CMOS structure :

CMOS combines NMOS and PMOS transistors in a structure which consists of a Pull-Up Network (PUN)
and a Pull-Down Network (PDN) to implement logic functions.

[JPUN and PDN are duals of each other.

[JA current path (connection) from VDD to VF means VF is high (f is logic 1)

[JA current path (connection) from VF to GND means VF is low (f is logic 0).

[“AND” corresponds to transistors in series...

[1*OR” corresponds to transistors in parallel...

L3 Vu D

Pull-Up Network
(PUN)

} .,

Pull-Down Network
(PDN)

CMOS inverter :

a) When VX is high (logic 1): 1) NMOS is closed; 2) PMOS is open;3) current flows from VF to GND then
VF is GND (logic 0).
b)When VX is low (logic 0): 1) NMOS is open; 2) PMOS is closed;3) current flows from VDD to VF then
V*F is VDD (logic 1).

y D I= e

CMOS NOR :

v, q T1

v, d I: T2

Vf
: T3 “:n
iiby F= (z+y)'
CMOS AND :
X
VDD
i\

[L

LECTURE NOTES

ON

Il B. Tech I semester (MR 18)

G Prasanna Kumar
Assistant Professor

ELECTRONICS AND COMMUNICATION ENGINEERING

MODULE I
Number systems& Binary codes The Decimal Number system:

The Decimal number system contains ten unique symbols. 0,1,2,3,4,5,6,7,8,9. Since
Counting in decimal involves ten symbols its base or radix is ten. There is no symbol for its base.
i.e, for ten .1t is a positional weighted system i.e,the value attached to a symbol depends on its
location w.r.t. the decimal point.In this system, any no.(integer, fraction or mixed) of any
magnitude can be rep. by the use of these ten symbols only. Each symbol in the no. is called a
Digit. The leftmost digit in any no.rep ,which has the greatest positional weight out of all the digits
present in that no. is called the MSD (Most Significant Digit) and the right most digit which has
the least positional weight out of all the digits present in that no. is called the LSD(Least Significant
Digit).The digits on the left side of the decimal pt. form the integer part of a decimal no. & those
on the right side form the fractional part.The digits to the right of the decimal pt have weights
which are negative powers of 10 and the digits to the left of the decimal pt have weights are positive
powers of 10. The value of a decimal no.is the sum of the products of the digit of that no. with their
respective column weights. The weights of each column is 10 times greater than the weight of
unity or 10%°. The first digit to the right of the decimal pt. has a weight of 1/10 or 10°*.for the second
1/100 & for third 1/1000.In general the value of any mixed decimal no. is

(oo Mo ' S di do.d-1 d2ds....... dk isgivenby
(dnx10n)+(dn-1 X10 1)+ (d1x101)+(do x10Y)+(d-1 x10%)(d-2 x103)
9’s & 10’s Complements:

It is the Subtraction of decimal no.s can be accomplished by the 9‘s & 10‘s compliment
methods similar to the 1°s & 2°s compliment methods of binary . the 9‘s compliment of a decimal
no. is obtained by subtracting each digit of that decimal no. from 9. The 10‘s compliment of a
decimal no is obtained by adding a 1 to its 9‘scompliment.

Example: 9°s compliment of 3465 and 782.54 is

9999 999.99
-3465 -782.54

10‘s complement of 4069 is
9999
- 4069

9°s compliment method of subtraction:

To perform this, obtain the 9‘s compliment of the subtrahend and it to the minuend now
call this no. the intermediate result .if there is a carry to the LSD of this result to get the answer
called end around carry.If there is no carry , it indicates that the answer is negative & the
intermediate result is its 9‘s compliment.

Example: Subtract using 9°s comp

(1)745.81-436.62 (2)436.62-745.82
745.81 436.62
-436.62 -745.81
309.19 -309.19
745.81 436.62
+563.37 9‘s compliment of 436.62 +254.18
1309.18 Intermediate result 690.80

+1 end around carry

If there is ono carry indicating that answer is negative . so take 9‘s complement of intermesiate
result & put minus sign (-) result should ne -309.19
If carry indicates that the answer is positive +309.19

10’s compliment method of subtraction:

To perform this, obtain the 10‘s compliment of the subtrahend& add it to the minuend. If
there is a carry ignore it. The presence of the carry indicates that the answer is positive, the result
is the answer. If there is no carry, it indicates that the answer is negative & the result is its 10‘s
compliment. Obtain the 10‘s compliment of the result & place negative sign infront to get the
answer.

Example: (2)2928.54-41673 (0)416.73-2928.54

2928.54 0416.73
-0416.73 -2928.54
2511.81 -2511.81
2928.54 0416.73
+9583.27 10‘s compliment of 436.62 +7071.46
12511.81 ignore the carry 7488.19

The Binary Number System:

It is a positional weighted system. The base or radix of this no. system is 2 Hence it has two
independent symbols. The basic itself can‘t be a symbol. The symbol used are 0 and 1.The binary
digit is called a bit. A binary no. consist of a sequence of bits each of which is eithera 0 or 1. The
binary point seperates the integer and fraction parts. Each digit (bit) carries a weight based on its
position relative to the binary point. The weight of each bit position is on power of 2 greater than
the weight of the position to its immediate right. The first bit to the left of the binary point has a
weight of 2° & that column is called the Units Column.The second bit to the left has a weight of
21 & it is in the 2°s column & the third has weight of 22& so on.The first bit to the right of the
binary point has a weight of 21 & it is said to be in the % _s column , next right bit with a weight
of 22 is in %*s column so on..The decimal value of the binary no. is the sum of the products of all
its bits multiplied by the weight of their respective positions. In general , binary no. wioth an
integer part of (n+1) bits & a fraction parts of k bits canbe
dndnadnz..e.n.... d;do.d.1d2ds....... d

In decimal equivalent is
(On X2 +(dn-a X2")+ .. (d1 X2H)+(do x2%)+(d-1 x271)(d-2x272)

The decimal equivalent of the no. system
dndn1dn2 di do.d1 d2ds....... dk inany system with base b is

(U X"+ (dng X0)+ ... (d1 xbY)+(do xb%)+(d-1 Xb)(d2 xb2) ...

The binary no. system is used in digital computers because the switching circuits used in
these computers use two-state devices such as transistors , diodes etc. A transistor can be OFF or
ON a switch can be OPEN or CLOSED , a diode can be OFF or ON etc(twopossible states). These
two states represented by the symbols 0 & 1 respectively.

Counting in binary:

Easy way to remember to write a binary sequence of n bits is

" The rightmost column in the binary number begins with a 0 & alternates between 0 & 1.

— Second column begins with 2(=2') zeros & alternates between the groups of 2 zeros & 2
ones. So on

Decmal no. Binary no. Decimal no. Binary no.

0 0 20 10100
1 1 21 10101
2 10 22 10110
3 11 23 10111
4 100 24 11000
5 101 25 11001
6 110 26 11010
7 111 27 11010
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
16 10000
17 10001
18 10010
19 10011 39 100111

Binary to Decimal Conversion:
It is by the positional weights method . In this method,each binary digit of the
no. is multiplied by its position weight . The product terms are added to obtain the decimal no.

Example: convert 10101, to decimal
Positional weights 24 23 22 21 20
Binary no. 10101, =(1x 2%)+(0x2%)+(1x2%)+(0x2%)+(1x2°)
=16+0+4+0+1
= 2110

Example: convert 11011.101 to decimal
Positional weights 2¢ 23 22 21 2021 22 23

=16+8+0+2+1+.5+0+.125
= 27.62519

An integer binary no. can also converted toa an integer decimal no as follows

* Left bit MSB , multipliy this bit by 2 & add the provided to next bit to the right

* Multiply the result obtained in the previous step by 2 & add the product to the
next bit to the right.

Exaple: 1001011,

1 0 0 1 0 1 1
! ! ! ! ! ! !
64*1 32*0 16*0 8*1 4*0 2*1 1*1
64 8 2 1
Result=7510

Decimal to Binary conversion:

Two methods

There are reverse processes of the two methods used to convert a binary no. to a
decimal no.

1 method: is for small no.s The values of various powers of 2 need to be remembered. . for
conversion of larger no.s have a table of powers of 2 known as the sum of weights method. The
set of binary weight values whose sum is equal to the decimal no. isdetermined.
. To convert a given decimal integer no. to binary,
(1). Obtain largest decimal no. which is power of 2 not exceeding the remainder
& record it
(2). Subtract this no. from the given no & obtain the remainder
(3). Once again obtain largest decimal no. which is power of 2 not exceeding this
remainder & record it.
(4). Subtract through no. from the remainder to obtain the nextremainder.
(5). Repeat till you get a -0l remainder
The sumof these powers of 2 expressed in binary is the binary equivalent of the original
decimal no. similarly to convert fractions to binary.

Il method: It converts decimal integer no. to binary integer no by successive division by 2 & the
decimal fraction is converted to binary fraction by double —dabble method

Example; 163.875% binary
Given decimal no. is mixed no.
So convert its integer & fraction parts separately.
Integer part is 16310
The largest no. which is a power of 2, not exceeding 163 is
128.
128=27 =10000000;
remainder is 163-128=35
The largest no., apower of 2 , not exceeding 35 is 32.

32=25=100000.
remainder is 35-32=3
The largest no., apower of 2 , not exceeding 35is 2.
2=21 =10,
Remainder is
3-2=1
1=2°=1,
16310= 100000002+1000002+102+1,= 10100011,

The fraction part is 0.87510
1.The largest fraction,which is a power of 2 , not exceeding 0.875 is is 0.5

0.5=21=0.100,
Remainder is 0.875-.5=0.3752.
2. 0.3751is0.25
0.25 =22=0.01,
Remainder is 0.375-.25=0.125.
3. 0.125is 0.125 itself

0.125 =2 =0.001,
0.87510=0.1002+0.01,+0.001,=0.111>

final result is
163.87510=10100011.111,,

Example: convert52;o tobinary using double-dabble method

Divide the given decimal no successively by 2 &read the remainders upwards to
get the equivalent binary no.

Successive division remainder
2| 52
|
2] 26 --- 0
|
2] 13 - 0
|
2| 6 - 1
I
2| 3 -0 !
| | =110100;
2] 1 - 1 |
|
2| 0 - 1

Example:0.7510 using double — dabble method by 2 Multiply give fraction by 2
Keep the integer in the product as it is & multiply the new fraction in the product

0.75
Multiply 0.75by 2 1.50 !
Multiply 0.50 by 2 1.00 ! =0.112

Binary Addition:
Rules:

0+0=0
0+1=1
1+0=1
1+1=10 i.e, O with acarry of 1.

Example: add binary no.s 1101.101 & 111.011
8421 212223
1101.101
111.011

10101.000

In 273 column 1+1=0 with a carry of 1 to the 2-2column
In 22column 0+1+1=0 21
1 1+0+1=0 I‘s
2 1+1+1=1 2‘s
4 0+1+1=0 4°s
8
1

1+1+1=1 8‘s
6 1+1 =0 16%s

Binary Subtraction:
Rules: 0-0=0
1-1=0
1-0=1
0-1=1 with a borrow of 1

Example: subtract binary no.s 111.1>& 1010.01>
8421 212223
1010.010
111.111

0010.011

In 22 column 10-1=1

22 10-1=1
21 1-1=0
1‘s 1-1=0
2°s 10-1=1
4°s 1-1=0

8‘s 0-0=0 result is 0010.011>

Binary multiplication:
Two methods:
1. paper method
2. computer method
Rules:
0x0=0
1x1=0
1x0=0
0x1=0

Paper method:

11012 by 110 1011.101> by 101.01;
1101 1011.101
X110 x101.01
0000 1011101
1101 0000000
1101 1011101
100i1i0” 1OPPor
111101.00001

Computer method:

11002 by 1001>
MQ reg 10010000
Shifted MQ left 100100000
Add M 1100
Partial sum in MQ 00101100

Shift MQ left 001011000
Add 0 0000

Al shifted out so add
M to MQ

A Oshifted out so add
0 to MQ

Partial sum in MQ 01011000 A Oshifted out so add

Shift MQ left 010110000 0to MQ

Add 0 0000

Partial sumin MQ 101100000 Al shifted out so add
Shift MQ left 101100000 M to MQ

Add M 1100

Final sum in MQ 01101100

Binary Division:

Two methods:
1.paper method
2. computer method

Example : 101101, by 110

110) 101101 (1111
110

1010
110

1001
110

110
110

Ans: 111.1
Representation of signed no.s binary arithmetic in computers:

e Two ways of rep signed no.s
1. Sign Magnitude form
2. Complemented form
e Two complimented forms
1. 1‘s compliment form
2. 2‘s compliment form
Advantage of performing subtraction by the compliment method is reduction in the hardware.(
instead of addition & subtraction only adding ckt‘s are needed.)
i.e, subtraction is also performed by adders only.

Istead of subtracting one no. from other the compliment of the subtrahend is added to minuend. In
sign magnitude form, an additional bit called the sign bit is placed in front of the no. If the sign bit
is 0, the no. is +ve, Ifitisa 1, the nois _ve.

Ex:
[0 J1]o J1fo fOo |1 |

!
Sign bit =+41 magnitude

)
(L [t Jo J1]ofo [1 |

=-41
Note: manipulation is necessary to add a +ve no to a —ve no

Representation of signed no.s using 2’s or 1’s complement method:

If the no. is +ve, the magnitude is rep in its true binary form & a sign bit 0 is placed in front
of the MSB.I f the no is _ve , the magnitude is rep in its 2‘s or 1°‘s compliment form &a sign bit 1
is placed in front of the MSB.

The rep of +51 & -51 is
Sign bit magnitude

!
o J1]1 o Jo J1 J1 |

In sign magnitude form
In sign 2‘s compliment form
In sign 1‘s compliment form

=+51
1 [1]1 Jo Jo [1 [1 | Insignmagnitude form
=-51
1]0 |0 [1 |1 JOo |1 | Insign2‘scompliment form
=51
1]0 |0 [1 |1 JOo |0 | Insignl‘scomplimentform
=-51
Ex:
Given no. Sign mag form 2s comp form 1‘s comp form
01101 +13 +13 +13
010111 +23 +23 +23
10111 -7 -7 -8
1101010 -42 -22 -21

Special case in 2°s comp representation:

Whenever a signed no. has a 1 in the sign bit & all 0°‘s for the magnitude bits, the decimal
equivalent is -2" , where n is the no of bits in the magnitude .
Ex: 1000= -8 & 10000=-16

Characteristics of 2’s compliment no.s:
Properties:

1. There is one unique zero

2. 2‘scompof0is0

3. The leftmost bit can‘t be used to express a quantity . it isa 0 no. is +ve.

4. For an n-bit word which includes the sign bit there are (2"-1) +ve integers,
2™ _ve integers & one 0, for a total of 2" uniquestates.

5. Significant information is containd in the 1°‘s of the +ve no.s & 0‘s of the _ve
no.s

6. A veno. may be converted into a +ve no. by finding its 2‘scomp.

Signed binary numbers:

Decimal Sign 2‘s comp form Sign 1‘s comp form Sign mag form
+7 0111 0111 0111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0011 0011 0011
+0 0000 0000 0000
-0 -- 1111 1000

-1 1111 1110 1001

-2 1110 1101 1010

-3 1101 1100 1011

-4 1100 1011 1100

-5 1011 1010 1101

-6 1010 1001 1110

-7 1001 1000 1111

8 1000 -- --

Methods of obtaining 2’s comp of a no:
e In3ways

1. By obtaining the 1‘s comp of the given no. (by changing all 0‘s to 1°s & 1‘s to 0°s) &
then adding 1.

2. By subtracting the given n bitno N from 2"

3. Starting at the LSB , copying down each bit upto & including the first 1 bit
encountered , and complimenting the remaining bits.

Ex: Express -45 in 8 bit 2‘s comp form

+45 in 8 bit form is 00101101

I method:
1‘s comp of 00101101 & the add 1
00101101
11010010
+1
11010011 is 2‘s comp form
Il method:

Subtract the given no. N from 2"

2" =100000000
Subtract 45=-00101101

+1
11010011 is 2‘s comp
111 method:
Original no: 00101101
Copyupto First 1 bit 1
Compliment remaining 1101001
bits 11010011
Ex:
-73.75 in 12 bit 2‘s comp form
| method
01001001.1100
10110110.0011

+1

10110110.0100 is 2°s

Il method:
28 = 100000000.0000
Sub 73.75=-01001001.1100

10110110.0100 is 2‘s comp

11 method :

Orginalno :01001001.1100
Copy upto Isthit :100
Comp the remaining bits: 10110110.0

10110110.0100

2’s compliment Arithmetic:

e The 2‘s comp system is used to rep —ve no.s using modulus arithmetic . The word length
of a computer is fixed. i.e, if a 4 bit no. is added to another 4 bit no . the result will be only
of 4 bits. Carry if any , from the fourth bit will overflow called the Modulus arithmetic.
Ex:1100+1111=1011

e In the 2‘s compl subtraction, add the 2‘s comp of the subtrahend to the minuend . If there
is a carry out, ignore it , look at the sign bit I,e, MSB of the sum term .If the MSB is a 0,
the result is positive.& it is in true binary form. If the MSB is a ~ (carry in or no carry at
all) the result is negative.& is in its 2°s comp form. Take its 2‘s comp to find its magnitude
in binary.

EX:Subtract 14 from 46 using 8 bit 2°s comp arithmetic:

+14 =00001110

-14 =11110010 2°s comp

+46 =00101110

-14 =+11110010 2°s comp form of -14
-32 (1)00100000 ignore carry

Ignore carry , The MSB is 0 . so the result is +ve. & is in normal binary form. So
the result is +00100000=+32.

EX: Add -75 to +26 using 8 bit 2‘s comp arithmetic

+75 =01001011

-75 =10110101 2‘s comp

+26 =00011010

-75 =+10110101 2°s comp form of -75
-49 11001111 No carry

No carry , MSB is a 1, result is _ve & is in 2°s comp. The magnitude is 2‘s comp of 11001111.
i.e, 00110001 = 49. so result is -49

Ex: add -45.75 to +87.5 using 12 bit arithmetic

+87.5=01010111.1000
-45.75=+11010010.0100

-41.75 (1)00101001.1100 ignore carry
MSB is O, result is +ve. =+41.75

1’s compliment of n number:

e It is obtained by simply complimenting each bit of the no,.& also , 1‘s comp of a no, is
subtracting each bit of the no. form 1.This complemented value rep the —ve of the original
no. One of the difficulties of using 1‘s comp is its rep o f zero.Both 00000000 & its 1°s
comp 11111111 rep zero.

e The 00000000 called +ve zero& 11111111 called —ve zero.

Ex:-99 & -77.25 in 8 bit 1‘s comp

+99 = 01100011
-99 = 10011100
+77.25= 01001101.0100
-17.25 = 10110010.1011

1’s compliment arithmetic:

In 1°s comp subtraction, add the 1‘s comp of the subtrahend to the minuend. If there
is a carryout , bring the carry around & add it to the LSB called the end around carry. Look
at the sign bit (MSB) . If this is a 0, the result is +ve & is in true binary. If the MSBisa 1 (
carry or no carry), the result is —ve & is in its is comp form .Take its 1‘s comp to get the
magnitude inn binary.

Ex: Subtract 14 from 25 using 8 bit 1°s EX: ADD -25 to +14
25 = 00011001 +14 =00001110
-45 = 11110001 -25 =+11100110
+11 (1)00001010 -11 11110100
+1

No carry MSB =1
00001011 result=-ve=-1110

MSB is a 0 so result is +ve (binary)

=+1110

Double precision no.s:
For any computer the word length is fixed . in a 16 bit computer, i.e., with a 16 bit
word length, only no.s from +2%6-1(+32,767) to -2%61(+32,768) can be expressed in each register.

If no. is greater than this, two storage locations need to be used. i.e, each such no. has to be
stored in two registers called Double Precision.

Leaving the MSB which is the sign bit, allows a 31 bit no. length with two 16 bit
registers. If still larger no.s are to be expressed, there registers are used to store each no. called
Triple Precision.

Floating Point NO.s:

In decimal system, very large & very small no.s expressed in scientific notation by
stating a no. (mantissa) & an exponent of 10.
Binary no.s can be expressed in same notation by an exponent of 2.

Mantissa Exponent
0110000000 100101

16 bit word contains two parts: 10 bit mantissa , 6 bit exponent.i.e, in 2‘s comp form & in that
MSB is sign bit.

Mantissa = +0.110000000
Exponent= 100101
Actual exponent = 100101-
100000=000101
Entire no. =N= +0.1100,x 2° = 110002 =241

Many formats of floating pt.no.s.Someuse 2 words for mantissa, one for exponent .other use 2 &
half words for mantissa & half for exponent.

Depending on the accuracy desired. some use excess n notation for the exponent, some use 2°s
comp notation for mantissa &some use sign magnitude for both mantissa & exponent.

The Octal Number System:

It is used by early minicomputers. It is also a positional weights system. Its base or
radix is 8.1t has 8 independent symbols 0, 1,2,3,4,5,6,7. Since its base 8=23, every 3-hit group of
binary can be rep by an octal digit. An octal no. is, 1/3 rd the length of the corresponding binary
no.

Octal to Binary conversion:
Just replace each octal digit by its 3 bit binary equivalent.
Ex:
367.52gto binary
Given octal no is 367.52

3 6 7 : 5 2
011 | 110 111 101 010

=011110111.1010102

Binary to Octal conversion:
Starting from the binary pt. make groups of 3 bits each, on either side of the binary
pt, & replace each 3 bit binary group by the equivalent octal digit.

Ex:
Convert 110101.1010102 to octal
Groupof 3 110 101 . 101 010
6 5 : 5 2
=65.52s
Ex:
10101111001.0111,
10 101 111 001 . 011 1
010 101 111 001 . 011 100
2 5 7 1 . 3 4
=257 .34

Octal to decimal Conversion:
Multiply each digit in the octal no by the weight of its position & add all the product terms
Decimal value of the octal no.

dndn1 dn-2 oenen.. .. d; do.d1 d2ds dx is
(dn x8M)+(dn-1 X8n'1)+ (d1 X81)+(do X80)+(d-1 X8'1)(d-2 X82)

Ex: convert 4057.06g to octal
=4x83+0x82+5x81+7x8%+0x8 1+6x82

=2048+0+40+7+0+0.0937

=2095.093710

Decimal to Octal Conversion:

To convert a mixed decimal no. To a mixed octal no. convert the integer and fraction parts
separately. To convert decimal integer no. to octal, successively divide the given no by 8 till the
quotient is 0. The last remainder is the MSD .The remainder read upwards give the equivalent octal
integer no. To convert the given decimal fraction to octal, successively multiply the decimal
fraction&the subsequent decimal fractions by 8 till the product is O or till the required accuracy is
the MSD. The integers to the left of the octal pt read downwards give the octal fraction.

Ex: convert 378.931¢ to octal

3781 tooctal: Successive division:

8| 378
|
8| 47 --- 2
|
8] 5 - 7 1
|
0 - 5
=572s
0.9310to octal :
0.93x8=7.44
0.44x8=3.52 !
0.53x8=4.16
0.16x8=1.28
=0.7341s
378.9310=572.7341s
EX: 549710 to binary
8| 5497
|
8| 687 1
|
8| 85 - 7 1
|
8] 10--- 5
|
8| 1--- 2
-
0 1 0 =125715=001010101111001,

Conversion of large deciml no.s to binary & large binary no.s to decimal can be conveniently &

quickly performed via octal
EX:101111010001; to decimal

101111010001, = 57215=5x8%+7x8%+2x8+1x8°
=2560+448+16+1=30251¢
Octal Arithmetic:

The rules are similar to the decimal or binary arithmetic.This no. system used to
enter long strings of binary data in a digital system like a microcomputer. Arithmetic operations
canbe performed by converting the octal no.s to binary no.s & then using the rules of binary
arithmetic. Octal subtraction can be performed using 1°‘s compliment method or 2‘s comp method
& can also be performed directly by 7°s & 8°s comp methods of decimal system.

Ex: Add (27.5)s(74.4)s Subtract 45g from 66g

275 = 010 111. 101 66s =00 110 1102
+74.45 = +1111000.1002 -45g =+11011 011,
124.1g 1010 100. 001 (1)00 010 001

Ignore carry ans: +ve.

Multiplication & division can slso be performed using the binary rep. of octal no.s & then
making use of multiplication & division rules of binaryno.s

The Hexadecimal number system:

Binary no.s are long & fine for machines but are too lengthy to be handled by human benigs.
So rep binary no.s concisely with their objective is the hexadecimal no system(or hex) . It is a
positional weighted system.The base or radix of there is 16 i.e, it has 16 independent symbols
0,1,2, 9,A,B,C,D,E,F. since its base is 16=2%, every 4 binary digit combination can be
rep by one hexa decimal digit . so a hexadecimal no is % th the length of the corresponding
binary no..A 4 bit group is nibble.

Hexadecimal counting system:
01 23 4567 8 9 A B C D E F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

FO F1 F2 FF

100 101 10F

1F0 1F1 1FF

Binary to Hexadecimal conversion:

For this make groups of 4 bits each , on either side of the binary pt &
replace each 4 bit group by the equivalent hexadecimal digit.

Hexadecimal | Binary
0000
0001
0010
0011
0100
0101

0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

T ml O O W > © o N o tlhlwNk|o

EX:1011011011;

groups of 4-bits: 0010 1101 1011
2 D B =2DB1s

Hexadecimal to binary conversion:
Replace each hex digit by its 4-bit binary group.
Ex: 4BAC1oto binary

4 B A C
0100 1011 1010 1100
=01001011101011002

Hexadecimal to Decimal conversion:
Multiply each dihit in the hex no. by its position weight & add all those product

terms .
Hex nois: dndn-1dnz......... dido.d1d2ds....... d-k
In decimal equivalent is given by(dnx16")+(dn-1 X16™ 1)+ (d1 x16%)+(do x16%)+(d-1 x16

Y+(d2x1672)

Ex: 5C716to decimal
(5x162)+(C x16%)+ (7 x16°)
=1280+192+7.
=14710

Decimal to Hexadecimal conversion:

It is successively divide the given decimal no. by 16 till the quotient is zero. The last remainder is
the MSB. The remainder read from bottom to top gives the equivalent hexadecimal integer. To
convert a decimal fraction to hexadecimal successively multiply the given decimal fraction &
subsequent decimal fractions by 16, till the product is zero. Or till the required accuracy is
obtained,and collect all the integers to the left of decimal pt. The first integer is MSB & the integer
read from top to bottom give the hexadecimal fraction known as the hexadabble method.

Ex: 2598.67510

16/2598

16162 -6
10 -2
= A26 5
0.67510=0.675x16 -- 10.8
=0.800x16 -- 12.8]

=0.800x16 -- 12.8 =0.ACCCas
=0.800x16 -- 12.8

2598.67510 = A26.ACCCy

Ex: 4905610
16| 49056 decimal hexa binary
16|| 3066 — 0 0 000
1|6|19—1 10 A 1010
16|ﬁ 15 1 F 1111
lT 11 B 1011

= BFAO1,=1011,1111,1010,00002

Octal to hexadecimal conversion:

The simplest way is to first convert the given octal no. to binary & then the binary no. to

hexadecimal.
Ex: 756.603g
7 5 6 6 0 3
111 101 110 110 000 011
0001 1110 1110 1100 0001 1000
1 E E C 1 8

Hexa decimal to octal conversion:

First convert the given hexadecimal no. to binary & then the binary no. to octal .

Ex: BOF.AE16
B 9 F A E
1011 1001 1111 : 1010 1110
101 110 011 111 101 011 100
5 6 3 7 S) 3 4
=5637.534

Hexadecimal Arithmetic:

The rules for arithmetic is same as decimal octal & binary. Arithmetic operations are not
done directly in hex. The hex no.s are first converted into binary & arithmetic operations are done
in binary. Hex decimal subtraction can be performed using 1‘s compliment method or 2°s
compliment methods performed directly by 15°s & 16‘s compliment methods. Similar to the 9‘s
& 10°s compliment of decimal system..

Ex:: Add6E 16 & C516 Subtract 7B1sfromC4is

6E 15 =01101110, C41 =1100 0100,
C51s= +1100 0101, -7B1s =+100001 01;
13316 1010 100. 001 4916 (1)010 010 01>

Ignore carry ans: +ve.
8421 BCD code (Natural BCD code):

Each decimal digit 0 through 9 is coded by a 4 bit binary no. called natural binary codes.
Because of the 8,4,2,1 weights attached to it. It is a weighted code & also sequential . it is useful
for mathematical operations. The advantage of this code is its case of conversion to & from
decimal. It is less efficient than the pure binary, it require more bits.

Ex: 14—1110 in binary
But as 0001 0100 in 8421 ode.

The disadvantage of the BCD code is that , arithmetic operations are more complex than
they are in pure binary . There are 6 illegal combinations 1010,1011,1100,1101,1110,1111 in these
codes, they are not part of the 8421 BCD code system . The disadvantage of 8421 code is, the rules
of binary addition 8421 no, but only to the individual 4 bit groups.

BCD Addition:

It is individually adding the corresponding digits of the decimal no,s expressed in 4
bit binary groups starting from the LSD . If there is no carry & the sum term is not an illegal code
, No correction is needed .If there is a carry out of one group to the next group or if the sum term
is an illegal code then 610(0100) is added to the sum term of that group & the resulting carry is
added to the next group.

Ex: Perform decimal additions in 8421 code
(2)25+13

In BCD 25= 0010 0101
In BCD +13 =+0001 0011

38 0011 1000
No carry, no illegal code .This is the corrected sum

(b). 679.6 + 536.8

679.6 = 0110 0111 1001 .0110 inBCD

+536.8 = +0101 0011 0010 .1000 in BCD

1216.4 1011 1010 0110 .1110 illegal codes
+0110 + 0011 +0110 .+ 0110 add 0110 to each

(10001 (1)0000 (1)0101 . (1)0100 propagate carry
/ / / /

+1 +1 +1 +1

0001 0010 0001 0110 . 0100

1 2 1 6 . 4

BCD Subtraction:

Performed by subtracting the digits of each 4 bit group of the subtrahend the digits from
the corresponding 4- bit group of the minuend in binary starting from the LSD . if there is no
borrow from the next group , then 610(0110)is subtracted from the difference term of this group.

(a)38-15

In BCD 38= 0011 1000
In BCD -15=-0001 0101

23 0010 0011
No borrow, so correct difference.

(b) 206.7-147.8

206.7 = 0010 0000 0110 . 0111 in BCD
-147.8 = -0001 0100 0111 . 0110 in BCD
58.9 0000 1011 1110 . 1111 borrows are present
-0110 -0110 . -0110 subtract 0110
0101 1000 . 1001

BCD Subtraction using 9’s & 10’s compliment methods:

Form the 9‘s & 10°s compliment of the decimal subtrahend & encode that no. in
the 8421 code . the resulting BCD no.s are then added.

EX: 305.5-168.8

3055 = 305.5
-168.8= +83.1 9‘s comp of -168.8
(1)136.6
+1 end around carry
136.7 corrected difference
305.510 = 0011 0000 0101 . 0101
+831.110 = +1000 0011 0001 . 0001 9‘s comp of 168.8 in BCD

+1011 0011 0110 . 0110 1011isillegal code
+0110 add 0110

(1)0001 0011 0110 . 0110
+1 End around carry

0001 0011 0110 . 0111
=136.7

Excess three(xs-3)code:

It is a non-weighted BCD code .Each binary codeword is the corresponding 8421 codeword
plus 0011(3).1t is a sequential code & therefore , can be used for arithmetic operations..It is a self-
complementing code.s o the subtraction by the method of compliment addition is more direct in
xs-3 code than that in 8421 code. The xs-3 code has six invalid states 0000,0010,1101,1110,1111..
It has interesting properties when used in addition & subtraction.

Excess-3 Addition:

Add the xs-3 no.s by adding the 4 bit groups in each column starting from the LSD. If there
is no carry starting from the addition of any of the 4-bit groups , subtract 0011 from the sum term
of those groups (because when 2 decimal digits are added in xs-3 & there is no carry , result in
xs-6). If there is a carry out, add 0011 to the sum term of those groups(because when there is a
carry, the invalid states are skipped and the result is normal binary).

EX: 37 0110 1010
+28 +0101 1011
65 1011 (1)0101 carry generated
+1 — T propagate carry
1100 0101 add 0011 to correct 0101 &
-0011 +0011 subtract 0011 to correct 1100
1001 1000 =6510

Excess -3 (XS-3) Subtraction:

Subtract the xs-3 no.s by subtracting each 4 bit group of the subtrahend from the
corresponding 4 bit group of the minuend starting form the LSD .if there is no borrow from the
next 4-bit group add 0011 to the difference term of such groups (because when decimal digits are
subtracted in xs-3 & there is no borrow , result is normal binary). | f there is a borrow , subtract
0011 from the differenceterm(b coz taking a borrow is equivalent to adding six invalid states ,
result is in xs-6)

Ex: 267-175

267 = 0101 1001 1010

-175= -0100 1010 1000
0000 1111 0010
+0011 -0011 +0011

0011 1100 +0011 =9210

Xs-3 subtraction using 9’s & 10’s compliment methods:
Subtraction is performed by the 9‘s compliment or 10‘s compliment
Ex:687-348 The subtrahend (348) xs -3 code & its compliment are:

9‘s comp of 348 = 651

Xs-3 code of 348 = 0110 0111 1011

1‘s comp of 348 in xs-3 = 1001 1000 0100
Xs=3 code of 348 in xs=3 = 1001 1000 0100

687 687
-348 — 1651 9°s compl of 348
339 (1)338
+1 end around carry
339 corrected difference in decimal
1001 1011 1010 687 in xs-3
+1001 1000 0100 1°s comp 348 in xs-3
(1)0010 (1)0011 1110 carry generated
Va
+1 +1 propagate carry

(1)0011 0010 1110

+1 end around carry
0011 0011 1111 (correct 1111 by sub0011 and
+0011 +0011
_OO__) __O_O_“) _+_0?11 adding 88r1rf)ct both groups of 0011 by
0110 0110 1100 corrected diff in xs-3 = 33010

The Gray code (reflective —code):

Gray code is a non-weighted code & is not suitable for arithmetic operations. It is not a
BCD code . Itis a cyclic code because successive code words in this code differ in one bit position
only i.e, itis a unit distance code.Popular of the unit distance code.lt is also a reflective code i.e,both
reflective & unit distance. The n least significant bits for 2" through 2"*1-1 are the mirror images
of thosr for 0 through 2"-1.An N bit gray code can be obtained by reflecting an N- 1 bit code about
an axis at the end of the code, & putting the MSB of 0 above the axis & the MSB of 1 below the
axis.

Reflection of gray codes:

Gray Code
1 bit 2 bit 3bit | 4bit Decimal 4 bit binary
0 00 000 0000 |O 0000
1 01 001 0001 |1 0001
11 011 0011 |2 0010
10 010 0010 |3 0011
110 0110 |4 0100
111 0111 |5 0101
101 0101 |6 0110
110 0100 |7 0111
1100 |8 1000
1101 |9 1001
1111 |10 1010
1110 |11 1011
1010 |12 1100
1011 |13 1101
1001 |14 1110
1000 |15 1111
Binary to Gray conversion:
N bit binary noisrepby Bn Bpgo B;

Gray code equivalentisby Gn Gne G1

Bn,, Gnare the MSB‘s then the gray code bits are obtaind from the binary code as

Gn=Bx Gr=B, B [GiBn [:=8,EPB1
Bn-1 1A Bn-

—EX-or symbol

Procedure: ex-or the bits of the binary no with those of the binary no shifted one position to the
right . The LSB of the shifted no. is discarded & the MSB of the gray code no.is the same as the

MSB of the original binaryno.

EX: 10001

(@). Binary : 1@—»0@—&@—»1
Gray 1 1 0 1

(b). Binary: 1 0 0 1

Shifted binary:1 0 0 (1)

1 1 0 l—gray

Gray to Binary Conversion:

If an n bit gray no. is rep by Gn Gn-1 - G1
its binary equivalent by BnBn-g- B then the binary bits are obtained from gray bits as
Br= Gn Bn-1=B&BGwn |Bn2=P G, | Bl =B.£D

G:

To convert no. in any system into given no. first convert it into binary & then binary to gray. To
convert gray no into binary no & convert binary no into require no system.

Ex:10110010(gray) = 11011100,= DC16=334g=22010

EX:1101
Gray: 1 1 0 1
s &
Binary:1 0 0 1

Ex: 3A7:1=0011,1010,0111,=1001110100(gray)
5275=101,011,011,=111110110(gray)
65210=1010001100,= 1111001010(gray)

XS-3 gray code:

In a normal gray code , the bit patterns for 0(0000) & 9(1101) do not have a unit distance
between them i.e, they differ in more than one position.In xs-3 gray code , each decimal digit is
encoded with gray code patter of the decimal digit that is greater by 3. It has a unit distance between
the patterns for 0 & 9.

XS-3 gray code for decimal digits 0 through 9

Decimal digit Xs-3 gray code Decimal digit Xs-3 gray code
0 0010 5 1100
1 0110 6 1101
2 0111 7 1111
3 0101 8 1110
4 0100 9 1010

Error — Detecting codes:When binary data is transmitted & processed,it is susceptible to noise
that can alter or distort its contents. The 1°s may get changed to 0°s & 1°s .because digital systems
must be accurate to the digit, error can pose a problem. Several schemes have been devised to
detect the occurrence of a single bit error in a binary word, so that whenever such an error occurs
the concerned binary word can be corrected & retransmitted.

Parity: The simplest techniques for detecting errors is that of adding an extra bit known as parity
bit to each word being transmitted. Two types of parity: Oddparity, evenparity forodd parity, the
parity bit is set to a _0° or a _1° at the transmitter such that the total no. of 1 bit in the word
including the parity bit is an odd no.For even parity, the parity bit is set to a _0° or a _1° at the
transmitter such that the parity bit is an even no.

Decimal 8421 code Odd parity Even parity
0 0000 1 0
1 0001 0 1
2 0010 0 1
3 0011 1 0
4 0100 0 1
5 0100 1 0
6 0110 1 0
7 0111 0 1
8 1000 0 1
9 1001 1 0

When the digit data is received . a parity checking circuit generates an error signal if the
total no of 1‘s is even in an odd parity system or odd in an even parity system. This parity check
can always detect a single bit error but cannot detect 2 or more errors with in the same word.Odd
parity is used more often than even parity does not detect the situation. Where all 0‘s are created
by a short ckt or some other fault condition.

Ex: Even parity scheme

(a) 10101010 (b) 11110110 (c)10111001

Ans:
@ No. of 1°s in the word is even is 4 so there is no error
® No. of 1°s in the word is even is 6 so there is no error
© No. of 1°s in the word is odd is 5 so there is error

Ex: odd parity
(2)10110111 (b) 10011010 (c)11101010

Ans:
@ No. of 1°s in the word is even is 6 so word has error
(©) No. of 1°s in the word is even is 4 so word has error
© No. of 1°s in the word is odd is 5 so there is no error

Checksums:

Simple parity can‘t detect two errors within the same word. To overcome this, use a sort of
2 dimensional parity. As each word is transmitted, it is added to the sum of the previously
transmitted words, and the sum retained at the transmitter end. At the end of transmission, the sum
called the check sum. Up to that time sent to the receiver. The receiver can check its sum with the
transmitted sum. If the two sums are the same, then no errors were detected at the receiver end. If
there is an error, the receiving location can ask for retransmission of the entire data, used in
teleprocessing systems.

Block parity:
Block of data shown is create the row & column parity bits for the data using odd parity.

The parity bit 0 or 1 is added column wise & row wise such that the total no. of 1‘s in each column
& row including the data bits & parity bit is odd as

Data Parity bit data

10110 0 10110
10001 1 10001
10101 0 10101
00010 0 00010
11000 1 11000
00000 1 00000
11010 0 11010

Error —Correcting Codes:

A code is said to be an error —correcting code, if the code word can always be deduced
from an erroneous word. For a code to be a single bit error correcting code, the minimum distance
of that code must be three. The minimum distance of that code is the smallest no. of bits by which
any two code words must differ. A code with minimum distance of 3 can‘t only correct single bit
errors but also detect (can‘t correct) two bit errors, The key to error correction is that it must be
possible to detect & locate erroneous that it must be possible to detect & locate erroneous digits.
If the location of an error has been determined. Then by complementing the erroneous digit, the
message can be corrected , error correcting , code is the Hamming code , In this , to each group of
m information or message or data bits, K parity checking bits denoted by P1,P2,---------- pk located
at positions 2 ¥ from left are added to form an (m+k) bit code word. To correct the error, k parity
checks are performed on selected digits of each code word, & the position of the error bit is located
by forming an error word, & the error bit is then complemented. The k bit error word is generated
by putting a 0 or a 1 in the 2 ¥th position depending upon whether the check for parity involving
the parity bit P is satisfied or not.Error positions & their corresponding values :

Error Position For 15 bit code For 12 bit code For 7 bit code
C4C3C2Ce C4C3C2Cy C3C2Cy

0 0000 0000 000

1 0001 0001 001

2 0010 0010 010

3 0011 0011 011

4 0100 0100 100

5 0101 0101 101

6 01 10 01 10 1 10

7 01 1 1 01 1 1 1 11

8 100 O 100 O

9 10 0 1 10 0 1

10 10 10 1010

11 1011 10 1 1

12 11 0 O 11 0 O

13 11 0 1

14 11 1 0

15 11 1 1

7-bit Hamming code:

To transmit four data bits, 3 parity bits located at positions 2° 21&22 from left are
added to make a 7 bit codeword which is then transmitted.

The word format

[P [P [Ds [Ps [Ds [Ds [D7 |

D—Data bits P—

Parity bits
Decimal Digit For BCD For Excess-3

P1P2D3P4DsDeD7 P1P2D3P4DsDesD7

0 0 00 0OO0OO0O O 1 00 001 1
1 1 10 100 1 1 00 110 O
2 010101 1 01 0010 1
3 1 00 001 1 1 100110
4 1 00 110 O 0 00 11 11
5 01 0010 1 1110000
6 1 100110 0 01 1001
7 0 00 1111 1 01 1 010
8 1110000 0 1100 11
9 0 01 1001 0 111100

Ex: Encode the data bits 1101 into the 7 bit even parity Hamming Code
The bit pattern is
P1P2D3P4DsDsD7
1 1 0 1
Bits 1,3,5,7 (P1111) must have even parity, so P1=1
Bits 2, 3, 6, 7(P2101) must have even parity, so P> =0
Bits 4,5,6,7 (P4101)must have even parity, so P4 =0
The final code is 1010101
EX: Code word is 1001001
Bits 1,3,5,7 (C11001) —no error —put a 0 in the 1°s position—C1=0
Bits 2, 3, 6, 7(C20001)) — error —put a 1 in the 2°s position—Co=1
Bits 4,5,6,7 (C41001)) —no error —put a 0 in the 4‘s position—C3z=0
15-bit Hamming Code: It transmit 11 data bits, 4 parity bits located 2° 21 22 23

Word format is

P[P [Ds |[Ps |[Ds [Ds |D7 |[Pg |[Dg |Dio [Dur [Diz [D1z [Dus | Dis |

12-Bit Hamming Code:It transmit 8 data bits, 4 parity bits located at position 2° 21 22 23

Word format is

|Pr |P2 |Ds |[Ps [Ds [Ds |[D7 |Ps |Dg |Dio |Du [Di |

Alphanumeric Codes:

These codes are used to encode the characteristics of alphabet in addition to the decimal
digits. It is used for transmitting data between computers & its 1/O device such as printers,
keyboards & video display terminals.Popular modern alphanumeric codes are ASCII code &
EBCDIC code.

MODULE II:
Boolean Algebra & Boolean functions

Boolean Algebra

Switching circuits called Logic circuits, gate circuits & digital circuits. Switching algebra
called Boolean Algebra. Boolean algebra is a system of mathematical logic. It is an algebraic
system consisting of the set of element (0.1) two binary operators called OR & AND & One unary
operator NOT. Binary Digits 0 & 1 used to represent two voltage levels. Binary 1 is for high i.e,
+5v . Binary 0 for Low i.e, Ov.

A+A=A A.A=A because variable has only a logic value.
Also there are some theorems of Boolean Algebra.

l.la) A+ A=A (b) AA=A Tautology Law
2.(a) A+1=1 (b) A0=0 Union Law

3. (A=A Involution Law

4. (a) A+ B+C)i=(A+B)+C (b)) A(B.C)=(A.B).C Associative Law
5.(a) (A + B)Y =A'B (b) (AB)Y = A" + B De Morgan’s Law
6.(a) A+ AB=A (b) ALA+B)=A Absorption Law
T.la) A+AB=A+DB (b) ACA" + B) = AB

8.(a) AB + AB"=A (b) (A+B)A+B)=A Logical adjancy
9.(a) AB+AC+BC=AB+AC (b) A+BIA+C)(B+C)=(A+B)

Consensus Law

Logic Operators:

AND,OR,NQOT are 3 basic operations or functions that performed in Boolean Algebra. & derived
operations as NAND , NOR,X-OR, X-NOR.

AXIOMS & Laws of Boolean Algebra:
Axioms or Postulates are a set of logical expressions i.e, without proof. & also we can build

a set of useful theorems. Each axiom can be interpreted as the outcome of an operation performed
by a logic gate.

AND OR NOT

0.0=0 0+0=0 1=0

0.1=0 0+1=1 0=1

1.0=0 1+0=1

1.1=1 1+1=1

Complementation Laws:
Complement means invert(0O as 1 & 1 as 0)
Lawl:0=1
Law2:1=0

Law3:If A=0 then =1
Law4:If A=1 then =0
Law5: =A(double complementation law)
AND laws:
Law 1: A.0=0(Null law)
Law 2:A.1=A(ldentity law)
Law 3:A.A=A
Law 4:A. =0
OR laws:
Law 1: A+0O=A(Null law)
Law 2:A+1=1
Law 3:A+A=A
Law 4:A+ =0

Commutative laws: allow change in position of AND or OR variables.
2 commutative laws
Law 1. A+B=B+A_

Law 2: A.B=B.A
A B | A+B = B A | B+A AB B.A
0 O 0 0 O 0 0 0
0 1 1 0 1 1 0 0
1 0 1 1 0 1 0 0
1 1 1 1 1 1 1 1

Associative laws: This allows grouping of variables. It has 2 laws.
Law 1: (A+B)+C=A+(B+C) =A OR B ORed with C
This law can be extended to any no. of variables
(A+B+C)+D=(A+B+C)+D=(A+B)+(C+D)

(A+B)HC

AB C

>
=+
o)

(A+B)+C

000

001

010

011

100

101

110

111

N ==

R R RPRRPRR o

Law2: (A.B).C=A(B.C)

AB C

B+C

A+(B+C)

000

001

010

011

100

101

110

111

R R R Pk kR o

RlRR R Rk RO

This law can be extended to any no. of variables
(A.B.C).D=(A.B.C).D

AB C

>
vs]

(AB)C

000

001

010

011

100

101

110

111

il allellellelle]llie]lle}

allellellellelle]lielle]

Distributive Laws:
This has 2 laws
Law 1.A(B+C)=AB+AC
This law applies to single variables.
EX:ABC(D+E)=ABCD+ABCE
AB(CD+EF)=ABCD+ABEF

B B+A
e i

C) B

A AB A(B
B)‘—C D._

C—

A
B—!

DiB—HZf) .

I

1

D-—A(BC)

A—
AB C BC A(BC)
000 0 0
001 0 0
010 0 0
011 1 0
100 0 0
101 0 0
110 0 0
111 1 1

AB C B+C | A(B+C) AB C AB AC | AB+AC
000 0 0 000 0 o 0
001 1 0 001 0 0 0
010 1 0 _[010 0 0 0
011 1 0 011 0 0 0
100 0 0 100 0 0 0
101 1 1 101 0 1 1
110 1 1 110 1 0 1
111 1 1 111 1 1 1
Law 2. A+BC=(A+B)(A+C)
RHF=(A+B)(A+C)
=AA+AC+BA+BC
=A+AC+AB+BC
=A(1+C+B)+BC
=A.1+BC
=A+BC LHF
B B+A _ L ' —
AT DO HWBwO 5
C :D
AB C BC A+BC ABC | A+tB A+C (A+B)(A+C)
000 0 0 000 0 0 0
001 0 0 301 1 1 0
010 0 0 010 1 0 0
011 1 1 011 1 1 0
100 0 1 100 0 1 0
101 0 1 101 1 1 1
110 0 1 110 1 1 1
111 1 1 111 1 1 1

Redundant Literal Rule(RLR):
Law 1: A+ B=A+B

LHF = (A+)(A+B)
=1.(A+B)

=A+B

RHF

ORing of a variable with the AND of the compliment of that variable with another
variable, is equal to the ORing of the two variables.

A — AB y
AtAB A
B —DTD = B:D A+B

A B B A+ B A |B A+B
00 0 0 0 |0 Q
01 1 1 _ 0 |1 1
10 0 1 1 |1 1
11 0 1 1 J1 1
Law 2:A(+B)=AB
LHF = A +AB
=0+AB
—AB RHF

ANDiIng of a variable with the OR of the complement of that variable with another
variable , is equal to the ANDing of the two variables.

A A+B _ A
B:D@ A(A+B) = B_} AB

A B +B | A(A |B A+B
00 1 0 0O |0 0
01 1 0 0 |1 0
10 0 0 - 1 |1 0
11 1 1 1]1 1

Idempotence Laws:
Idempotence means same value. It has 2 laws.
Law 1=A. A=A
This law states that ANDing of a variable with itself is equal to that
variable only.

A —
D
If A=0, then A.A=0.0=0=A

If A=1, then A.A=1.1=1=A

Law 2=A+A=A

This law states that ORing of a variable with itself is equal to that

A
Ao

variable only.

If A=0, then A+A=0+0=0=A
If A=1, then A+A=1+1=1=A

Absorption Laws:

Law 1=A+A.B=A A B A+ B)
00 0 0
BAL 10 0 1
=A 11 1 1

i.e., A+A. anyterm=A

Law 2=A(A+B)=A
A(A+B)=A.A+AB

= A+AB A B + [AA+B)
=A(1+B) 00 0 0
11 1 1

A A+B
B:j > A
A

Consensus theorem:

Theorem 1: AB+ C+BC=AB+ ¢
LHS: AB+ C+BC
=AB+ C+BC(A+)
=AB+ C+BCA+BC
=AB(1+C)+ c(1)
=AB+C
RHS

This can be extended to any no. of variables
EX: AB+ C+BCD =AB+

Theorem 2: (A+B)(+)(B+C)=(A+B)(+C)

Transposition Theorem:
AB+ C=(A+C)(
+B) RHS: (A+C)(
+B)
=A +C +AB+CB
=0+ C+AB+BC
= C+AB+BC(A+)
=AB+ABC+ C+ BC
=AB+C
LHS
DeMorgans Theorem:
It represents two of the most powerful laws in Boolean algebra

Law 1: + =
This law states that the compliment of a sum of variables is equal to the product
of their individual complements.

LHS
A (A+B) A A+B (A+BY
T) v m o o>
B B
RHS
A {>O r
— | s A)
B—] >0 B
NOR gate Bubbled AND gate
A B |A+B | (A+BY AB |A°B° |AB
00 0 1
01 1 0 00 11 1
10 1 0
T 1 o 0L [L 0 |0

10 0 1 0

11 0 0 0

NOR gate= Bubbled AND gate

This can be extended to any variables.
(A+B+C+D+-----)*=A‘B‘C*D*----
Law 2: (AB)‘=A‘+B¢

Complement of the product of variables is equal to the sum of their individual

components.

A B | (ABY AB |A°B° |AB
00 |1

01 |1 00 |11 1

10 |1

11 10 01 |1 0 |1

10 01 1

11 0 0 0

This law also can extend to any no. Of variables.

(ABCD---)*=A “+B*+C*+D+-----

It can be extended to complicated expressions by

> wpdh P

Complement the entire function

Change all the ANDs to ORS and all the Ors to ANDS

Complement each of the individual variables.

Change all Os to 1s and 1s to Os.

This procedure is called demorganization or complementation of switching expressions.

Shannon’s expansion Theorem;

This theorem states that any switching expression can be decomposed w.r.t. a variable

A into two parts, one containing A &other containing A°. It is useful in decomposing complex
machines into an interconnection of smaller components.

f(A,B,C--)=A.f(1,B,C---)+A*.f(0,B,C ---)

f(A,B,C,---)=[A+f(0,B,C,-----)].[A*+f(1,B,C ----]

Ex: DeMorganize f=((A+B*)(C+D"))‘, f=((A+B)(C+D"))‘
=(A+B*)(C+D")
=A.B* +C.D*

=A*B+C‘D

Duality:

In a positive Logic system the more positive of the two voltage levels is represented by a 1
& the more negative by a 0. In a negative logic system the more positive of the two voltage levels
is represented by a 0 & more negative by a 1. This distinction between positive &negative logic
systems is important because an OR gate in the positive logic system becomes an AND gate in the
negative logic system &vice versa. Positive & Negative logics give a basic duality in Boolean
identities. Procedure dual identity by changing all +° (OR) to -‘(AND) &
complementing all 0‘s &1°s. Once a theorem or statement is proved, the dual also thus stands
proved called Principle of duality.

[f(A,B,C,------- 0,1,+,)]¢=f(A,B,C, ---1,0,.,%)
Relations between complement
(fe(AB,.C-—)= ((.,— =)= (F(,,)
(fa(AB.C—)= ((., ———)=(f(,,)

Duals:
Expression Dual
0=1 1=0
0.1=0 1+0=1
0.0=0 1+1=1
1.1=1 0+0=0
A.0=0 A+1=1
Al=A A+0=A
A.A=A A+A=A
A. =0 A+ =1
A.B=B.A A+B=B+A
A.(B.C)=(A.B).C A+(B+C)=(A+B)+C
A.(B+C)=(AB+AC) A+BC=(A+B)(A+C)
A(A+B)=A A+AB=A
A.(A.B)=A.B A+A+B=A+B
=+ + =+
(A+B)(+C)(B+C)=(A+B)(+C) AB+ C+BC=AB+C

Reducing Boolean Expressions:
Procedure:

1. Multiply all variables necessary to remove parenthesis

2. Look for identical terms. Only one of those terms to be retained & other
dropped.

Ex: AB+AB+AB+AB=AB

4 Look for a variable & its negation in the same term. This term can be dropped 1
Ex: AB +AB = AB (+1)=AB .1=AB

5 Look for pairs of terms which have the same variables,with one or more variables
complemented. If a variable in one term of such a pair is complemented while in the
second term it is not then such terms can be combined into a single term with variable
dropped.
Ex: AB +AB D= AB (+D)=AB .1=AB unctions

Boolean functions & their representation:

A function of n Boolean variables denoted by f(XiX2Xs-—Xn) iS another variable
denoted by & takes one of the two possible values 0 & 1.

The various way of represent a given function is

1. Sum of Product(SOP) form:
It is called the Disjunctive Normal Form(DNF)
Ex:f(A,B,C)=(B+ C)
2. Product of Sums (POS) form:
It is called the Conjunctive Normal Form(CNF).This is implemented usin Consensus
theorem.
Ex:f(A,B,C)=(+B)(B+C)
3. Truth Table form:
The function is specified by listing all possible combinations of values assumed by
the variables & the corresponding values of the function.

Truth table for f(A,B,C)=(B+ C)

Decimal Code A B C F(A,B,C)
0 0 0O 0
1 0 01 1
2 0 10 1
3 0 11 1
4 1 00 0
5 1 01 1
6 1 10 0
7 1 11 0

4. Standard Sum of Products form:Called Disjunctive Canonical form (DCF) & also called
Expanded SOP form or Canonical SOP form.

f(A,B,C)=(B+ C)=B(C+)+ C(A+)
=C+B+BC+AC
A Product term contains all the variables of the function either in complemented or
Uncomplemented form is called a minterm. A minterm assumes the value 1 only for one
combination of the variables. An n variable function can have in all 2" minterms to 1 is the
standard sum of products form of the function. Min terms are denoted as mo, m1,m2--
--. Here suffixes are denoted by the decimal codes.
Ex: 3 variable functions
Moo=
ml=C
m2=
B
m3=
BC

m7= CBA no other way of representation in canonical SOP form is , the SUM
of minterms for which the function equals 1.Thus

f(A,B,C)=mi+mz+mz+ms
The function in DCF is listing the decimal codes of the minterms for which f=1
f(A,B,C)=Ym(1,2,3,5).

5. Standard Product of Sums form: It is called as Conjunctive Canonical form (CCF). It isalso
called Expanded POS or Canonical POS.

If =0 (A=1) B=0 C=0, term=0
Thus function f (A, B, C) =(+)(A+B) given by POS
f(A,B,C)=(+ +)(A+B+)

=(++4) (+ +)(A+B+C)(A+B+)

A sum term which contains each of the n variables in either complemented form is called
a Maxterm. A maxterm assumes the value _0° only for one combination of the variables.

The most there are 2" maxterms. It is represented as Mo M1,M2-----. Here the suffixes are
decimal codes.

The CCF of f(A,B,C)=Mo.M4.Ms.M;

f(A,B,C)=ntM(0,4,6,7)

7 or represents the product of all maxterms.

6. Octal designation:

mz Me ms ma ms mz mi Mo
0 0 1 0 1 1 1 0

7. Karnaugh Map:

Put the Truth Table in a compact form by labeling the row & columns of a map. It
is used in the minimization of functions 3,4,5,6 variables.

Mo,M1,My ----- are minterms
Mo,M1,M2,M3-------- are Maxterms.
Expansion of a Boolean expression in SOP form to the standard SOP form:

1.Write down all the terms.
2. If one or more variables are missing in any term.Expand that term by multiplying itwith
the sum of each one of the missing variable and itscomplement.
3. Drop out redundant terms.
* interms of minterms:

1.Write down all
the
terms.

2.Put Xs in terms where variables must be inserted to form aminterm.
3.Replace the non-complemented variables by 1s and the complemented variables by0s,
and use all combinations of Xs in terms of 0s and 1s to generate minterms.
4. Drop out redundant terms.

Expansion of a Boolean expression in POS form to standard POS form:

1. Write down all the terms.
2. . If one or more variables are missing in any sum term. expand that term by adding the
product of each of the missing variable and itscomplement.
3. Drop out redundant terms.
e Interms of Maxterms:
1. Write down all the terms.
2. Put x‘s in terms where variable inserted
3. Replace complemented variable by 1°s & non complemented variable by 0°s.& use
all combinations.
4. Drop out redundant terms.

Conversion between Canonical form:

The complement of a function expressed as the sum of minterms equals the sum of
minterms missing from the original function is expressed by those minterms that make
the function equal to 1 for those minterms that make the function equal to 0.

Ex: f(A,B,C)=nm(0,2,4,6,7)
Complement is
(,,=Ym(1,3,5).=mi+ms+ms
complement of by deMorgans theorem
f= (m1 4+ m3 + m5) = 1. 2. 5=M; M3 Ms=aM(1,3,5)

1 =M, the maxterm with subscript j is a complement of the minterm with the same
subscript j and vice versa. To convert one canonical form to another, interchange the
symbol }’ and &, and list those numbers missing from the original form.

Computation of total gate inputs:

The total number of gate inputs required to realize a Boolean expression is computed
as, If the expression is in the SOP form, count the number of AND inputs and number of
AND gates feeding the OR gate. If the expression is in the POS form, count the number of
OR inputs and the number of OR gates feeding the AND gate. If it is in hybrid form, count
the gate inputs and the gates feeding other gates. The cost of implementing circuit is
proportional to no. of gate inputsrequired.

EX: ABC+A CD +E +AD

1. Count the AND Inputs 3+4+2+2=11
2. Count AND gates feeding the OR gate 1+1+1+1=4
3. Total gate inputs =15

Boolean Expression & Logic Diagrams:

Boolean expressions can be realized as hardware using logic gates. Conversely,
hardware can be translated into Boolean expressions for the analysis of existing circuits.

1. Converting Boolean Expressions to Logic:

To convert, start with the output & work towards the input.

Assumethe expression +A+ + is to be realized using AOI logic. Start with
this expression. Since it is three terms, it must be the output of a three-input OR gates. So,
draw an OR gate with three inputs as

(ABY OB+
Y —T‘“\\ CARY ko (BT
oo —]

(AB)‘ is the output of an inverter whose inputs is AB and (B+C)‘ must be the output of
an inverter whose input is B+C. so, those two inverters are as

> (AB)'
AB
A —— T~ A+HAB)'+(B+C)'

— 1 7
B+C >c B+C)

Now AB must be output of a two-input AND gate whose inputs are A and B . And B+C
must be the output of a two-input OR gate whose inputs are B and C. so, an AND gate
and an OR gate are as

Aj:\/ AB > (AB)'

° \ E): A+(AB)+(B+C)'
B:D B+C >

€ B+C)'

2. Converting Logic to Boolean Expressions:
To convert logic to algebra, start with the input signals and develop the terms of the
Boolean expression until the output is reached.

Converting AND/OR/INVERT logic to NAND/NOR logic:
1 The SOP expression ABC+AB‘+A‘BC can be implemented in AND/ OR
logic as

A
B —
C —
A

B1‘
Al —]
B.=

NAB'H N\ ABC+AB+A'BC

I

| K
!—___.:,f;{’ a-:.'ll . ﬁg{/x
i—\x 0% Laval

C —

| JABC

1 i

AND Leval

The POS expression (A+B+C)(A+B)(A‘+B+C) can be implemented usin OR and

AND gates

Hybrid Logic reduces the no. of gate inputs required for realization (from 7 to 6 in this case), but
results in multilevel logic. Different inputs pass through number of gates to reach the output. It
leads to non-uniform propagation delay between different numbers of gates to give rise to logic
race. The SOP and POS realizations give rise two-level logic. The two-level logic provides uniform
time delay between input and outputs, because each input signal has to pass through two gates to

The expression ABC‘+A‘B[=B(A‘+AC*) can be implemented in hybrid form as

A —]
'

AC A'+AC

. : B(A'+AC")
B e

reach the output. So, it does not suffer from the problem of logic race.

Since NAND logic and MOR logic are universal logic circuits which are first
computed and converted to AOI logic may ten be converted to either NAND logic or NOR logic

depending on the choice. The procedure is

1. Draw the circuit in AOI logic

2. I NAND hardware is chosen, add a circle at the output of each AND gate and at the

inputs to all the AND gates.

3. If NOR hardware is chosen, add a circle at the output of each OR gate and at the inputs

to all the AND gates

4. Add or subtract an inverter on each line that received a circle in steps 2 or 3 so that the
polarity of signals on those lines remains unchanged from that of the originaldiagram

5. Replace bubbled OR by NAND and bubbled AND by NOR
6. Eliminate double inversions.

LOGIC GATES: Logic gates are fundamental building blocks of digital systems. Logic gate
produces one output level when some combinations of input levels are present. & a different output
level when other combination of input levels is present. In this, 3 basic types of gates are there.
AND OR & NOT

The interconnection of gates to perform a variety of logical operation is called Logic
Design. Inputs & outputs of logic gates can occur only in two levels.1,0 or High, Low or True ,
False or On , Off. A table which lists all the possible combinations of input variables & the
corresponding outputs is called a Truth Table. It shows how the logic circuits output responds to
various combinations of logic levels at the inputs. Level Logic, a logic in which the voltage levels
represent logic 1 & logic 0.Level logic may be Positive Logic or Negative Logic. In Positive Logic
the higher of two voltage levels represent logic 1 & Lower of two voltage levels represent logic
0.In Negative Logic the lower of two voltage levels represent logic 1 & higher of two voltage levels
represent logic 0.

In TTI (Transistor-Transistor Logic) Logic family voltage levels are +5v, Ov.Logic 1 represent
+5v & Logic 0 represent Ov.

AND Gate:

It is represented by _.°(dot) It has two or more inputs but only one output. The output
assume the logic 1 state only when each one of its inputs is at logic 1 state . The output assumes
the logic O state even if one of its inputs is at logic 0 state. The AND gate is also called an All or
Nothing gate.

Boolean Expression: AB=Y
Aand B

A
Inputs . }‘f output

Logic Symbol Truth Table

- o o|E
N o N Y [
-0 o o=

IC 7408 contains 4 two input AND gates
IC 7411 contains 3 three input AND gates
IC 7421 contains 2 four input AND gates

OR Gate:

It is represented by _+° (plus) It has two or more inputs but only one output. The output assumes
the logic 1 state only when one of its inputs is at logic 1 state. The output assumes the logic O state
even if each one of its inputs is at logic 0 state. TheOR gate is also called an any or All gate. Also
called an inclusive OR gate because it includes the condition both the inputs can be present.

A
INPUTS B}Y output

Logic Symbol Truth Table

e s =
- O = o

Y
0
1
1
1

Boolean Expression:

AORB
A+B=Y

IC 7432 Contains 4 two input OR gates.

NOT Gate:

It is represented by _-—(bar).It is also called an Inverter or Buffer. It has only one
input & one output. Whose output always the compliment of its input? Theoutput assumes logic
1 when input is logic 0 & output assume logic 0 when input is logic 1.

Logic Symbol

INPUTA————————#:::Ek———————“fOUTPUT

Y=A"orA
Truth Table Boolean Expression:

A X X=A*

Logic circuits of any complexity can be realized using only AND, OR , NOT gates. Using these
3 called AND-OR-INVERT i.e, AOI Logic circuits.

The Universal Gates:

The universal gates are NAND, NOR. Each of which can also realize Logic Circuits Single
handedly. NAND-NOR called Universal Building Blocks.. Both NAND-NOR can perform all the
three basic logic functions. AOI logic can be converted to NAND logic or NOR logic.

NAND Gate:

NAND gate mean NOT AND i.e, AND output is NOTed.
NAND—AND & NOT gates

Boolean Expression:
Y=
= A .B.C whole bar.

NAND assumes Logic 0 when each of inputs assume logic 1.

INPUTS OUTPUTS

) e
Y ABY
B— 5| (A.B)

Logic Symbol

R N]
— o —= |
[QTP P

Truth table
Bubbled OR gate: The output of this is same as NAND gate.

Bubbled OR gate is OR gate with inverted inputs.

Y=A‘+B‘=(AB)*
A BJY
0 0| 1 A
0 1| 1 U
1 0|1 (AB)
1 10| B

Truth Table Logic Symbol

e NAND gate as an Inverter.
All its input terminals together & applying the signal to be inverted to the common

terminal by connecting all input terminals except one to logic 1 & applying the
signal to be inverted to the remainingterminal.
It is also called Controlled Inverter.

X — -
T ew i X

Bubbled NAND Gate:

A==
%:1>_{4i,3,}, E-‘J}‘j‘ﬁ‘

NOR Gate:
NOR gate is NOT gate with OR gate. i.e, OR gate is NOTed.

Boolean expression:

X=+++—-=-
INPUTS QUTPUTS
A A— A+B ,
B:Dofv BD [So—@+8)
Logic Symbol Logic symbol with OR and NOT
A B Y
0 0 1
0 1 0
1 0 0
1 1 0
Truth Table

Bubbled AND gate:

is AND gate with inverted inputs.The AND gate with inverted inputs is called a
bubbled And gate. So a NOR gate is equivalent to a bubbled and gate.A bubbled AND gate is also
called a negative AND gate. Since its output assumes the HIGH state only when all its

inputs are in LOW state , a NOR gate is also called active-LOW AND gate.Output Y is 1 only
when both A & B are equal to 0.i.e, only when both A‘ and B are equal to 1.

NOR can also realized by first inverting the inputs and ANDing those inverted inputs.

A—] >0
}K=A’B’) —aw
B—| >0 B)

Logic Symbol
Inputs Inverted Output
A B Inputs Y
A* B¢

00 11 1

01 10 0

1 0 01 0

11 00 0

NOR gate as an inverter:

is tying all input terminals together & applying the signal to be inverted to the common
terminals or all inputs set as logic 0 except one & applying signal to be inverted to the remaining
terminal.

Ea I__H- Eal) K '!||___H- e
h—j_b:}-u—:\ 5 .J;\U_x

Bubbled NOR Gate: is AND gate.

A Al "y r A —
5 (A4BY B | AR

IC 7402 is 4 two input NOR gate
IC 7427 is 3 three input NOR gate
IC 7425 is 2 four input NOR gate

The Exclusive OR (X-OR) gate:

It has 2 inputs& only 1 output. It assumes output as 1 when input is not equal called anti-
coincidence gate or inequality detector.

A
:\):D—vmaea
B = AR’ + A'B

A B ASB
0 0 0
Logic Symbol 0 1 1
1 0 1
1 1 0
Proof: Truth Table

Y=MA®B&cC
(AB’ + A'B) @ C
AB’' + AB

X

The high outputs are generated only when odd number of high inputs is present. This is why x-or
function also known as odd function.

Input
1) v -Gaputy

The X-OR gate using AND-OR-NOT gates:

T)5
=

—] >—nes

X-OR gate as an Inverter:
By connecting one of two input terminals to logic 1 & feeding the sequence to be
Logic Symbol

inverted to other terminal
e N
TTL IC 746 has 4 x-OR gate

CMOS IC 74C8C has 4 X-OR gates.

X-OR gate using NAND gates only:

] Da
),

Do—AeB

B—e

X-OR gate using NOR gates only:

B iy
1o

— >

B—®

:DfﬁseB

The EX-NOR Gate:

It is X-OR gate with a NOT gate.It has two inputs & one output logic circuit. It assumes output as
0 when one if inputs are 0 & other 1.1t can be used as an equality detector because it outputs a 1
only when its inputs are equal.

X=A0 B=AB+A‘B‘=" & B=(AB‘+A‘B)"
AOB = (A& BY
= (AB"+ ABY
=(A'+B).(A+B)
= AA"+ A'B' + AB + BB’

: = AB+ A’
Proof: Inputs Output ’

A A B X=AOB
:):Dof'v:ﬂ oB 00 1
B =AB + AB’ 01

10

Logic Symbol. 10

OO

X-NOR gate as an inverter:
by connecting one of 2 input terminals to logic 0 & feeding the input sequence to be inverted to

the other terminal.
i.'l) w ey '
o Y ={i'p)

Logic Symbol as an inverter

i/p o/p
0 0 ©
i/p 0/p
1 1 O

It can be used as Controlled inverter.
A B=(A=B) is compliment of X-OR
AOBOC=(AEB=C)"

TTI IC74LS266 contain 4 each X-NOR gates.

CMOS 74C266 contain 4 each X-NOR gates.
Highspeed CMOS IC 74HC266 contain 4 each X-NOR gates.

INHIBIT CIRCUITS:

AND , OR, NAND , NOR gates can be used to control the passage of an input logic
signal through the output.

Enable INHIBIT

111 a o
B=1:D—X:A I T ‘j‘_}j: '

B=0—

A o
J_U_LB: 1._}— x=a L1 s —7;;‘:3_#1
JHE A L s

B=0—] —1
M, e mUE
B=0_ O~ XA T A

|
Pulsed operation of Logic gates:

The inputs to a gate are not stationary levels , but are voltages that change frequently
between two logic levels & can be classified as pulse waveform.

EX:AND

HIGH

A
LOW
. HIGH — ;‘::)-— X
LOW —
HIGH
LOW
Hybrid Logic:

Both SOP & POS reductions result in a logic circuit in which each input signal has to pass
through two gates to reach the output called Two-level logic. It has the advantage of providing

uniform time delay between input signals & the output. The disadvantage is that the minimal or
POS reductions may not be the actual minimal.

Actual minimal obtained by manipulating the minimal SOP & POS forms into a hybrid form.

EX: ABC+ABD+ACD+BCD (SOP) has 16 inputs

AB(C+D)+CD(A+B) ----has 12 inputs.

w>» 00

@)

—2 1.
—p

f=AB (C + D) + CD(A + D)

w>» 00

The C input to the OR gate must go through 3 levels of logic before reaching the output where as

C input to the AND gate must only go through two levels, can result critical timing problem called
Logic Race.

Implementation of Logic functions:
Two level implementation:

The implementation of a logic expression such that each one of the inputs has to pass
through only two gates to reach the output is called Two-level implementation.

e Both SOP, POS forms result in two-level logic

e Two level implementation can be with AND, OR gates or only NAND or with only
NOR gates

e Boolean expression with only NAND gates requires that the function be in SOP form.

Function F= AB+CD

(A) AND-OR logic
(B) NAND-NAND logic

F=AB+CD= + =.

b -

B— B— B—

D - D
=1t ol -
D— D— D—
AND-OR gates NAND gates NAND gates

AND-OR Logic NAND Logic

Two —level implementation using AND-OR and NAND logic
The implementation of the form:

F=XY ‘+X‘Y+Z using AND-OR logic and NAND- NAND logic is

F=XY+XY+Z=XY+XY+Z=XY-XY-Z

| Je

AND-OR gates NAND gates NAND gates

Two —level implementation using AND-OR and NAND logic

The implementation of Boolean expressions with only NOR gates requires that the function be in
the form of POS form.

Implementation of the function (A+B)(C*+D*)

A
B

ol

0.
0

c

Ba Ba

OR-AND gates NOR gates NOR gates

c
b

Two —level implementation using OR-AND and NOR logic

The implementation of the function
F=(A+B)A+B)C
with (a) OR-AND logic and (b) NOR logic is shown in Figure 6.68.

A A A
B B B
e L L= . :
e—r B——|—° B
c C C
OR-AND gates NOR gates NOR gates

Two —level implementation using OR-AND and NOR logic
Other two level implementations:
The types of gates most often found in IC‘s are NAND and NOR

Some NAND or NOR gates allow the possibility of wire connection between the outputs of two
gates to provide a specific logic function called Wired Logic.

The logic function implemented by the circuit

F=(AB)-(CD)=(AB +CD)

Is calledan AND-OR Invert function.

Z:} F = (RETTO) :D D\ F=(&=BC+D)
— v — e

(a) Wired-AND in open-collector (b) Wired-OR in ECL gates
TTL NAND gates (AND-OR-INVERT) (OR-AND-INVERT)

Similarly NOR outputs of ECL gates can be tied together to form Wired NOR function.

The logic function implemented by this circuit is

F=(A+B)+(C+D)=[{(A+BJC+D)]
Is called OR-AND INVERT Function.

EX: Open Collector TTL NAND gates, when tied together perform the wired AND logic is
called AOI

0.0
= +
Similarly NOR outputs of ECL can tied together to perform a wired NOR function.
F=(+)+(+)
=[(+)(+)]
Non Degenerate forms:

Considering 4 types of gates AND, OR, NAND , NOR & assign one type of gate for the
first level & one type of gate for the second level. Find 16 possible combinations of two level form.
Eight of these are degenerate forms. Because they generate to a single operation. i.e, AND gate in
first level & AND gate in second The output is nearly the AND function of all input variables.

The other non degenerate forms produce an implementation in SOP or POS are

AND-OR OR-AND
NAND-NAND NOR-NOR
NOR-OR NAND-NAND

OR-NAND AND-NOR

The two forms are dual of each other.

AND-OR & OR-AND forms are the basic two-level forms.
NAND-NAND, NOR_NOR

AOI Implementation:

The two forms Nandi-And and And-Nor perform AOI function.

Inversion isand-Nor form resembles the and-Or form done by the bubble in the output of the
NOR gate.

Its function is F= + +

17 A uDa
B— B— B—
DD+ TD-FD- T
D— D— —0 0 —
E——r E—— E

(a) AND-NOR (o) AND-NOR {c) NAND-AND

Two-level implementation in AND-NOR and NAND-AND form
OAI Implementation:
The twoforms OR-NAND and NOR-NOR perform OAI function.

OR-NAND form OR-AND form except inversion done by bubble in NAND gate.

o
>

Function F=[(+)(+)]

- :
B
D= D=
5 .
—_— E—
(a) OR-NAND {b) OR-NAND () NOR-OR
Two-level implementation in OR-NAND form and NOR-OR farm.

=Y
=/

m o O @ >
m o O @ >

Summary:

Equivalent Implements the Simplify Fin To get an
nondegenerate form function output of
(a) (b)*
AND-NOR NAND-AND AND-OR-INVERT Sum of products by F
combining Os in the map
OR-NAND NOR-OR OR-AND-INVERT Product of sums by F

combining s in the map
and then complementing

Simplification of Boolean functions
Karnaughmap

Two-variable k-map:

A two-variable k-map can have 2°=4 possible combinations of the input variables A and
B Each of these combinations, , B,A ,AB(in the SOP form) is called a minterm. The
minterm may be represented in terms of their decimal designations — m0 for , m1 for B,m2 for
A and m3 for AB, assuming that A represents the MSB. The letter m stands for minterm and the
subscript represents the decimal designation of the minterm. The presence or absence of a minterm
in the expression indicates that the output of the logic circuit assumes logic 1 or logic 0 level for
that combination of input variables.

The expression f=,4+ B+A +AB, itcan be expressed using min term
as F= m0+m2+m3=)m(0,2,3)

Using Truth Table:

Minterm | Inputs Output
A B F

0 0 0 1

1 0 1 0

2 1 0 1

3 1 1 1

A 1 in the output contains that particular minterm in its sum and a 0 in that column indicates that
the particular mintermdoes not appear in the expression for output . this information can also be
indicated by a two-variable k-map.

Mapping of SOP Expresions:

A two-variable k-map has 22=4 squares .These squares are called cells. Each square on the k-
map represents a unique minterm. The minterm designation of the squares are placed in any square,
indicates that the corresponding minterm does output expressions. And a 0 or no entry in any
square indicates that the corresponding minterm does not appear in the expression for output.

~B o 1

A
0A'B|A'B
1LAB' AB

The minterms of a two-variable k-map
The mapping of the expressions =) m(0,2,3)is

B
ABo 1
0o 1 0
1l 17| 1°

k-map of >m(0,2,3)
EX: Map the expressions f= B+A

F= mi+m2=Ym(1,2)The k-map is

B
B0 1
o 0| 1
1 1° ’

Minimizations of SOP expressions:

To minimize Boolean expressions given in the SOP form by using the k-map, look for
adjacent adjacent squares having 1‘s minterms adjacent to each other, and combine them to form
larger squares to eliminate some variables. Two squares are said to be adjacent to each other, if
their minterms differ in only one variable. (i.e, B & A differ only in one variable. so theymay be
combined to form a 2-square to eliminate the variable B.similarly all other.

The necessary condition for adjacency of minterms is that their decimal designations must
differ by a power of 2. A minterm can be combined with any number of minterms adjacent to it to
form larger squares. Two minterms which are adjacent to each other can be combined to form a
bigger square called a 2-square or a pair. This eliminates one variable — the variable that is not
common to both the minterms. For EX:

mO0 and m1 can be combined to yield,
fi=m0+ml= + B= (B+

)= mO0 and m2 can be combined to yield,

fp=m0+m2= + = (+)=
m1 and m3 can be combined to yield,
f;= m1+m3= B+AB=B(+)=B
m2 and m3 can be combined to yield,
f2= m2+m3=A +AB=A(B+)=A
Mo ,mz,m2and mzcan be combined to yield,

= + +A +AB

(B+) +A(B+)

fl= f2= f3=B f4=A f5=1
The possible minterm groupings in a two-variable k-map.

Two 2-squares adjacent to each other can be combined to form a 4-square. A 4-square
eliminates 2 variables. A 4-square is called a quad. To read the squares on the map after
minimization, consider only those variables which remain constant through the square, and ignore
the variables which are varying. Write the non complemented variable if the variable is remaining
constant as a 1, and the complemented variable if the variable is remaining constant as a 0, and
write the variables as a product term. In the above figure firead as , because, along the square , A
remains constant as a 0, that is, as , where as B is changing from 0 to 1.

EX: Reduce the minterm f= +A +AB using mapping Expressed in terms of minterms, the given
expression is F=mo+my+mz+ ms=m}(0,1,3)& the figure shows the k-map for f and its reduction .
In one 2-square, A is constant as a 0 but B varies from a 0 to a 1, and in the other 2- square, B is
constant as a 1 but A varies from a 0 to a 1. So, the reduced expressions is +B.
B
Ay 1
o L |1
1.0 |1

1 A!

3

Y

It requires two gate inputs for realization as
f= +B (k-map in SOP form, and logic diagram.)

The main criterion in the design of a digital circuit is that its cost should be as low as
possible. For that the expression used to realize that circuit must be minimal.Since the cost is
proportional to number of gate inputs in the circuit in the circuit, an expression is considered
minimal only if it corresponds to the least possible number of gate inputs. & there is no guarantee
for that k-map in SOP is the real minimal. To obtain real minimal expression, obtain the minimal
expression both in SOP & POS form form by using k-maps and take the minimal of these two
minimals.

The 1°s on the k-map indicate the presence of minterms in the output expressions, where
as the Os indicate the absence of minterms .Since the absence of a minterm in the SOP expression
means the presense of the corresponding maxterm in the POS expression of the same .when a SOP
expression is plotted on the k-map, 0s or no entries on the k-map represent the maxterms. To obtain
the minimal expression in the POS form, consider the Os on the k-map and follow the procedure
used for combining 1s. Also, since the absence of a maxterm in the POS expression means the
presence of the corresponding minterm in the SOP expression of the same , when a POS expression
is plotted on the k-map, 1s or no entries on the k-map represent the minterms.

Mapping of POS expressions:

Each sum term in the standard POS expression is called a maxterm. A function in two
variables (A, B) has four possible maxterms, A+B,A+, +B, +

. They are represented as Mo, M1, M2, and M3respectively. The uppercase letter M stands for
maxterm and its subscript denotes the decimal designation of that maxterm obtained by treating
the non-complemented variable as a 0 and the complemented variable as a 1 and putting them side
by side for reading the decimal equivalent of the binary number so formed.

For mapping a POS expression on to the k-map, Os are placed in the squares corresponding
to the maxterms which are presented in the expression an dls are placed in the squares
corresponding to the maxterm which are not present in the expression. The decimal designation of
the squares of the squares for maxterms is the same as that for the minterms. A two-variable k-
map & the associated maxterms are asthe maxterms of a two-variable k-map

The possible maxterm groupings in a two-variable k-map

A0 1 A0 1
o |[0 o|‘ 0 1°[‘o‘|'
2 3 2 3
1191 % 1 1||g| 1

f,=A f,=B f,=B f,=A f,

o
-
o
-

o
-

o
o
o

o

E13 |e
~
-
L)
“
" "1
=

Minimization of POS Expressions:

To obtain the minimal expression in POS form, map the given POS expression on to the
K-map and combine the adjacent Os into as large squares as possible. Read the squares putting the
complemented variable if its value remains constant as a 1 and the non-complemented variable if
its value remains constant as a 0 along the entire square (ignoring the variables which do not
remain constant throughout the square) and then write them as a sumterm.

Various maxterm combinations and the corresponding reduced expressions are shown in
figure. In this fyread as A because A remains constant as a 0 throughout the square and B changes
fromaOtoal. foisread as B because B remains constant along the square as a 1 and A changes
fromaOtoal.fs

Is read as a 0 because both the variables are changing along the square.

EX: Reduce the expression f=(A+B)(A+B*)(A‘+B¢) using mapping.

The given expression in terms of maxterms is f=tM(0,1,3). It requires two gates inputs for
realization of the reduced expression as

4 0 1

A

1

o |[@ [[o A
=

i i
1110

| >

——

F=AB*
K-map in POS form and logic diagram

In this given expression ,the maxterm M is absent. This is indicated by a 1 on the k-map. The
corresponding SOP expression is > mz or AB*. This realization is the same as that for the POS
form.

Three-variable K-map:

A function in three variables (A, B, C) expressed in the standard SOP form can have eight
possible combinations: A B C , AB C,A BC ,A BC,AB C ,AB C,ABC , and ABC. Each one of these
combinations designate d by m0,m1,m2,m3,m4,m5,m6, and m7, respectively, is called a minterm.
A is the MSB of the minterm designator and C is the LSB.

In the standard POS form, the eight possible combinations are:A+B+C, A+B+C , A+B
+CA+B+ C,A+ B+ CA+ B+ C,A+ B + C,A+ B + C. Each oneof these combinations designated
by Mo, M1, M2, M3, M4, M5, M6, and M7respectively is called a maxterm. A is the MSB of the
maxterm designator and C is the LSB.

A three-variable k-map has, therefore, 8(=2%) squares or cells, and each square on the map
represents a minterm or maxterm as shown in figure. The small number on the top right corner of
each cell indicates the minterm or maxterm designation.

BC BC

A_00 01 11 10 A___00 01 11 10
0 3 2 0 3 2
0 |ABT KBC‘ ABC|ABC 0|A+B+C A¢B+C' A+B+C|A+B+C
1= o ' | S | . s 7 [
1 ABT|ABC|ABC|ABT 1|A+B+C|A+B+C| A+B+C|A+B+C
(a) Minterms (b) Maxterms

The three-variable k-map.

The binary numbers along the top of the map indicate the condition of B and C for each
column. The binary number along the left side of the map against each row indicates the condition
of A for that row. For example, the binary number 01 on top of the second column in fig indicates
that the variable B appears in complemented form and the variable C in non- complemented form
in all the minterms in that column. The binary number 0 on the left of the first row indicates that
the variable A appears in complemented form in all the minterms in that row, the binary numbers
along the top of the k-map are not in normal binary order. They are, infact, in the Gray code. This
is to ensure that twophysically adjacent squares are really adjacent, i.e., their minterms or
maxterms differ by only one variable.

Ex: Map the expression f=: C+ + + +ABC

In the given expression , the minterms are : C=001=m: ; =101=ms;
=010=my;

=110=ms;ABC=111=my.
So the expression is =) m(1,5,2,6,7)= Y m(1,2,5,6,7). The corresponding k-map is

A\ 00 01 11 10
ole] 4| et 4

110 1 1 1

K-map in SOP form

Ex: Map the expression f= (A+B+C),(++) (++)(A++)(++)

In the given expression the maxterms are
:A+B+C=000=Mo; + + =101=Ms; + + = 111=M7; A + + =011=Mgs; + +
=110=Me.
So the expressionis f=xn M (0,5,7,3,6)=7 M (0,3,5,6,7). The mapping of the expression s

A\ 00 01 1110
c 1 3 2
o] B 1| @] 9

“ S T L]

1 1 0 0 0

K-map in POS form.

Minimization of SOP and POS expressions:

For reducing the Boolean expressions in SOP (POS) form plotted on the k-map, look
at the 1s (0s) present on the map. These represent the minterms (maxterms). Look for the minterms
(maxterms) adjacent to each other, in order to combine them into larger squares. Combining of
adjacent squares in a k-map containing 1s (or 0s) for the purpose of simplification of a SOP (or
POS)expression is called looping. Some of the minterms (maxterms) may have many adjacencies.
Always start with the minterms (maxterm) with the least number of adjacencies and try to form as
large as large a square as possible. The larger must form a geometric square or rectangle. They can
be formed even by wrapping around, but cannot be formed by using diagonal configurations. Next
consider the minterm (maxterm) with next to the least number of adjacencies and form as large a
square as possible. Continue this till all the minterms (maxterms) are taken care of . A minterm
(maxterm) can be part of any number of squares if it is helpful in reduction. Read the minimal
expression from the k-map, corresponding to the squares formed. There can be more than one
minimal expression.

Two squares are said to be adjacent to each other (since the binary designations along
the top of the map and those along the left side of the map are in Gray code), if they are
physically adjacent to each other, or can be made adjacent to each other by wrapping around.
For squares to be combinable into bigger squares it is essential but not sufficient that their
minterm designations must differ by a power of two.

General procedure to simplify the Boolean expressions:

1. Plot the k-map and place 1s(0s) corresponding to the minterms (maxterms) of the SOP
(POS) expression.

2. Check the k-map for 1s(0s) which are not adjacent to any other 1(0). They are isolated
minterms(maxterms) . They are to be read as they are because they cannot be combined
even into a 2-square.

3. Check for those 1s(0S) which are adjacent to only one other 1(0) and make them pairs (2
squares).

4. Check for quads (4 squares) and octets (8 squares) of adjacent 1s (0s) even if they contain
some 1s(0s) which have already been combined. They must geometrically form a square
or arectangle.

5. Check for any 1s(0s) that have not been combined yet and combine them into bigger
squares if possible.

6. Form the minimal expression by summing (multiplying) the product the product (sum)
terms of all the groups.

Reading the K-maps:

While reading the reduced k-map in SOP (POS) form, the variable which remains constant
as 0 along the square is written as the complemented (non-complemented) variable and the one
which remains constant as 1 along the square is written as non-complemented (complemented)
variable and the term as a product (sum) term. All the product (sum) terms are added (multiplied).

Some possible combinations of minterms and the corresponding minimal expressions
readfrom the k-maps are shown in fig: Here fg is read as 1, because along the 8-square no variable
remains constant. Fs is read as , because, along the 4-square formed byO,m;m, and ms, the
variables B and C are changing, and A remains constant as a 0. Algebraically,

f5= mo+mi+ma+ms
= + C+ +
=(+C)+ B(C+)

= + B
= (+B):
BC BC BC
A 00 om 1 10 A 00 1]] 1 10 A 00 01 1 10
0 1 3 — 2 0 1 3 2 a 1] 2
Vol I ° [)
4] 7] 4 5 7 8] 7 7
1|\ 1 1 \i 1\ y
f,=BC + AB + AC t,=AB + BC + AC f,=C+B
BC BC BC
A 00 o 1 10 A 00 o 1 10 A 00 o1 1 10
0 1 3 2 0 1 a 2 0 1 3 2
0 ol """ ol 1 1 1 1
T 101] 1] s | »| »

AN rAANTA Y
] 1i-|'_11ﬁ_L1? [; 4 5 7 B ; J’I-‘LHTE'-T?“;LB
i,=B+C I,=A Tg=1

fsisreadas + , because in the 4-square formed by mO,m2,m6, and m4, the variable A and B are
changing , where as the variable C remains constant as a 0. So it is read as . In the 4-square formed
by mo, m1, m4, ms, A and C are changing but B remains constant as a 0. So it is read as

. S0, the resultant expression for fz is the sum of these two, i.e., +.

fiisreadas + + ,because in the 2-square formed by mgand mas, A is changing from a0 to
a 1. Whereas B and C remain constant as a 0. So it s read as .Inthe 2-square formed by
moand my, C is changing from a 0 to a 1, whereas A and B remain constant as a 0. So itis read as
.In the 2-square formed by mp and mz , B is changing fromaOto a1 whereas A and C remain

constant as a 0. So, it is read as . Therefore, the resultant SOP expression is
+ +

Some possible maxterm groupings and the corresponding minimal POS expressions read from
the k-map are

A 00 01 11 10 A 00 o1 11 10
[+] 1 3 2 [1] 1 3 2
4] 3] 4] 4] i
. Awrdlwri _ . »
-
1 uﬁ-ioﬂ-in 1]e0_| 'ﬁ—?':g__
(a) 1, = {ENBE) (b) f, = (A + B)(B + C)(A + C)

In this figure, along the 4-square formed by M1, M3, M7, M5, A and B are changing froma 0 to a
1, where as C remains constant as a 1. SO it isread as . Along the 4-squad formed by M3, M2,
M7, and M, variables A and C are changing from a 0 to a 1. But B remains constant as a 1. So it
isread as . The minimal expression is the product of these two terms , i.e., fut=()().also in this
figure, along the 2-square formed by Mas and M6 , variable B is changing from a 0 to a 1, while
variable A remains constant as a 1 and variable C remains constantasa 0. SO, read it as

+C. Similarly, the 2-square formed by M7andMgisread as + , while the 2-square formed by
Mz and Mg is read as +C. The minimal expression is the product of these sum terms, i.e, 2
=(+)t(+)+(+C)

Ex:Reduce the expression =) m(0,2,3,4,5,6) using mapping and implement it in AOI logic as well
as in NAND logic.The Sop k-map and its reduction , and the implementation of the minimal
expression using AOI logic and the corresponding NAND logic are shown in figures below

In SOP k-map, the reduction is done as:

1 mshas only one adjacency ma4, so combine msand mg4into a square. Along this 2-square A
remains constant as 1 and B remains constant as 0 but C varies from 0 to 1. So read it as A

2 mshas only one adjacency mz, so combine mzand mzinto a square. Along this 2-square A
remains constant as 0 and B remains constant as 1 but C varies from 1 to 0. So read itas B.

3 mecan form a 2-square with mzand m4 can form a 2-square with mo, but observe that by
wrapping the map from left to right mo, ms4,m2 ,ms can form a 4-square. Out of these m»
andM4 have already been combined but they can be utilized again. So make it. Along this 4-
square, A is changing from 0 to 1 and B is also changing from 0 to 1 but C is remaining
constant as 0. so read it as .

4 Write all the product terms in SOP form. So the minimal SOP expression is

BC A A

00 01 1110 =
A o7 T 3 pa B f B f
of 1 [1 1 | _

g.. 11+ A 8
I NEE 1 B
all

C Cc

fmin= t=C+AB+AB

k-map AOI logic NAND logic

Four variable k-maps:

Four variable k-map expressions can have 24=16 possible combinations of input variables such
as , E— ABCD with minterm designations mo, My .- mis respectively
in SOP form & A+B+C+D, A+B+C+ - + + + with maxterms Mo,My, ---------

-Mis respectively in POS form. It has 24=16 squares or cells.The binary number designations of
rows & columns are in the gray code. Here follows 01 & 10 follows 11 called Adjacency ordering.

cD
AB 00 01 1 10
0 1 3 2
C0 oo 01 11 10 = =T =
AB 00 |A+B+C+DA+B+C+D|A+B+C+D|A+B+C+D
1] 1 3 2
00 |ABCD|ABCD|ABCD|ABCD 7 : 7 B
= ~ - i1 01 [A+B+C+DA+B+C+D|A+B+C+D|A+B+C+D
01 |ABCD|ABCD|ABCD|ABCD
12 1 1% “
i i = “I' 11 [A+B+C+DA+B+C+D|A+B+C+D|A+B+C+D
11 |ABCD|ABCD|ABCD|ABCD
]] n 1°

L} 1] " "
10 |ABCD|ABCD|ABCD|ABCD| 10 [A+B+C+DA+B+C+D|A+B+C+D[A+B+T+D

SOP form POS form
EX: Reduce using mapping the expression £ m(2, 3, 6, 7, 8, 10, 11, 13, 14).

Start with the minterm with the least number of adjacencies. The minterm m,;; has no
adjacency. Keep it as it is. The mg has only one adjacency, m,,. Expand mg into a 2-square
with m,,. The m, has two adjacencies, mg and m;. Hence m; can be expanded into a
4-square with mg,, m; and m,. Observe that, m;, mgz, m,, and m; form a geometric square.
The m,, has 2 adjacencies, m,; and m,. Observe that, m,,, m;,, m;, and m, form a
geometric square on wrapping the K-map. So expand m,, into a 4-square with m;,, m; and
m,. Note that, m, and m,, have already become a part of the 4-square m,;, mg, m,, and
m,. But if m,, is expanded only into a 2-square with m,,, only one variable is eliminated.
So m, and m; are used again to make another 4-square with m,; and m,,; to eliminate two
variables. Now only mg and m;, are left uncovered. They can form a 2-squarc that
climinates only one variable. Don’t do that. See whether they can be expanded into a larger
square. Observe that, m,, mg m,,, and m;, form a rectangle. So mg and m;, can be
expanded into a 4-square with m, and m,,. This eliminates two variables.

f=ABCD + ABD + AC + BC +CD

Five variable k-map:

Five variable k-map can have 2° =32 possible combinations of input variable as

N R ABCDE with minterms mo, m1-----ma; respectively in SOP & A+B+C+D+E,
A+B+C+ - + + + + with maxterms Mo,M3, -----------
Maa respectively in POS form. It has 2°=32 squares or cells of the k-map are divided into 2 blocks
of
16 squares each.The left block represents minterms from mo to mzsin which A is a 0, and the right
block represents minterms from mis to maz in which A is 1.The 5-variable k-map may contain 2-
squares, 4-squares , 8-squares , 16-squares or 32-squares involving these two blocks. Squares are
also considered adjacent in these two blocks, if when superimposing one block on top of another,
the squares coincide with one another.

Some possible 2-squares in a five-variable map are my, m;;; m,, m;g; mg my;;
mys, My); My, Myy.

Some possible 4-squares are mg, m,, Mg, Myg; Mg, My, Mg, Mz, Mg, My, My, My,
my3, M5, My, My;; My, My, My;, M.

Some possible 8-squares are mg, m;, m;, My, Mg My, Myg, Mg My, My, My, Mg
Mg, Mg, Mg My, Mg, My Myy, Mg, My, My;, My, My,.

The squares are read by dropping out the variables which change. Some possible

Grouping s is
(a) mg, m¢ = BCDE My, M\ =B +C + D+ E
(b) m;, m;g = BCDE M,, M;y =B +C + D + E
(c) m,, mg m,y m,, = BCE M,, Mg, Myg, My, = B + C + E
(d) ms, m;, m;; ms my, My, M;, M,, lil,,, h_flsv M;,. My;, My,
myg, Mmy; = CE M;, =C + E
(e) mg, mg, m,p my,, My, My, Mg, Mg, Mg, M,,, My, My, My,
m,e, my; = BC M,, =B + C
DE (o) A DE 1
BC 00 01 1110 ac\ 00 01 11 10

s

00 00 | —
01 o1 |
= . n
" 11]
2 L] " 24
10 | 10 L~

Ex: F=)m(0,1,4,5,6,13,14,15,22,24,25,28,29,30,31) is SOP
POS is F=nM(2,3,7,8,9,10,11,12,16,17,18,19,20,21,23,26,27)

The real minimal expression is the minimal of the SOP and POS forms.
The reduction is done as

There is no isolated 1s

Mz12 can go only with m13. Form a 2-square which is read asA‘BCD*

Mo can go with mz2,m1s and mg . so form a 4-square which is read as B‘C‘E°
M20,m21,m17 and mye form a 4-square which is read as AB‘D°
M2,m3,m18,m19,m10,m11,m26 and m27 form an 8-square which is read as C‘d
Write all the product terms in SOP form.

© gk wd F

So the minimal expression is

Fmin= A‘BCD*+B*C‘E‘+AB‘D‘+C‘D(16 inputs)

DE 0 A DE 1
BC 00 01 11 10 BC 00 01 11 10
K3 18 1
/d 1
00 |1 A 1L 00] Al
. s T L] .
01 (o1 | 1 [1
_*', 1 " 28 2 n | 308
" | i3 1
10 8 * 1“_1/‘0. 1_0 24 aL‘" 1

f=ABCD + BCE + ABD + CD
In the POS k-map ,the reduction is done as:

1. There are no isolated Os

M, can go only with M. So, make a 2-square, which is read as (A + B + D + E).
3. M, can go with My, M;, and M, to form a 4-square, which is read as (A + B + C).
4. Mg
5. M2
6.M3o
7. Sum terms in POS form. So the minimal expression in POS is

Fmin= A‘BcD‘+B‘C‘E‘+AB‘D‘+C‘D

DE (0] A DE
9‘\00 o1__11__10 e‘xoo 01 __11__ 10

o]
00 ﬁ 00
- a9 E=d
o1 o o o o o1 o [+
3
" o " o o o
ol eo" [0 o d °
10 » i 10

I=(A+B+D+EXA+B+TCYB+C+D)YA+B+DXC+D)

Six variable k-map:

Six variable k-map can have 2° =64 combinations as -
---ABCDEF with minterms mg, mz-----me3 respectively in SOP & (A+B+C+D+E+F) ---------- (
+ + + + +) with maxterms Mo,My, ----------- Mes respectively in POS form. It has

2%=64 squares or cells of the k-map are divided into 4 blocks of 16 squares each.

EF o EF 1
> oo o1 11 10 CN oo o1 11 10
= T = 3 =3
oo }J-vl-\/ﬂ-\._-’\ —\/’-—\‘
= = = = =] = = =
o1 |/
o - » E = 5] - B 2e 3 =
s Al of 2a s 2
10 /
EF EF
CD\ oo o1 11 10 CD\ oo o1 11 1
=== s s S
oo
s a7 3% s =2} s =5 Sa
o [
=
- N [:_’. = = =
= = = = ==
i =< 1

Some possible groupings in a six variable k-map

Don’t care combinations:For certain input combinations, the value of the output is unspecified
either because the input combinations are invalid or because the precise value of the output is of
no consequence. The combinations for which the value of experiments are not specified are called
don‘t care combinations are invalid or because the precise value of the output is of no consequence.
The combinations for which the value of expressions is not specified are called don‘t care
combinations or Optional Combinations, such expressions stand incompletely specified. The
output is a don‘t care for these invalid combinations.

Ex:In XS-3 code system, the binary states 0000, 0001, 0010,1101,1110,1111 are unspecified. &
never occur called don‘t cares.

A standard SOP expression with don‘t cares can be converted into a standard POS
form by keeping the don‘t cares as they are & writing the missing minterms of the SOP form as
the maxterms of the POS form viceversa.

Don‘t cares denoted by _X* or _o°

Ex:f=Ym(1,5,6,12,13,14)+d(2.,4)

Or £=1M(0,3,7,9,10,11,15).1d(2,4)

SOP minimal form fmin= +B +

POS minimal form fmin=(B+D)(+B)(+D)

=++++(+

cD cD
AB 00 01 1110 NN 00 01 11 10
o] 1 N 2 £l ﬂ N 3 F: -
00 7] X 00 [0] o [X |~
4 [7 e “ s 7} s
o1 [[X O 1 01| X ()
11 1 N2 1 Ak 15 - 1‘ 12 ™ o" "
[]) " o 3) 3 i
10 1w][0 [To[[ToT]|

(a)f=8BC + BD + ACD

(b)f=(B + D)A + B)YC + D)

om

w >l

) D
2 o=
) D

(elle]]

(c) NOR logic

Prime implicants, Essential Prime implicants, Redundant prime implicants:

Each square or rectangle made up of the bunch of adjacent minterms is called a subcube. Each of
these subcubes is called a Prime implicant (P1). The Pl which contains at leastone which cannot be
covered by any other prime implicants is called as Essential Prime implicant (EPI).The Pl whose
each 1 is covered at least by one EPI is called a Redundant Prime implicant (RPI). A Pl which is
neither an EPI nor a RPI is called a Selective Prime implicant (SPI).

The function has unique MSP comprising EPI is

F(A,B,C,D)= CD+ABC+AD + B

The RPI _BD‘ may be included without changing the function but the resulting expression would
not be in minimal SOP(MSP) form.

cD
AB~_ 00 01 11 10 __EPI

00 [1 . 3] 2] ACD

EPI _l

ABT H1-"1—
o[1] 1 APl

[F] [E) 1 14 BD
11 1 @l 1+—EPI
a8 | " 10 ﬂac
EPI
Acp 10 1]

Essential and Redundant Prime Implicants

F(A,B,C,D)=>m(0,4,5,10,11,13,15) SPI are marked by dotted squares, shows
MSP form of a function need not be unique.

CD
EPI“‘ﬁ-E__ﬂ o0 01 11 10
o 1 3 z
ACD m».l—.ll
SPI
IBC&"*—. al __ .5 7 O
o1)1 n
SPI = SPI
2| Lol s 14
i SPI
a 9 i1 10 ACD
10 LT Tl ey
ABC

Essential and Selective Prime Implicants

Here, the MSP form is obtained by including two EPI‘s & selecting a set of SPI‘s to cover
remaining uncovered minterms 5,13,15. & these can be covered as

(A) (4,5) &(13,15) --------- B +ABD
(B) (5,13) & (13,15) ------- B D+ABD
(C) (5,13) & (15,11) =----- B D+ACD
F(A,B,C,D)= +A C-----e-- EPI‘s + B +ABD
(OR) F(AB,CD)= +A Cor--oee- EPI‘s + B D+ABD
(OR) F(ABCD)= +A Cor--ee- EPI's + B D+ACD

False PI’s Essential False PI’s, Redundant False PI’s & Selective False PI’s:

The maxterms are called falseminterms. The PI‘s is obtained by using the maxterms are
called False PI‘s (FPI). The FPI which contains at least one _0° which can‘t be covered by only
other FP1 is called an Essential False Prime implicant (ESPI)

F(A,B,C,D)= ¥m(0,1,2,3,4,8,12)
=1 M(5,6,7,9,10,11,13,14,15)
Fmin= (+)(+)(+)(+)

All the FPI, EFPI‘s as each of them contain atleast one _0° which can‘t be covered by any other
FPI

AB o0 o1 11 40
o 1 3 2
oo
- 5 I -]
o1 fa] nI [5]
EFPI EFPI
E+tj 12 13 15| 14 B_'_c
11 [+]]
EFFI a k- pa [Oy
10 o 1] o EFPI
A+D A+

Essential False Prime implicants
Consider Function F(A,B,C,D)=r M(0,1,2,6,8,10,11,12)

cD

AB~ oo o1 11 |1ofl—RFP
EFPI o 1] 2 B+D
A+B=xC 00[Lo 9} D-
- B I bf EFPI
A+C+D
12 13 15 14
1
_ EFPI :3|
A+C+D B E] 1M 1o
10 [Eh @ {0 — EFPI _
=1 A+B+C

Essential and Redundant False Prime Implicants
Mapping when the function is not expressed in minterms (maxterms):

An expression in k-map must be available as a sum (product) of minterms (maxterms). However
if not so expressed, it is not necessary to expand the expression algebraically into its minterms
(maxterms). Instead, expansion into minterms (maxterms) can be accomplished in the process of
entering the terms of the expression on the k-map.

Limitations of Karnaugh maps:

e Convenient as long as the number of variables does not exceed six.
e Manual technique, simplification process is heavily dependent on the humanabilities.

Quine-Mccluskey Method:

It also known as Tabular method. It is more systematic method of minimizing expressions of
even larger number of variables. It is suitable for hand computation as well as computation by
machines i.e., programmable. . The procedure is based on repeated application of the combining
theorem.

PA+P =P (P is set of literals) on all adjacent pairs of terms, yields the set of all PI‘s from which a
minimal sum may be selected.

Consider expression

Ym(0,1,4,5)= + C+A +A C

First, second terms & third, fourth terms can be combined
(+)+ (C+)=+A
Reduced to

(+)=

The same result can be obtained by combining mo& ms & mi&ms in first step & resulting terms
in the second step .

Procedure:

e Decimal Representation

e Don‘t cares

e PI chart

o EPI

e Dominating Rows & Columns

e Determination of Minimal expressions in complescases.

Branching Method:

EXAMPLE 3.29 Obtain the set of prime implicants for the Boolean expression
f=Xm(0,1,6,7,8,9, 13, 14, 15) using the tabular method.

Solution

Group the minterms in terms of the number of s present in them and write their binary

designations. The procedure to obtain the prime implicants is shown in Table 3.3.

Table 3.3 Example 3.29

Column 1 Column 2 Column 3
Minterm Binary designation ABCD ABCD
Index 0 0 0000V 0,1(1) 000- v 0,1,8,9(1,8-00-Q
Index 1 | 0001V 0.8 -000V
8 1000V 1,98 -001 v
Index 2 6 0110V 8.9() 100~ 6,7,14,15(1,8)-11-P
9 1001/ 6,7(1) 011 -V
Index 3 7 0111V 6,.14(8) -110V
13 1101V 9,134 1-01S8
14 1110/ 7.158) ~-111V
Index 4 15 1111V 13,15(2) 11 -1R

14, 15 (1)

11 -V

Comparing the terms of index 0 with the terms of index 1 of column 1, m (0000} is combined
with m (0001) to yield 0, 1 (1), i.e. 000 —. This is recorded in column 2 and 0000 and 0001 are
checked off in column 1. m (0000) is combined with mg(1000) to yield 0, 8 (8), i.e. — 000. This is
recorded in column 2 and 1000 is checked off in column 1. Note that 0000 of column 1 has already
been checked off. No more combinations of terms of index 0 and index 1 are possible. So, draw a
line below the last combination of these groups, i.e. below 0, 8 (8), — 000 in column 2. Now 0, 1
(1), 1.e. 000 — and 0, 8 (8), i.e. — 000 are the terms in the first group of column 2.

Comparing the terms of index 1 with the terms of index 2 in column I, m (0001) is combined
with mg(1001) to yield 1, 9 (8), i.e. = 001. This is recorded in column 2 and 1001 is checked off in
column | because 0001 has already been checked off. m (1000} is combined with m(1001) to
yield 8, 9 (1), i.e. 100 —, This is recorded in column 2. 1000 and 1001 of column 1 have already
been checked off. So, no need to check them off again. No more combinations of terms of index 1
and index 2 are possible. So, draw a line below the last combination of these groups, i.e. 8, 9 (1),

— 001 in column 2. Now 1,9 (8),1.e.-001 and 8, 9 (1), i.e. 100~ are the terms in the second group
of column 2.
Similarly, comparing the terms of index 2 with the terms of index 3 in column 1,
m(0110) and m,(0111) yield 6, 7 (1), i.e. 011-. Record it in column 2 and check off
6(0110) and 7(0111).
m,(0110) and m,,(1110) yield 6, 14 (8), i.e. =110. Record it in column 2 and check off
6(0110) and 14(1110).
my(1001) and m4(1101) yield 9, 13 (4), i.e. 1-01. Record it in column 2 and check off
9(1001) and 13(1101). -
S0,6,7 (1),1.c. 011-, and 6, 14 (8), i.e. =110 and 9, 13 (4), i.e. 1-01 are the terms in group 3 of
column 2. Draw a line at the end of 9, 13 (4), i.c. 1-01.
Also, comparing the terms of index 3 with the terms of index 4 in column 1,
m,(0111) and m((1111) yield 7, 15 (8), i.e. =111. Record it in column 2 and check off
7(0111) and 15(1111).
m,,(1101) and m ((1111) yield 13, 15 (2), i.e. 11-1. Record it in column 2 and check off
13 and 15.
m,,(1110) and m ((1111) yield 14, 15 (1), i.e. 111-, Record it in column 2 and check off
14 and 15.
So,7,15(8),i.e. =111, and 13, 15 (2), i.e. 11-1 and 14, 15 (1), i.e. 111-are the terms in group 4
of column 2. Column 2 is completed now.

Comparing the terms of group 1 with the terms of group 2 in column 2, the terms 0, 1 (1), i.e.
000- and 8, 9 (1), i.e. 100~ are combined to form 0, 1, 8, 9 (1, 8), i.e. <00-. Record it in group 1 of
column 3 and check off 0, 1 (1), i.e. 000—, and &, 9 (1), i.e. 100- of column 2. The terms 0, & (8),
i.e. =000 and 1, 9 (8), i.e. <001 are combined to form 0, 1, 8, 9 (1, 8), i.e. <00—. This has already
been recorded in column 3. So, no need to record again. Check off 0, 8 (8), i.e. 000 and 1, 9 (8),
i.e. =001 of column 2. Draw a line below 0, 1, 8, 9 (1, B), i.e. =00-. This is the only term in group 1
of column 3. No term of group 2 of column 2 can be combined with any term of group 3 of
column 2, So, no entries are made in group 2 of column 2.

Comparing the terms of group 3 of column 2 with the terms of greup 4 of column 2, the
terms 6, 7 (1), i.e. 011-, and 14, 15 (1), i.e. 111- are combined to form 6, 7, 14, 15 (1, 8), i.e.
—11-. Record it in group 3 of column 3 and check off 6, 7 (1), i.e. 011-and 14, 15(1),i.e. 111=-of
column 2. The terms 6, 14 (8), i.e. =110 and 7, 15 (8), i.e. =111 are combined to form 6, 7, 14, 15
(1, 8), i.e. —11—. This has already been recorded in column 3; so, check off 6, 14 (8), i.e. =110 and
7,15 (8), i.e. =111 of column 2.

Observe that the terms 9, 13 (4), i.e. 1-01 and 13, 15 (2), i.e. 11=1 cannot be combined with
any other terms. Similarly in column 3, the terms 0, 1, 8,9 (1, 8), i.e. -00-and 6, 7, 14, 15 (1, 8),
i.e. =11-cannot also be combined with any other terms. So, these 4 terms are the prime implicants.

The terms, which cannot be combined further, are labelled as F, Q, R, and 5. These form the
set of prime implicants.

EX:

Obtain the minimal expression for f = £ mi(l, 2, 3,5, 6,7, 8, 9, 12,
13, 15) using the tabular method.

Solution
The procedure to obtain the set of prime implicants is illustrated in Table 3.4.

Table 3.4 Example 3.30

Step 1 Step 2 Step 3
Index 1 1+ 1,3(2) v 1,3.5,7(2,.4) T
24 1,5(4) ¢ 1,5,.9,13 (4, 8) S
8 1,9(8) 2.3,6,7(1,4) R
Index 2 IV 2,3(1) 8,912, 13(1. 4 Q
5 2,6(4)v 5 7,13, 15(2.8) P
6 v 8.9(1) v
9 W B 12(4)
12+ 3,74
Index 3 T 5,72y
13+ 5,13 (8)«
Index 4 15 & 6, 7 (1)
9. 13 (4«
12, 13 (1) v
7,15 (8)

13, 15(2)

The non-combinable terms P, Q, R, S and T are recorded as prime implicants.
P—57,13,152.8=X1X1=BD
(Literals with weights 2 and 8, i.e. C and A are deleted. The lowest minterm is my(5 =4 + 1). So,
literals with weights 4 and 1, i.e. B and D are present in non-complemented form. So, read it as BD.)
Q—80912,13(1,4)=1X0X=AC
(Literals with weights 1 and 4, i.e. D and B are deleted. The lowest minterm is mg. So, literal with
weight 8 is present in non-complemented form and literal with weight 2 is present in complemented
form. So, read itas AC.)
R—2,3,67(1,4=0X1X=AC
(Literals with weights 1 and 4, i.e. D and B are deleted. The lowest minterm is m,. So, literal with
weight 2 is present in non-complemented form and literal with weight 8 is present in complemented
form. So, read it as AC.)

$— 1,59 13(4.8)=XX01=CD

(Literals with weights 4 and 8, i.e. B and A are deleted. The lowest minterm is m,. So, literal with
weight 1 is present in non-complemented form and literal with weight 2 is present in complemented

form. So, read it as CD.)
T—=1,3,57(2,4)=0XX1=AD

(Literals with weights 2 and 4, i.e. C and B are deleted. The lowest minterm is 1. So, literal with
weight 1 is present in non-complemented form and literal with weight 8 is present in complemented

form. So. read it as AD.)
The prime implicant chart of the expression

f=Xm(l,23,56,7,8,9,12, 13, 15)

is as shown in Table 3.5. It consists of 11 columns corresponding to the number of minterms and 5
rows corresponding to the prime implicants P, Q, R, S, and T generated. Row R contains four xs at
the intersections with columns 2, 3, 6, and 7, because these minterms are covered by the prime
implicant R. A row is said to cover the columns in which it has xs. The problem now is to select a
minimal subset of prime implicants, such that each column contains at least one x in the rows
corresponding to the selected subset and the total number of literals in the prime implicants selected
is as small as possible. These requirements guarantee that the number of unions of the selected
prime implicants is equal to the original number of minterms and that, no other expression containing
fewer literals can be found.

Table 3.5 Example 3.30: Prime implicant chart

v v v v v v v v v v
l 2 3 5 6 7 8 9 12 13 15

*P—5,7,13,15(2.8) x x x x
*Q—8,9,12,13(1,4) X X x
*R—2.3,6,7(1,4) X x x X

S—1,59,13(4,8) x x X x

T—1,3,57(2,4) x x x x

In the prime implicant chart of Table 3.5, m, and m are covered by R only. So, R is an essential
prime implicant. So, check off all the minterms covered by it, i.e. m,, m;, m,, and m,. Q is also an
essential prime implicant because only Q covers mg and m,,. Check off all the minterms covered
by it, i.e. mg, my, m ,, and m_,. P is also an essential prime implicant, because m ¢ is covered only
by P. So check off m, mg, m,, and m,, covered by it. Thus, only minterm | is not covered. Either
row S or row T can cover it and both have the same number of literals. Thus, two minimal expressions
are possible.

P+Q+R+S=BD+AC+AC+CD
or P+Q+R+T=BD+AC+AC+AD

MODULE IlI:

Combinational Logic Circuits
Combinational Logic Design

Logic circuits for digital systems may be combinational or sequential. The output of a
combinational circuit depends on its present inputs only .Combinational circuit processing
operation fully specified logically by a set of Boolean functions .A combinational circuit consists
of input variables, logic gates and output variables.Both input and output data are represented by
signals, i.e., they exists in two possible values. One is logic —1 and the other logic 0.

Combinational Circuits

—_— —
Combinati 1
; ‘ombinationa
ninputs — > P et — > m outputs
: circuit
—_— >
Fig. Block Diagram of Combinational Circuit

For n input variables,there are 2" possible combinations of binary input variables .For each
possible input Combination ,there is one and only one possible output combination.A
combinational circuit can be described by m Boolean functions one for each output
variables.Usually the input s comes from flip-flops and outputs goto flip-flops.

Design Procedure:

1.The problem is stated

2. The number of available input variables and required output variables is determined.
3.The input and output variables are assigned letter symbols.

4.The truth table that defines the required relationship between inputs and outputs is derived.
5.The simplified Boolean function for each output is obtained.

6.The logic diagram is drawn.

Adders:

Digital computers perform variety of information processing tasks,the one is arithmetic
operations.And the most basic arithmetic operation is the addition of two binary digits.i.e, 4 basic
possible operations are:

0+0=0,0+1=1,1+0=1,1+1=10

The first three operations produce a sum whose length is one digit, but when augends and addend
bits are equal to 1,the binary sum consists of two digits.The higher significant bit of this result is
called a carry.A combinational circuit that performs the addition of two bits is called a half- adder.
One that performs the addition of 3 bits (two significant bits & previous carry) is called a full
adder.& 2 half adder can employ as a full-adder.

The Half Adder: A Half Adder is a combinational circuit with two binary inputs (augends and
addend bits and two binary outputs (sum and carry bits.) It adds the two inputs (A and B) and
produces the sum (S) and the carry (C) bits. It is an arithmetic operation of addition of two single
bit words.

3
g
o
Q
c
]
5
]

A B S c

o o a [+]

o 1 1 0 A &

1 o 1 Q -

1 1 o 1 e Half-adder c.
(a) Truth tabla {b) Block diagraum

The Sum(S) bit and the carry (C) bit, according to the rules of binary addition, the sum (S) is the
X-OR of A and B (It represents the LSB of the sum). Therefore,

S=A+B= A@B
The carry (C) is the AND of A and B (it is 0 unless both the inputs are 1).Therefore,
C=AB

A half-adder can be realized by using one X-OR gate and one AND gate a

A-——D:-o—
) O e :
—1 C 1) c
A)
(a) (b)

Logic diagrams of half-adder

NAND LOGIC:

S=AB+ AB=AB+ AA + AB + BB
=A(A + B)+ B(A + B)
=A-AB+B- AB

mED o
P

| > c

Logic diagram of a half-adder using only 2-input NAND gates.

-B-AB
AB

3

-
AB

Lo

NOR Logic:

S=AB+AB=AB+AA +AB +BB
=A(A+B)+B(A+B)

) Q } Ei'& DI-:EL_T‘_}C
E'_':D: AvE)
{DJ

Logic diagram of a half-adder using only 2-input NOR gates.

The Full Adder:

A Full-adder is a combinational circuit that adds two bits and a carry and outputs a sum bit
and a carry bit. To add two binary numbers, each having two or more bits, the LSBs can be added
by using a half-adder. The carry resulted from the addition of the LSBs is carried over to the next
significant column and added to the two bits in that column. So, in the second and higher columns,
the two data bits of that column and the carry bit generated from the addition in the previous column
need to be added.

The full-adder adds the bits A and B and the carry from the previous column called the
carry-in Cin and outputs the sum bit S and the carry bit called the carry-out Cout . The variable S
gives the value of the least significant bit of the sum. The variable Cout gives the output carry.The

eight rows under the input variables designate all possible combinations of 1s and Os that these
variables may have. The 1s and Os for the output variables are determined from the arithmetic sum
of the input bits. When all the bits are Os , the output is 0. The S output is equal to 1 when only 1
input is equal to 1 or when all the inputs are equal to 1. The Cout has a carry of 1 if two or three
inputs are equal to 1.

Inputs: Sum Carry

B —— Full-adder

R t-1-1-1-1p]
~=00==000

e (b) Block diagram
Full-adder.

From the truth table, a circuit that will produce the correct sum and carry bits in response to every
possible combination of A,B and Cinis described by

S = ABCin+ ABCin+ ABCin+ ABCin
Cout= A_\BCin + AB_Cin + ABC] + ABCin

and
S=A®B ® Cin
Cout= ACin+ BCin+ AB

The sum term of the full-adder is the X-OR of A,B, and Ciy, i.e, the sum bit the modulo
sum of the data bits in that column and the carry from the previous column. The logic diagram of
the full-adder using two X-OR gates and two AND gates (i.e, Two half adders) and one OR gate
is

Logic diagram of a full-adder using two half-adders.

The block diagram of a full-adder using two half-adders is -

A AB Cou = (A @ B)C,, + AB
- HA Ao B
HA S=AB2B®C,

Ca

Block diagram of a full-adder using two half-adders.

Even though a full-adder can be constructed using two half-adders, the disadvantage is that the
bits must propagate through several gates in accession, which makes the total propagation delay
greater than that of the full-adder circuit using AOI logic.

The Full-adder neither can also be realized using universal logic, i.e., either only NAND gates or
only NOR gates as

ABB=A-AB-B-AB

Then
S=A@B®C, = (A®B) -(A®BIC,, -C,, - (A@®B)C,,
NAND Logic:
out = Cin(A © B) + AB = C,,(A @ B)- AB
A
g—_>—
Cm_'_ A —
A—| B—]
B
o I i WL N
A e/ —_ .
B
o B8] >_
AT Ci—
= —
I

Sum and carry bits of a full-adder using AOI logic.

- i}} ~ T

Logic diagram of a full-adder using only 2-input NAND gates.

NOR Logic:

ADB=(A+B)+A+B

Then
S=A®B&®C, = (ADB)+C,, +(A®B)+Cin
Cou=AB+C,(ADBB)= A+B+Cin +ADB
Cous
A B

A— S
B_{DJ @J

Ci;

Logic diagram of a full-adder using only 2-input NOR gates.
Subtractors:

The subtraction of two binary numbers may be accomplished by taking the complement of
the subtrahend and adding it to the minuend. By this, the subtraction operation becomes an addition
operation and instead of having a separate circuit for subtraction, the adder itself can be used to
perform subtraction. This results in reduction of hardware. In subtraction, each subtrahend bit of
the number is subtracted from its corresponding significant minuend bit to form a difference bit. If
the minuend bit is smaller than the subtrahend bit, a 1 is borrowed from the next significant
position., that has been borrowed must be conveyed to the next higher pair of bits by means of a
signal coming out (output) of a given stage and going into (input) the next higher stage.

The Half-Subtractor:

A Half-subtractor is a combinational circuit that subtracts one bit from the other and
produces the difference. It also has an output to specify if a 1 has been borrowed. . It is used to
subtract the LSB of the subtrahend from the LSB of the minuend when one binary number is
subtracted from the other.

A Half-subtractor is a combinational circuit with two inputs A and B and two outputs
d and b. d indicates the difference and b is the output signal generated that informs the next stage
that a 1 has been borrowed. When a bit B is subtracted from another bit A, a difference bit (d) and
a borrow bit (b) result according to the rules given as

Half-subtractor

B— —= b

b
o
Q A —nd —a d
Q
1

(a) Truth table (b)) Block diagram
Half-subtractor.

The output borrow b is a 0 as long as A>B. It is a 1 for A=0 and B=1. The d output is the result of
the arithmetic operation 2b+A-B.

A circuit that produces the correct difference and borrow bits in response to every possible
combination of the two 1-bit numbers is , therefore ,

d=A + B=A@B andb=B

That is, the difference bit is obtained by X-OR ing the two inputs, and the borrow bit is obtained
by ANDing the complement of the minuend with the subtrahend.Note that logic for this exactly
the same as the logic for output S in the half-adder.

- oDy
' e— /|

man e S

Logic diagrams of a half-subtractor.

A half-substractor can also be realized using universal logic either using only NAND gates or
using NOR gates as:

NAND Logic:
d=A @& B= A -AB-B-AB
b=AB=B(A + B)=B(AB)= B- AB
Logic diagram of a half-subtractor using only 2-input NAND gates.
NOR Logic:

d=A®B=AB+AB=AB+BB+AB +AA
=B(A+B)+A(A+B)=B+A+B+A+A+B

d=AB=A(A+B)= A(A+B)=A+(A+B)

—DM + X
>

Logic diagram of a half-subtractor using only 2-input NOR gates.

The Full-Subtractor:

The half-subtractor can be only for LSB subtraction. IF there is a borrow during
the subtraction of the LSBs, it affects the subtraction in the next higher column; the subtrahend bit
is subtracted from the minuend bit, considering the borrow from that column used for the
subtraction in the preceding column. Such a subtraction is performed by a full-subtractor. It
subtracts one bit (B) from another bit (A) , when already there is a borrow bi from this column for
the subtraction in the preceding column, and outputs the difference bit (d) and the borrow bit(b)
required from the next d and b. The two outputs present the difference and output borrow. The 1s
and Os for the output variables are determined from the subtraction of A-B-b.

Inputs Difference Bormow

A B b d b

o O 0 0 0

o o 1 1 1

[v] 1 0 1 1

o 1 1 0 1

1 o 0 1 0

i 0 1 0 o A—— .
1 1 0O o o B—— Full-subtractor

1 1 1 1 1 b ——— ———+b

(a) Truth table (b) Block diagram

Full-subtractor.

From the truth table, a circuit that will produce the correct difference and borrow bits in response
to every possiblecombinations of A,B and b is

d=ABb,+ ABb, + ABb, + ABb,
=b,(AB + AB) +b(AB + AB)
=b(A®B)+ b(A®B)=A®B®b,
and
b= ABb, + ABb; + ABb, + ABb, = AB(b, + b,) + (AB + AB)b,
=AB +(A®B)b,

A full-subtractor can be realized using X-OR gates and AOI gates as

”“_'_‘D—— d=A@ B b,
8—11) >

T

——{>o—
[

Logic diagram of a full-subtractor.

The full subtractor can also be realized using universal logic either using only NAND gates or
using NOR gates as:

NAND Logic:

d=A@GB@b,=(ADB)® b, =(ASB)AS B)b, -b,(A S B)b,

b=AB +b(A@B)= AB +b,(A @ B)

= AB-b,(A @ B)=B(A + B) b, (b, + (A @ B)]

—B.AB-bb (A® D)

ﬁ Bl Doy

) [

Logic diagram of a full-subtractor using only 2-input NAND gates.

b

NOR Logic:

d=A®B®b = (A®B)®b,
= (A®B)b, +(A @ B)b,
= [(A ® B) + (A @ B)b,][b; + (A ® B)b,]

= (A®B)+(A®B)+b, +b, +(A®B) + b,

=(A®B)+(A®B)+b, +b, +(ADB) +b,
b=AB +b(A®B)
=A(A+B)+(A®B)[(A®B) +b]

=A+(A+B)+(A@B)+(A®B)+b,

Do) s

Logic diagram of a full subtractor using only 2-input NOR gates.

Binary Parallel Adder:

A binary parallel adder is a digital circuit that adds two binary numbers in parallel form
and produces the arithmetic sum of those numbers in parallel form. It consists of full adders
connected in a chain , with the output carry from each full-adder connected to the input carry of
the next full-adder in the chain.

The interconnection of four full-adder (FA) circuits to provide a 4-bit parallel adder. The
augends bits of A and addend bits of B are designated by subscript numbers from right to left, with
subscript 1 denoting the lower —order bit. The carries are connected in a chain through the full-
adders. The input carry to the adder is Cin and the output carry is Cs. The S output generates the
required sum bits. When the 4-bit full-adder circuit is enclosed within an IC package, it has four
terminals for the augends bits, four terminals for the addend bits, four terminals for the sum bits,
and two terminals for the input and output carries. AN n-bit parallel adder requires n-full adders.
It can be constructed from 4-bit, 2-bit and 1-bit full adder I1Cs by cascading several packages. The
output carry from one package must be connected to the input carry of the one with the next higher
—order bits. The 4-bit full adder is a typical example of an MSI function.

B, I; B,

¥ P

FA, FA, FA, FA, |e——0=¢C,
l } | | I
L] s-l- S1

Logic diagram of a 4-bit binary parallel adder.

B,

Ripple carry adder:

In the parallel adder, the carry —out of each stage is connected to the carry-in of the
next stage. The sum and carry-out bits of any stage cannot be produced, until sometime after the
carry-in of that stage occurs. This is due to the propagation delays in the logic circuitry,

which lead to a time delay in the addition process. The carry propagation delay for each full- adder
is the time between the application of the carry-in and the occurrence of the carry-out.

The 4-bit parallel adder, the sum (S1) and carry-out (Cz1) bits given by FA1 are not valid, until after
the propagation delay of FA:. Similarly, the sum Sz and carry-out (C>) bits given by FA2 are not
valid until after the cumulative propagation delay of two full adders (FA1and FA>) , and so on. At
each stage ,the sum bit is not valid until after the carry bits in all the preceding stages are valid.
Carry bits must propagate or ripple through all stages before the most significant sum bit is valid.
Thus, the total sum (the parallel output) is not valid until after the cumulative delay of all the adders.

The parallel adder in which the carry-out of each full-adder is the carry-in to the next most
significant adder is called a ripple carry adder.. The greater the number of bits that a ripple carry
adder must add, the greater the time required for it to perform a valid addition. If two numbers are
added such that no carries occur between stages, then the add time is simply the propagation time
through a single full-adder.

4-Bit Parallel Subtractor:

The subtraction of binary numbers can be carried out most conveniently by means of
complements , the subtraction A-B can be done by taking the 2‘s complement of B and adding
itto A . The 2‘s complement can be obtained by taking the 1‘s complement and adding 1 tothe

least significant pair of bits. The 1‘s complement can be implemented with invertersas

B‘ A‘ % Iﬁ % I.? B1 A1
couft Fﬁl‘ ‘cﬂ & C‘[h.ﬂ 3 Fﬂ,a ?n k] Cﬂl.lti FA? Emz cm i FAI cn 1= i
Eql’-l- Sa 52 Sr

Logic diagram of a 4-bit parallel subtractor.

Binary-Adder Subtractor:

A 4-bit adder-subtractor, the addition and subtraction operations are combined into
one circuit with one common binary adder. This is done by including an X-OR gate with each full-
adder. The mode input M controls the operation. When M=0, the circuit is an adder, and when
M=1, the circuit becomes a subtractor. Each X-OR gate receives input M and one of the inputs of
B. When M=0, E®D=B The full-adder receives the value of B , the input carry is 0

and the circuit performs A+B. when Bel=B' 54 C:=1. The B inputs are complemented and
a 1 is through the input carry. The circuit performs the operation A plus the 2‘s complement of B.

B, Ay B8, Ay B, Ay ?1 Aq

) —

& 4 S.S 52 S]

1 +—|

Logic diagram of a 4-bit binary adder-subtractor.

The Look-Ahead —Carry Adder:

In parallel-adder,the speed with which an addition can be performed is governed by
the time required for the carries to propagate or ripple through all of the stages of the adder. The
look-ahead carry adder speeds up the process by eliminating this ripple carry delay. It examines
all the input bits simultaneously and also generates the carry-in bits for all the stages
simultaneously.

The method of speeding up the addition process is based on the two additional
functions of the full-adder, called the carry generate and carry propagate functions.

Consider one full adder stage; say the nth stage of a parallel adder as shown in fig. we
know that is made by two half adders and that the half adder contains an X-OR gate to produce the
sum and an AND gate to produce the carry. If both the bits A, and Bn are 1s, a carry has to be
generated in this stage regardless of whether the input carry Cinisa 0 ora 1. This is called generated
carry, expressed as Gn= An.BnWhich has to appear at the output through the OR gate as shown in

fig.

A =G
A Ba=G, Cpui=Con=(A,®B)C,+AB,
5 HA A, ®B,=P, Co=P, G,
" HA 5,=A,®B,®C,
c,

A full adder (nth stage of a parallel adder).

Thereis another possibility of producing a carry out. X-OR gate inside the half-adder

at the input produces an intermediary sum bit- call it P, —which is expressed as P.=A,®B, .

Next P, and C,, are added using the X-OR gate inside the second half adder to produce the final

§,=P,©C, where P, =A &B

sum bit and " and output carryCo= Pn.Co=(® B,)Cn which

becomes carry for the (n+1) th stage.

Consider the case of both P,and Cn being 1. The input carry Cy has to be propagated
to the output only if Pnis 1. If Pqis O, even if Cyis 1, the and gate in the second half-adder will
inhibit Cn . the carry out of the nth stage is 1 when either Gn=1 or P».Cn =1 or both Gnand Pn.Crare
equal to 1.

For the final sum and carry outputs of the nth stage, we get the following Boolean
expressions.

S, =P @&C, whereP =A @B,
Con= er-r-l = Grr + Pncrr where Gn = A‘n ' Bn

o

Observe the recursive nature of the expression for the output carry
at the nth stage which becomes the input carry for the (n+1)st stage .it is possible to express the
output carry of a higher significant stage is the carry-out of the previous stage.

Based on these , the expression for the carry-outs of various full adders are as follows,

C,=G,+P;-C,

C,=G,+P, -C,=G,+P,-G,+P,-P,-C,
C,=G,+P,-C,=G,+P, -G, +P,-P, -G, +P,-P, -P,-C,
C,=G;+P,-C;=G,+P,-G,+P,-P,-G+P,-P,-P, -G, +P;,- P, - P, - P, - C
The general expression for n stages designated as 0 through (n — 1) would be

c =G, ,+P _,-C_,=G_,+P_,-G, _,+P P -G, +..+P, _,-...F-C,

n—1 n-1 i =2

Observe that the final output carry is expressed as a function of the
input variables in SOP form. Which is two level AND-OR or equivalent NAND-NAND form.
Observe that the full look-ahead scheme requires the use of OR gate with (n+1) inputs and AND
gates with number of inputs varying from 2 to (n+1).

2P

B, —}Di P

a3
Ag ¥ Py -
: Cs, 2

Gy

Look-ahead-canny

B, __1D— P geanarator
]
" ’) >—
Sz
Cz
e

D o j:[>' =

<y

<,

Logic diagram of a 4-bit look-ahead-carry adder,

2’s complement Addition and Subtraction using Parallel Adders:

Most modern computers use the 2‘s complement system to represent negative numbers and
to perform subtraction operations of signed numbers can be performed using only the addition
operation ,if we use the 2‘s complement form to represent negative numbers.

The circuit shown can perform both addition and subtraction in the 2°s complement. This
adder/subtractor circuit is controlled by the control signal ADD/SUB*‘. When the ADD/SUB® level
is HIGH, the circuit performs the addition of the numbers stored in registers A and B. When the
ADD/Sub° level i1s LOW, the circuit subtract the number in register B from the number in register
A. The operation is:

When ADD/SUB‘ is a 1:

1 AND gates 1,3,5 and 7 are enabled , allowing Bo,B1,B2and B3z to pass to the OR gates
9,10,11,12 . AND gates 2,4,6 and 8 are disabled , blocking Bo‘,B:1°,B2‘, and Bz‘ from
reaching the OR gates 9,10,11 and 12.

2 The two levels Boto B3 pass through the OR gates to the 4-bit parallel adder, to be added
to the bits Aoto As. The sum appears at the output Soto Ss

3 Add/SUB‘ =1 causes no carry into the adder.
When ADD/SUB* is a 0:

1 AND gates 1,3,5and 7 are disabled , allowing Bo,B1,B>and B3 from reaching the OR gates
9,10,11,12 . AND gates 2,4,6 and 8 are enabled , blocking Bo‘,B1°,B2>‘, and Bz‘ from
reaching the OR gates.

2 The two levels Bo® to Bz pass through the OR gates to the 4-bit parallel adder, to be added
to the bits Ao to Az The Cois now 1.thus the number in register B is converted to its 2°s
complement form.

3 The difference appears at the output Spto Ss.

Adders/Subtractors used for adding and subtracting signed binary numbers. In computers , the
output is transferred into the register A (accumulator) so that the result of the addition or
subtraction always end up stored in the register A This is accomplished by applying a transfer
pulse to the CLK inputs of register A.

Serial Adder:

A serial adder is used to add binary numbers in serial form. The two binary numbers to be
added serially are stored in two shift registers A and B. Bits are added one pair at a time through a
single full adder (FA) circuit as shown. The carry out of the full-adder is transferred to a D flip-
flop. The output of this flip-flop is then used as the carry input for the next pair of significant bits.
The sum bit from the S output of the full-adder could be transferred to a third shift register. By
shifting the sum into A while the bits of A are shifted out, it is possible to use one register for
storing both augend and the sum bits. The serial input register B can be used to transfer a new
binary number while the addend bits are shifted out during theaddition.

The operation of the serial adder is:

Initially register A holds the augend, register B holds the addend and the carry flip-flop is
cleared to 0. The outputs (SO) of A and B provide a pair of significant bits for the full-adder at x
and y. The shift control enables both registers and carry flip-flop , so, at the clock pulse both
registers are shifted once to the right, the sum bit from S enters the left most flip-flop of A, and
the output carry is transferred into flip-flop Q . The shift control enables the registers for a number
of clock pulses equal to the number of bits of the registers. For each succeeding clock pulse a new
sum bit is transferred to A, a new carry is transferred to Q, and both registers are shifted once to
the right. This process continues until the shift control is disabled. Thus the addition is
accomplished by passing each pair of bits together with the previous carry through a single full
adder circuit and transferring the sum, one bit at a time, into register A.

Initially, register A and the carry flip-flop are cleared to 0 and then the first number is added
from B. While B is shifted through the full adder, a second number is transferred to it through its
serial input. The second number is then added to the content of register A while a third number is
transferred serially into register B. This can be repeated to form the addition of two, three, or more
numbers and accumulate their sum in register A.

S1
Shift I_’ SO
control Shift register A _L__..
CLK x s—
FA
Sorial S1 ¥ Cr—
aria -
> S0 z
input Shift register B
Q D
C =]
‘-, Ch!ﬂr_?

Logic diagram of a serial adder.

Difference between Serial and Parallel Adders:

The parallel adder registers with parallel load, whereas the serial adder uses shift registers.
The number of full adder circuits in the parallel adder is equal to the number of bits in the binary
numbers, whereas the serial adder requires only one full adder circuit and a carry flip- flop.
Excluding the registers, the parallel adder is a combinational circuit, whereas the serial adder is a
sequential circuit. The sequential circuit in the serial adder consists of a full-adder and a flip-flop
that stores the output carry.

BCD Adder:
The BCD addition process:

1. Add the 4-bit BCD code groups for each decimal digit position using ordinary binary
addition.

2. For those positions where the sum is 9 or less, the sum is in proper BCD form and no
correction is needed.

3. When the sum of two digits is greater than 9, a correction of 0110 should be added to
that sum, to produce the proper BCD result. This will produce a carry to be added to
the next decimal position.

A BCD adder circuit must be able to operate in accordance with the above steps. In other words,
the circuit must be able to do the following:

1. Add two 4-bit BCD code groups, using straight binaryaddition.

2. Determine, if the sum of this addition is greater than 1101 (decimal 9); if itis, add 0110
(decimal 6) to this sum and generate a carry to the next decimalposition.

The first requirement is easily met by using a 4- bit binary parallel adder such as the 74L.S83
IC .For example , if the two BCD code groups AsA2A1Acand B3B2B1Bo are applied to a 4-bit
parallel adder, the adder will output S4S3S2S1S0 , where S is actually C4, the carry —out of the
MSB bits.

The sum outputs S4S3S2S1So can range anywhere from 00000 to 100109when both the BCD
code groups are 1001=9). The circuitry for a BCD adder must include the logic needed to detect
whenever the sum is greater than 01001, so that the correction can be added in. Those cases , where
the sum is greater than 1001 are listed as:

s . s Decimal number

10
11
12

4 1]
0
1
0
0 1 13
1
0
]
0

U
0

A 51
| 0
I
0 1
!
1
I

0 1

0
0
0
1 0
1 0
1 1]

1 (14
15
16
17
15

o e e e e e
—

=

Let us define a logic output X that will go HIGH only when the sum is greater than 01001 (i.e,
for the cases in table). If examine these cases ,see that X will be HIGH for either of the following
conditions:

1. Whenever S4=1(sum greater than 15)
2. Whenever S3=1 and either Sz or Sy or both are 1 (sum 10 to 15)

This condition can be expressed as
X=S4+S3(S2+S1)

Whenever X=1, it is necessary to add the correction factor 0110 to the sum bits, and to
generate a carry. The circuit consists of three basic parts. The two BCD code groups AzA2A1A0
and B3B2B1Bo are added together in the upper 4-bit adder, to produce the sum S4S3S2S1So. The
logic gates shown implement the expression for X. The lower 4-bit adder will add the correction
0110 to the sum bits, only when X=1, producing the final BCD sum output represented by
3> 2> 1> 0. The X is also the carry-out that is produced when the sum is greater than01001.

When X=0, there is no carry and no addition of 0110. In such cases, Y3Y 2> 1> 0= S3S2S1S0.

Two or more BCD adders can be connected in cascade when two or more digit decimal
numbers are to be added. The carry-out of the first BCD adder is connected as the carry-in of the
second BCD adder, the carry-out of the second BCD adder is connected as the carry-in of the third
BCD adder and so on.

B, B. B, 8B sCcD
$d 1 1 | ocodegroump

4-bit parallel adder (74LS83) S Carry from
the lower position
T T 1t 1

adder
S. Ss| Sz S.| Se A A A, A BCD
code group

x
Carry to the -
next BCD adder

c. i Co =0
-— 4-bit parallel adder (74LS83)

Y =

=,

BCD sum adder

Logic diagram of a BCD adder using two 4-bit adders and a correction-detector circuit.

EXCESS-3(XS-3) ADDER:

To perform Excess-3 additions,
1. Add two xs-3 code groups
2. If carry=1, add 0011(3) to the sum of those two code groups
If carry =0, subtract 0011(3) i.e., add 1101 (13 in decimal) to the sum of those two code

groups.

Ex: Add 9 and 5

1100 9in Xs-3
+1000 5in xs-3

1 0100 there is a carry
+0011 0011 add 3 to each group
0100 0111 14 in xs-3

(1) (4)

(by 0111 4inXS-3
+0110 3inXS-3

1101 nocarry
+1 101 Subtract 3 (i.e. add 13)

Ignorecarry 1 1010 7inX5-3
(7)

Implementation of xs-3 adder using 4-bit binary adders is shown. The augend (Az A2A1A0)
and addend (B3B2B1Bo) in xs-3 are added using the 4-bit parallel adder. If the carry is a 1, then
0011(3) is added to the sum bits S3S2S1So of the upper adder in the lower 4-bit parallel

adder. If the carry is a 0, then 1101(3) is added to the sum bits (This is equivalent to subtracting
0011(3) from the sum bits. The correct sum in xs-3 is obtained

Excess-3 (XS-3) Subtractor:
To perform Excess-3 subtraction,
1. Complement the subtrahend
2. Add the complemented subtrahend to the minuend.
3. Ifcarry =1, result is positive. Add 3 and end around carry to the result . If carry=0, the
result is negative. Subtract 3, i.e, and take the 1°s complement of the result.

Ex: Perform 9-4

1100 9in xs-3
+1000 Complement of 4 n Xs-3
1) 0100 There is a carry
+0011 Add 0011(3)
0111
1 End around carry
1000 5in xs-3

The minuend and the 1‘s complement of the subtrahend in xs-3 are added in the upper 4-
bit parallel adder. If the carry-out from the upper adder is a 0, then 1101 is added to the sum bits
of the upper adder in the lower adder and the sum bits of the lower adder are complemented to get
the result. If the carry-out from the upper adder is a 1, then 3=0011 is added to the sum bits of the
lower adder and the sum bits of the lower adder give the result.

Binary Multipliers:

In binary multiplication by the paper and pencil method, is modified somewhat in digital
machines because a binary adder can add only two binary numbers at a time.
In a binary multiplier, instead of adding all the partial products at the end, they are added two at a
time and their sum accumulated in a register (the accumulator register). In addition, when the
multiplier bit is a 0,0s are not written down and added because it does not affect the final result.
Instead, the multiplicand is shifted left by one bit.

The multiplication of 1110 by 1001 using this processis
Multiplicand 1110

Multiplier 1001
1110 The LSB of the multiplier is a 1; write down the
multiplicand; shift the multiplicand one position to the left (1
1100)
1110 The second multiplier bit is a 0; write down the previous

result 1110; shift the multiplicand to the leftagain (111 0
00)

+1110000 The fourth multiplier bit is a 1 write down the new
multiplicand add it to the first partial product to obtain the
final product.
1111110
This multiplication process can be performed by the serial multiplier circuit , which
multiplies two 4-bit numbers to produce an 8-bit product. The circuit consists of following
elements
X register: A 4-bit shift register that stores the multiplier --- it will shift right on the falling edge
of the clock. Note that Os are shifted in from the left.
B register: An 8-bit register that stores the multiplicand; it will shift left on the falling edge of
the clock. Note that Os are shifted in from the right.
A register: An 8-bit register, i.e, the accumulator that accumulates the partial products.
Adder:An 8-bit parallel adder that produces the sum of A and B registers. The adder outputs S7
through So are connected to the D inputs of the accumulator so that the sum can be transferred to
the accumulator only when a clock pulse gets through the AND gate.
The circuit operation can be described by going through each step in the multiplication of 1110
by 1001. The complete process requires 4 clock cycles.
1 Before the first clock pulse: Prior to the occurrence of the first clock pulse, the register A is
loaded with 00000000, the register B with the multiplicand 00001110, and the register X with the
multiplier 1001. Assume that each of these registers is loaded using its asynchronous inputs(i.e.,
PRESET and CLEAR). The output of the adder will be the sum of A and B,i.e., 00001110.
2. First Clock pulse:Since the LSB of the multiplier (Xo) is a 1, the first clock pulse gets through
the AND gate and its positive going transition transfers the sum outputs into the accumulator. The
subsequent negative going transition causes the X and B registers to shift right and left,
respectively. This produces a new sum of A and B.
3 Second Clock Pulse: The second bit of the original multiplier is now in Xo . Since this bit is a
0, the second clock pulse is inhibited from reaching the accumulator. Thus, the sum outputs are
not transferred into the accumulator and the number in the accumulator does not change. The
negative going transition of the clock pulse will again shift the X and B registers. Again a new sum
is produced.
4. Third Clock Pulse:The third bit of the original multiplier is now in Xo;since this bit is a 0, the
third clock pulse is inhibited from reaching the accumulator. Thus, the sum outputs are not
transferred into the accumulator and the number in the accumulator does not change. The negative
going transition of the clock pulse will again shift the X and B registers. Again a new sum is
produced.
5 Fourth Clock Pulse: The last bit of the original multiplier is now in Xo, and since itis a 1, the
positive going transition of the fourth pulse transfers the sum into the accumulator. The
accumulator now holds the final product. The negative going transition of the clock pulse shifts X
and B again. Note that, X is now 0000, since all the multiplier bits have been shifted out.

Code converters:

The availability of a large variety of codes for the same discrete elements of
information results in the use of different codes by different digital systems. It is sometimes
necessary to use the output of one system as the input to another. A conversion circuit must be
inserted between the two systems if each uses different codes for the same information. Thus a

code converter is a logic circuit whose inputs are bit patterns representing numbers (or character)
in one cod and whose outputs are the corresponding representation in a different code. Code
converters are usually multiple outputcircuits.

To convert from binary code A to binary code B, the input lines must supply the bit

combination of elements as specified by code A and the output lines must generate the
corresponding bit combination of code B. A combinational circuit performs this transformation by
means of logic gates.
For example, a binary —to-gray code converter has four binary input lines Bs, B3 B2,B1 and four
gray code output lines G4,G3 G2,G1. When the input is 0010, for instance, the output should be 0011
and so forth. To design a code converter, we use a code table treating it as a truth table to express
each output as a Boolean algebraic function of all the inputs.

In this example, of binary —to-gray code conversion, we can treat the binary to the gray
code table as four truth tables to derive expressions for G4, G3, G2, and G1. Each of these four
expressions would, in general, contain all the four input variables B4, B3,B2,and B1. Thus,this code
converter is actually equivalent to four logic circuits, one for each of the truth tables.

The logic expression derived for the code converter can be simplified using the usual
techniques, including _don‘t cares® if present. Even if the input is an unweighted code, the same
cell numbering method which we used earlier can be used, but the cell numbers --must correspond
to the input combinations as if they were an 8-4-2-1 weighted code. s
Design of a 4-bit binary to gray code converter:

G,=Im(8,9,10,11,12,13,14,15) G,=B,
G,=Xm(4,5,6,7.8,9,10,11) G,=B,B, +B,B, =B, ®B,
G,=Im(2,3,4,510,11,12,13) G,=B;B,+B,B,=B,®B,
G,=ZIm(1,2,5,6,9, 10, 13, 14) G,=B,B, +B,B, =B, ®B,
4-bit binary 4-bit Gray

B, B, B, B, G, G, G, G,

0 0 o 0 0 0 0 a

0o 0 0 1 0o 0 0 1

o 0 1 0 0o 0 1 1

0o 0 1 1 0 0 1 0

0 1 0 0 0 1 1]

0o 1 0 1 o 1 1 1 B, G,

o 1 1 0 0o 1 0 1

1] 1 1 1] 1 0 Q G

1 0 0 0 1 1 0 0 B, ?

1 0 0 1 1 1 0 1

1 0 1 0 11 1

1 0 1 1 1 1 1 a0 B G;

1 1 0 0 1 0 1 0 2

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1 G,

11 1 1 1 0 0 © B,

{a) Conversion table {c) Logic diagram
4-bit binary-to-Gray code converer

BB,
[als)

BBy o 11 10
[=] L k] 2
oo
- = Ed -
o
1= LE] 15 a
11 Rl T] 7]
i a - Rl I'IB
10 A il 1 a
G, = B8,
K-rmap for &
BaB’ao o1 11) 10|
B
‘Bg o 1 = =2
oo ! 1 1|
= = Ed &
o1 T "1
= El RE] T
R} 1 1
s = S]
10 T i
1 7]

G, = B,y @ B

Momap for G

(b) K-maps

(== oo o1 11 10
T £] 3 z
[o]
- =] e =
o |] i | 1 1]
=2 13 i) 14
11
= =] ik}]
10 [a] 1]

BB oo o1 11 1o
oo k] 1
A = e =3
o1 1 1
EE: 13 LE] 14
11 1 1
[= LRl 10
10 1 1

G, = B, & B,
Komap for Gy

4-bit binarny-to-Gray code converter.

Design of a 4-bit gray to Binary code converter:

150

I

B,=Xm(12, 13, 15, 14,10, 11,9, S) = m(8. 9, 10, 11, 12, 13, 14,
B,=Xm{6.7.5.4, 10, 11,9, 8)=X m<4. 5. 6. 7. 8. 9. 10, 11)
B,=Xm(3, 2,5, 4,15, 14,9, 8)=Xm(2, 3, 4,5, 8,9, 14, 15)
B, =Xm(l.2, 7.4, 13, 14, 11.8)=X mfl. 2. 4 7. 8. 11, 13, 14}
B,=G,)
B;=G,G;+G,G,=G,®G,
B, = G,G,G, + 0403{32 +G,G,G, + G,G,G,
=G UG, B G) +G G, DG,)=G, 898G, 8G,=B, DG,
B, = G,G,G,G, + G,G,G,G, + G,G,G,G, + G,G,G,G, + G,G;G,G,
+GGGG +GGGG+GGGG
= G,G,(G, ® G,) + G,G4(G, ® G,) + G,G4(G, ®G,) + G,G,(G, 8 G))
=(G, ® G, NG, ®G;)+(G, ®G)G, @ G,y)
=G,®G,®G,dG,
4-bit Gray 4-bit binary
G, G, G, G, 8, B, B, B,
o o 1] [#] - [n]] Lv]
a o 4] 1 o] o o 1
o o 1 1 o o 1 o
[+] [+] 1 o o] =] 1 1
o 1 1 o o 1 2] Lv] Ga B,
v] 1 1 1 o] 1 1] 1
o 1 o 1 o 1 1 o B,
o 1 o o o 1 1 1 Ga
1 1 Lo o 1 Lo] o Q
1 1 [o] 1 1 s] 1] 1
1 1 1 1 1 o 1 Q B,
1 1 1 o 1 o 1 1 Gz
h | o 1 (] h | 1 [+] o
1 1] 1 1 1 1 [+] 1
1 o o 1 1 1 1 o B,
1] o o 1 1 1 1 G,
{a) Conversion table (c) Logic diagram
- 01 11 10 GZGIIJJ o1 11 10
GG 1 3] F G.Gs 3]] 3 S
o0 oo
4 5 T | 4 5 7 &
o1 o1 1 1 1 1]
12 13 15 14 12 13 16 4
11 1 1 1 1 11
B El 11 10 (=] 2 11 B0
10 1 t 1 1 1 10 1 - il 1 1]
B, = G, 2= G, ® G,

K-map for By

G,G, ' GG,

G oo al 11 10 e oo o1 11 10
«Gs g i 3 z 4G3 a 7 3 z
00 O3] 00 1 1

4] 5 7 [& B 7 [
o1 | 1 1 o1 1 1 1 1

12 13 15 14 12 13 15| 14
11 1 1| 11 1 1

[a 11 10 :1] 11 10
10 | 1 1 I 10 1 1

B,=G,® G, ® G, B,=G,8G6,® G, &0,

K-map for B, () K-maps K-map for B,

4-bit Gray-to-binary code conwerter.

Design of a 4-bit BCD to XS-3 code converter:

28421 code XS-3 code

M, = Xmis, 6, 7. 8, 9) +d(10, 11, 12, 13, 14, 15)
By By Ba B, Ha Mg e M », =X m(1, 2,3, 2, 9) +d(10, 11, 12, 13, 14, 15}
o o o o o o 1 1 M, =Em(d, 3, 4, 7, 8) + d(10, 11, 12, 13, 14, 15)
g g ":1’ & g : g s ¥, = Em{0, 2, 4, 6, 8) + d(10, 11, 12, 13, 14, 15}
o o 1 1 o : : ?‘ The minimal expressions are
e b ° b s o o o ¥ =By + BB, + BB,
o 1 1 o 1 o o 1 Xy = BJEB, + B,B, + B,B.
o 1 1 1 1 o 1 o - B.B
1 o o o 1 o 1 1 ¥z = B.8, + BB,
1 o o 1 1 1 o o *, =8,
{a) Conmversion table {b) Minimal expressions
4-bit BCD-to-XS-3 code converner
B.8, BB,
BB 00 m 1 10 B 00 {1} 11 10
3] i E]] 83)| 1 3 H
00 00 1 1 1
4 5 7 B 4 5 7 [
01 1 1 1 01 | 1|
12 13 15 14| 2 13 15 14
11 ® x ® ® 11| = ® = =
L=
[8 n o [8 1 10
1011 1 x x 10 1 x x
X,=B,+B,8,+ B8, X;=B;8,8,+B,8,+ BB,
K-map for X, K-map for X,
- 00 01 1 1] 1{}0 0
B 1 1 B 1 11 10
‘Ba 0 W 3 2 ‘E: o] 1 3 2
ool |1 1 0o 1 1
4 5 7 B &4 5 T g
o1 |1 1 o] 1 1
2] 13 15 14 12 13 18 14|
1| |x x ® x M| x x ® x
8| [] 11 10| B [1 10
10 11 ® x 0] 1 ® ®
X, =B,8, +B,B, X =B,
K-map for X, K-map for X,
(c) K-maps

4-bit BCD-to-XS-3 code converter.

Design of a BCD to gray code converter:

BCD code Gray code B, G,
B, By B, By Ga Gy Gy Gy
o o o o o o Lo} o G,
o o [#] 1 [»] L] o 1
1] [+] 1 o [»]] 1 1
o [*] 1 1 o o 1 Q
o 1 o o o 1 1 o Fe)
o 1 o 1 o 1 1 1 B, 1
[+] 1 1 o [»] 1 o 1
a 1 1 1 v] 1 o o
1 (4] o o 1 1 0 o Gy
1 o o 1 1 1 o 1 By
{a) BCD-to-Gray code conversion table (b} Logic diagram
BCD-to-Gray code conwverter.
s5.8, 5,8,
PR~ co o1 1 1o s.5> oo o1 s 1o
o 5 = = = Fol = ~ = =
s = = ¥ = i —_— = —> —
P IS is e '4—"5 2 i 3 R -
el l = = = ><I Rl | = = =]
o = = = =" solls B — =
S, = B, G, = B, - B,
=5 [.
o " oo o1 lan 10| I 0 o1 s so
oo = = * - 1" oo T T~
o= 1 =1° = o1 = B Bl B § 5
g = == == e SSERL B B b ===
s = = [T..,__Tl.o - o S B ="

T i
G, -2, « Be, -8, e s, G =B.,8, «B,. B, -8, ® 8,
Kemaps for & BCD-to-Gray code converter.

Design of a SOP circuit to Detect the Decimal numbers 5 through 12 in a 4-bit gray code
Input:

Docimal 4 bit Gray code Oultput
numiber A B C D L]

o o o o © o

1 o o o 1 o

= o o 1 1 o

a o o 1 o o

- o hl R o o (=]

s o 1 1 1 1 AB oo o1 11 10

= o 1 o 1 1 = bl = = B

e o 1 o o 1 oo _

a 1T 1 0 o 1 a & =

o 353 : = 2 > fomr

11 1T 1 1 o 1 11 I 1 [T N | 1 =

1= 10 1 o 1 [-

13 LI - e B | o — b = b I 1 E“'—‘ <

14 10 o 1 o (=

1s 1o o o kel frin = BS + BD + ACD

{a) Truth table () K-map (e) MAND logic

Truth table, K-map and logic diagram for the SOFP cincuit.

Design of a SOP circuit to detect the decimal numbers 0,2,4,6,8 in a 4-bit 5211 BCD code
input:

Decimal 5211 code Output CcD
number A B C D f AB 00 o1 11 10
o 0 0 0 O 1 ool 1 ° T s A—
1 o0 0 1 o
2 o0 1 1 1 g 5 7 € o —
3 01 0 1 o o) = 1 * "
4 o1 1 1 1 12 13 1 fia frvir
5 1 0 0 O 0 11 * 1 c—1|
8 1010 1 8 5]] 7 c—
7 1 1 0 O [10 x x| |1
8 1 1 1 0 1 55—
9 11 1 1 0 foun = AD + AC + CD
{a) Truth table {b) K-map {c) Logic diagram

Truth table, K-map and logic diagram for the SOP circuit.

Design of a Combinational circuit to produce the 2’s complement of a 4-bit binary number:

Input Output
A B c D E F G H
1] 1] 0 1} 0 0 0 0
Q 0 0 1 1 1 1 1
0 0 1 [} 1 1 1 0
(4] 0 1 1 1 1 o 1
1] 1 0 [} 1 1 0 0
0 1 0 1 1 0 1 1
1] 1 1 0 1 1] 1 4]
4] 1 1 1 1 0 0 1
1 0 0 a 1 0 0 0
1 0 0 1 (1] 1 1 1
1 0 1 1} 0 1 1 0
1 0 1 1 0 1 1] 1
1 1 (4] 0 0 1 4] 0
1 1 0 1 0 0 1 1
1 1 1 i} 0 1] 1 0
1 1 1 1 0 1] 0 1
{a) Conversion table

Conversion table and K-maps for the circuit

i1] [B | I [I |
| B | !] 1 1 1 1 !
[n] 1 2 3 4 s (- 7 a8 =]
{a) Sevan-sagmeant display
oD
AB o0 o1 11 10,
=] . 3] Z
;l‘li] 1 1 -
- a5 el]
o1 1 1 D
e 13 5 a4 'm
11 £ » = £
B] K] 10 [=3
iouiq 1 Ea =
} D =
fn =B+ CO + CD B
{b) K-map {c) Logic diagram

Comparators:

EQUALITY = (A, O B;)(A, © B,)A, © B,)(A,©B)

A —————— — L
1-bit

comparator E

B———— G

Block diagram of a 1-bit comparator.

1. Magnitude Comparator:

The logic for a 1-bit magnitude comparator: Let the 1-bit numbersbe A=A and B=B,,
IfA,=1and B,=0, then A >B.

Therefore, 3
If A,=0and B,= 1, then A <B.
Therefore,
A<B:L=AB,
If A, and B, coincide, i.e. A ;=B,=0or ifA,=B;=1,then A=B.
Therefore,
A=B:E=A,0B,
WD SN
Ay
1o 5) A= D)
o 1 1 (2] Lo
R I —)
(a) Truth table ({b) Logic diagram

1-bit comparator.

1- bit Magnitude Comparator:
The logic for a 2-bit magnitude comparator: Let the two 2-bit numbersbe A=A A, and B=B, B,
L.LIfA|=1andB =0, thenA>Bor
2.1f A, and B, coincide and A;= 1 and B =0, then A > B. So the logic expression for A > B is

A>B:G=AB, +(A 0B)AB,
1.IfA,=0and B,=1,then A <Bor
2.1f A, and B, coincide and A ;= 0 and B =1, then A< B. So the expression for A<B is

A<B:L=AB, +(A OB)AB,
If A, and B, coincide and if A, and B, coincide then A = B. So the expression for A = B is
A=B:E=(A,0OB)A,0B)

= B
‘o
A =B
A,
(=

Logic diagram of a 2-bit magnitude comparator.

4-Bit Magnitude Comparator:

The logic for a 4-bit magnitude comparator: Let the two 4-bit numbers be A = A ;A A A, and
B =B,B,B B,.

1.IfA;=1and B, =0, then A > B. Or

2. If A, and B, coincide, and if A, = 1 and B, =0, then A > B. Or

3. If A, and B, coincide, and if A, and B, coincide. and if A, =1 and B; =0, then A > B. Or

4. If AJ and BJ coincide, and if A, and B, coincide, and if A, and B, coincide, and if Ay =1
and B, = 0, then A > B.

From these statemenis, we see that the logic expression for A > B can be written as
(A > B) =A,B; + (A; © B)A,B, + (A; © B))(A, © B,))A, B,
+ (A, OB A, ©BXA ©B)AB,

Similarly, the logic expression for A < B can be written as
A<B= E:_Bj +(A, 0 133].7“2131 +(A;0B)(A, 0 BIJEIB1
+(A; O By)(A, O B,)(A, ©B)AB,
If A, and B, coincide and if A, and B, coincide and if A, and B, coincide and if A, and B,
coincide, then A = B.
So the expression for A = B can be written as

(A=B)= (A, ®B,XA, O B,)(A, OB,)A,OB,)

JLJWJ

>l

%
Ul
Ty
.

2l

JUU

IC Comparator:

s]
B,—1 16 — Vo
A, — 2 15— A,
(A =Blgyr— 3 14— B,
(A >Blypy— 4 13 — (A > Blgyr
(A<Bly—5 12 — (A = Bloyr
(A =8B)yy—6 11 —B,;
L I 10— A,
GND — 8 9 —B,
T485
{a) Pin diagram of T485
LSBs MSBs
As—— R (A <Blgur Ay—Pe (A =Blgyr[—(A<B)
A't A'I fﬁ-B}g_rr -Aﬁ—'lﬂ-l (A= BIGU‘T —'-{-ﬁ=B}
Ay —o Ay (A > Blour Pg— Az (A > Blgur — (A =>=B)
As—] As A, —1 A,
Voo (A =< Blw (A = By,
(A =By, (A = Blyy
;: (A > By, (A= By,
= Be—{B, B,—{B,
B, — B, B,—B,
B,—B8; By By
By;—{Bs 8,—8
S (b) Cascading of two 7485s T4B5
Pin diagram and cascading of 7485 4-bit comparators.
ENCODERS:
MWy —| Aa
] Ay
S-bat Hg — A -
mumiber X >, A A B o=
Hg—Aa=8
7485 K=Y Cutputs
Wy — B,
. Wa— B2 A <B MW
St e
e " ¥i— 8 A =B o——MNot used
o —m A< B
= |~="
Use of 7485 as a S-bit comparator.
- A o O
Ay ——] — O,
o, —— E — O,
e = P-bit
only ona - =] - o
FRCH =t : 5 : g
Py o —] R — O Oy
Py — —C Oy
Block diagram of encoder.
Octal to Binary Encoder:
Octal inpuls
Octal digits Binarny ‘D, D D, D, Dy Dg D»
Pz Ay Ag
D, o] o o
(] 1 o o 1 '—E. }_
D; 2 o 1 [+] 1 Ha
Dy 3 o 1 1) Bi
D 4 1 o o E __E — ey
1:!: 5 1 o] 1 ' puta
D -] 1 1 o
D: rd 1 1 1 D— Py
{a) Truth table {b) Logic diagram

Octal-to-binary encoder.

Decimal to BCD Encoder:

; Binary
Decimal ts
e A, A A, A
1o D, o 0 o0 0 O
1 D, 1 o o o 1
2 - D, 2 o o 1 0O
] 1
—a —teoo 3 00 0 o
Decimal | __| — [outputs 4
| 4 4 DEC/BCD | D, 5 6 1 0 1
o De 6 o 1 1 o
I D, 7 o 1 1 1
—8 Oy a 1 0 0 O
L —19 Dy g 1 0o o0 1
(a) Logic symbol {b) Truth table
Decimal inputs
D, D, D, D, Dy D, D; Dy Dy
— >—a
D~
L BCD
X outputs
— Ay

(c) Logic diagram
Decimal-to-BCD encoder.

Tristate bus system:

In digital electronicsthree-state, tri-state, or 3-statelogic allows an output port to assume a high

impedance state in addition to the 0 and 1 logic levels, effectively removing the output from the
circuit.

This allows multiple circuits to share the same output line or lines (such as a bus which cannot
listen to more than one device at a time).

Three-state outputs are implemented in many registers, bus drivers, and flip-flops in the 7400 and
4000 series as well as in other types, but also internally in many integrated circuits. Other typical
uses are internal and external buses in microprocessors, computer memory, and peripherals. Many
devices are controlled by an active-low input called OE (Output Enable) which dictates whether

the outputs should be held in a high-impedance state or drive their respective loads (to either 0- or
1-level).

= IMPUT OoOUTPUT
F\L\, = Al B c
- = —_— oy [

— o

L]
=
A tristate buffer can be thought of as a switch. If 2 is = i i
>

on, the switch is closed. IT B is off, the switch is open. (] Z {high impedance)}

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/High_impedance
https://en.wikipedia.org/wiki/High_impedance
https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/Computer_bus
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Bus_%28computing%29
https://en.wikipedia.org/wiki/Flip-flop_%28electronics%29
https://en.wikipedia.org/wiki/7400_series
https://en.wikipedia.org/wiki/4000_series
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Active-low

MODULE IV
Sequential Logic Circuits - |

Sequential circuits

Classification of sequential circuits: Sequential circuits may be classified as two types.

1. Synchronous sequential circuits
2. Asynchronous sequential circuits

Combinational logic refers to circuits whose output is strictly depended on the present value of
the inputs. As soon as inputs are changed, the information about the previous inputs is lost, that is,
combinational logics circuits have no memory. Although every digital system is likely to have
combinational circuits, most systems encountered in practice also include memory elements,
which require that the system be described in terms of sequential logic. Circuits whose output
depends not only on the present input value but also the past input value are known as sequential
logic circuits. The mathematical model of a sequential circuit is usually referred to as a sequential
machine.

Frairmacarw irepaatss FRrairmacarw gk st

o binatiomaal
Lomic (ircuit

—_— o

Secorcimarw
e e

Secornc=rw]
ArmgEorLat =

fav =3 o Ta s g W
Elcmocnits

Comparison between combinational and sequential circuits

Combinational circuit

Sequential circuit

1. In combinational circuits, the
output

variables at any instant of time are
dependent only on the present input
variables

2.memory unit is not requires in
combinational circuit

3. these circuits are faster because
the delay between the i/p and o/p

due to propagation delay of gates
only

4. easy to design

1. in sequential circuits the output variables at
any instant of time are dependent not only on

the present input variables, but also on the
present state

2.memory unit is required to store the past
history of the input variables

3. sequential circuits are slower than
combinational

circuits

4. comparatively hard to design

Level mode and pulse mode asynchronous sequential circuits:

MRS =231 Combinational Logic (=== outputs

—

- —

——— Memory | ;-—--

Internal states

Figure 1: Asynchronous Sequential Circuit

Fig shows a block diagram of an asynchronous sequential circuit. It consists of a combinational
circuit and delay elements connected to form the feedbackloops. The present state and next state
variables in asynchronous sequential circuits called secondary variables and excitation variables
respectively..

There are two types of asynchronous circuits: fundamental mode circuits and pulse mode
circuits.

Synchronous and Asynchronous Operation:

Sequential circuits are divided into two main types: synchronous and asynchronous. Their
classification depends on the timing of their signals.Synchronous sequential circuits change their
states and output values at discrete instants of time, which are specified by the rising and falling
edge of a free-running clock signal. The clock signal is generally some form of square wave as
shown in Figure below.

ockrerior)

Falling edge

—45 _________ > O

Clock width Rising edge

From the diagram you can see that the clock period is the time between successive
transitions in the same direction, that is, between two rising or two falling edges. State transitions
in synchronous sequential circuits are made to take place at times when the clock is making a
transition from 0 to 1 (rising edge) or from 1 to O (falling edge). Between successive clock pulses
there is no change in the information stored in memory.

The reciprocal of the clock period is referred to as the clock frequency. The clock width
is defined as the time during which the value of the clock signal is equal to 1. The ratio of the clock
width and clock period is referred to as the duty cycle. A clock signal is said to

be active high if the state changes occur at the clock’s rising edge or during the clock width.
Otherwise, the clock is said to be active low. Synchronous sequential circuits are also known as
clocked sequential circuits.

The memory elements used in synchronous sequential circuits are usually flip-flops. These

circuits are binary cells capable of storing one bit of information. A flip-flop circuit has two
outputs, one for the normal value and one for the complement value of the bit stored in it. Binary
information can enter a flip-flop in a variety of ways, a fact which give rise to the different types
of flip-flops. For information on the different types of basic flip-flop circuits and their logical
properties, see the previous tutorial on flip-flops.
In asynchronous sequential circuits, the transition from one state to another is initiated by the
change in the primary inputs; there is no external synchronization. The memory commonly used
in asynchronous sequential circuits are time-delayed devices, usually implemented by feedback
among logic gates. Thus, asynchronous sequential circuits may be regarded as combinational
circuits with feedback. Because of the feedback among logic gates, asynchronous sequential
circuits may, at times, become unstable due to transient conditions. The instability problem
imposes many difficulties on the designer. Hence, they are not as commonly used as synchronous
systems.

Fundamental Mode Circuits assumes that:

1. The input variables change only when the circuit isstable
2. Only one input variable can change at a giventime
3. Inputs are levels are not pulses

A pulse mode circuit assumes that:

1. The input variables are pulses instead of levels
2. The width of the pulses is long enough for the circuit to respond to theinput
3. The pulse width must not be so long that is still present after the new state isreached.

Latches and flip-flops

Latches and flip-flops are the basic elements for storing information. One latch or flip- flop
can store one bit of information. The main difference between latches and flip-flops is that for
latches, their outputs are constantly affected by their inputs as long as the enable signal is asserted.
In other words, when they are enabled, their content changes immediately when their inputs
change. Flip-flops, on the other hand, have their content change only either at the rising or falling
edge of the enable signal. This enable signal is usually the controlling clock signal. After the rising
or falling edge of the clock, the flip-flop content remains constant even if the input changes.

There are basically four main types of latches and flip-flops: SR, D, JK, and T. The major
differences in these flip-flop types are the number of inputs they have and how they change state.
For each type, there are also different variations that enhance their operations. In this chapter, we

will look at the operations of the various latches and flip-flops.the flip-flops has two outputs,
labeled Q and Q°. the Q output is the normal output of the flip flop and Q° is the inverted output.

—_— - mnormal output

output

i

2]

s

u o — Immverted
T

S

Figure: basic symbol of flipflop

A latch may be an active-high input latch or an active —-LOW input latch.active —-HIGH
means that the SET and RESET inputs are normally resting in the low state and one of them will
be pulsed high whenever we want to change latch outputs.

SR latch:

The latch has two outputs Q and Q‘. When the circuit is switched on the latch may enter
into any state. If Q=1, then Q‘=0, which is called SET state. If Q=0, then Q‘=1, which is called
RESET state. Whether the latch is in SET state or RESET state, it will continue to remain in the
same state, as long as the power is not switched off. But the latch is not an useful circuit, since
there is no way of entering the desired input. It is the fundamental building block in constructing
flip-flops, as explained in the following sections

NAND latch

NAND latch is the fundamental building block in constructing a flip-flop. It has the
property of holding on to any previous output, as long as it is not disturbed.

The opration of NAND latch is the reverse of the operation of NOR latch.if 0‘s are replaced
by 1°s and 1°‘s are replaced by 0°‘s we get the same truth table as that of the NOR latch shown

So—[Bn Dc +Q
B

NOR latch

= o "
< S R Q Q Function
0 0 Qt at Storage State

(8] 1 1 Reset

Lo] 1 0 1 0 Set

= 1 1 0-7 -7 Indeterminate

State

The analysis of the operation of the active-HIGHNOR latch can be summarized as follows.

1.

SET=0, RESET=0: this is normal resting state of the NOR latch and it has no effect on the
output state. Q and Q° will remain in whatever stste they were prior to the occurrence of this
input condition.

SET=1, RESET=0: this will always set Q=1, where it will remain even after SET returns to 0
SET=0, RESET=1: this will always reset Q=0, where it will remain even after RESET returns
to 0

SET=1,RESET=1, this condition tries to SET and RESET the latch at the same time, and it
produces Q=Q‘=0. If the inputs are returned to zero simultaneously, the resulting output stste
is erratic and unpredictable. This input condition should not be used.

The SET and RESET inputs are normally in the LOW state and one of them will be pulsed
HIGH. Whenever we want to change the latch outputs..

RS Flip-flop:

The basic flip-flop is a one bit memory cell that gives the fundamental idea of memory

device. It constructed using two NAND gates. The two NAND gates N1 andN2 are connected such
that, output of N1 is connected to input of N2 and output of N2 to input of N1. These form the
feedback path the inputs are S and R, and outputs are Q and Q°. The logic diagram and the block
diagram of R-S flip-flop with clocked input

2

SCa Do
cp CP >
DT — Rk a

b) Block diagram

a) Logic diagram

Figure: RS Flip-flop

The flip-flop can be made to respond only during the occurrence of clock pulse by adding
two NAND gates to the input latch. So synchronization is achieved. i.e., flip-flops are allowed
to change their states only at particular instant of time. The clock pulses are generated by a
clock pulse generator. The flip-flops are affected only with the arrival of clock pulse.

Operation:

1. When CP=0 the output of N3 and N4 are 1 regardless of the value of S and R. This is

given as input to N1 and N2. This makes the previous value of Q and Q‘unchanged.

2. When CP=1 the information at S and R inputs are allowed to reach the latch and

change of state in flip-flop takes place.

3. CP=1, S=1, R=0 gives the SET state i.e., Q=1, Q*=0.

4. CP=1, S=0, R=1 gives the RESET state i.e., Q=0, Q*=I.
5. CP=1, S=0, R=0 does not affect the state of flip-flop.

6. CP=1, S=1, R=1 is not allowed, because it is not able to determine the next state. This
condition is said to be a -race conditionll.

In the logic symbol CP input is marked with a triangle. It indicates the circuit responds to
an input change from 0 to 1. The characteristic table gives the operation conditions of flip-flop.
Q(t) is the present state maintained in the flip-flop at time _t°. Q(t+1) is the state after the
occurrence of clock pulse.

Truth table

S R Qi1 Comments
0 0 Q, No change
0 1 0 Reset / clear
1 0 1 Set

1 1 * Mot allowed

Edge triggered RS flip-flop:

Some flip-flops have an RC circuit at the input next to the clock pulse. By the design of the
circuit the R-C time constant is much smaller than the width of the clock pulse. So the output
changes will occur only at specific level of clock pulse. The capacitor gets fully charged when
clock pulse goes from low to high. This change produces a narrow positive spike. Later at the
trailing edge it produces narrow negative spike. This operation is called edge triggering, as the
flip-flop responds only at the changing state of clock pulse. If output transition occurs at rising
edge of clock pulse (0711),it is called positively edge triggering. If it occurs at trailing edge (17
0) itis called negative edge triggering. Figure shows the logic and block diagram.

s —

>

s R Q@
b N1 Q
—,—I—'—L —hz-h b) Block diagram of positive edge triggered flip-flop
CcP
U
N2 Q
R b s Q[——————

cP —>
—r o —

a) Logic diagram of edge triggered RS flip-flop
©) Block diagram of negative edge triggered flip-flop

Figure: Edge triggered RS flip-flop
D flip-flop:

The D flip-flop is the modified form of R-S flip-flop. R-S flip-flop is converted to D flip-flop by
adding an inverter between S and R and only one input D is taken instead of S and R. So one input
is D and complement of D is given as another input. The logic diagram and the block diagram of
D flip-flop with clocked input

a) Logic diagram

CP

b) Block diagram

When the clock is low both the NAND gates (N1 and N2) are disabled and Q retains its
last value. When clock is high both the gates are enabled and the input value at D is transferred to
its output Q. D flip-flop is also called -Data flip-flopl.

Truth tab

le

CcP D Q
0 x Previous state
1 0 0
1 1 1
Edge Triggered D Flip-flop:
PRESET
D e
Q
cp
— G
o
'L Pr
CLEAR
1) Logic diagram
cp——+ o
? Cir
b) Block diagram
Trwth table
PRESET CLE AR L 5 |]
L8] Lo > =L =(forbiddemn)
(8] 1 > = 1
1 (o] L = (8]
1 L] (o) = N
1 1 1 = N
1 1 1 > ™NC
1 1 T (8] (8]
1 1 T 1 1

Figure: truth table, block diagram, logic diagram of edge triggered flip-flop

JK flip-flop (edge triggered JK flip-flop)

The race condition in RS flip-flop, when R=S=1 is eliminated in J-K flip-flop. There is a
feedback from the output to the inputs. Figure 3.4 represents one way of building a JK flip-flop.

CP

|
Ko | N4 D Sy
—

L
JO—BRDG % +Q

CLK -
K
a) Logic diagram b) Block diagram
Truth table
J K (Jy-1, | Comments
0 0 Q No change
0 1 0 Reset / clear
1 0 1 Set
| l Q’ Complement.
togele.

Figure: JK flip-flop

The Jand K are called control inputs, because they determine what the flip-flop does

when a positive clock edge arrives.

Operation:

1. When J=0, K=0 then both N3 and N4 will produce high output and the previous value

of Q and Q° retained as it is.

2. When J=0, K=1, N3 will get an output as 1 and output of N4 depends on the value of

Q. The final output is Q=0, Q=1 i.e., reset state

3. When J=1, K=0 the output of N4 is 1 and N3 depends on the value of Q°. The final

output is Q=1 and Q‘=0 1.e., set state

4. When J=1, K=1 it is possible to set (or) reset the flip-flop depending on the current state
of output. If Q=1, Q°=0 then N4 passes ‘0‘to N2 which produces Q‘=1, Q=0 which is reset state.
the last state. The flip-flop is said to be in the

When J=1, K=1, Q changes to the complement of
toggle state.

The characteristic equation of the JK flip-flop is:

Q‘I‘EE.‘EE = J@ + f@

JK flip-flop operation2!

Characteristic table Excitation table

J K | Qnext Comment Q Qpnext J K Comment

00 Q hold state |0 0 0 | X No change

0110 reset 01 1 X Set
101 set 10 X |1 |Reset
11 Q toggle 11 X |0 |No change

T flip-flop:

If the T input is high, the T flip-flop changes state ("toggles") whenever the clock input is strobed.
If the T input is low, the flip-flop holds the previous value. This behavior is described by the
characteristic equation

Figure : symbol for T flip flop

Qnent =T &Q=TQ+TQ (expanding the XOR operator

When T is held high, the toggle flip-flop divides the clock frequency by two; that is, if
clock frequency is 4 MHz, the output frequency obtained from the flip-flop will be 2 MHz This
"divide by" feature has application in various types of digital counters. A T flip-flop can also be
built using a JK flip-flop (J & K pins are connected together and act as T) or D flip-flop (T input
and Previous IS connected to the D input through an XOR gate).

http://en.wikipedia.org/wiki/Flip-flop_(electronics)#cite_note-manokime-28
http://en.wikipedia.org/wiki/State_transition_table
http://en.wikipedia.org/wiki/Excitation_table
http://en.wikipedia.org/wiki/XOR_gate

T flip-flop operation?!

Characteristic table Excitation table

T € Q,cz: Comment €} Cnext T Comment
0 0 0 hold state (noclk) 0 0 0 No change
011 hold state (noclk) 1 |1 0 No change

1 01 toggle 0 1 1 Complement
1110 toggle 10 1 Complement

Flip flop operating characteristics:

The operation characteristics specify the performance, operating requirements, and
operating limitations of the circuits. The operation characteristics mentions here apply to all flip-
flops regardless of the particular form of the circuit.

Propagation Delay Time: is the interval of time required after an input signal has been applied
for the resulting output change to occur.
Set-up Time: is the minimum interval required for the logic levels to be maintained constantly on
the inputs (J and K, or S and R, or D) prior to the triggering edge of the clock pulse in order for
the levels to be reliably clocked into the flip-flop.
Hold Time: is the minimum interval required for the logic levels to remain on the inputs after the
triggering edge of the clock pulse in order for the levels to be reliably clocked into the flip- flop.
Maximum Clock Frequency: is the highest rate that a flip-flop can be reliably triggered.
Power Dissipation: is the total power consumption of the device. It is equal to product of supply
voltage (Vcc) and the current (Icc).
P:Vcc.lcc

The power dissipation of a flip flop is usually in mW.
Pulse Widths: are the minimum pulse widths specified by the manufacturer for the Clock, SET
and CLEAR inputs.
Clock transition times: for reliable triggering, the clock waveform transition times should be kept
very short. If the clock signal takes too long to make the transitions from one level to other, the
flip flop may either triggering erratically or not trigger at all.

http://en.wikipedia.org/wiki/Flip-flop_(electronics)#cite_note-manokime-28
http://en.wikipedia.org/wiki/State_transition_table
http://en.wikipedia.org/wiki/Excitation_table

Race around Condition

The inherent difficulty of an S-R flip-flop (i.e., S = R = 1) is eliminated by using the
feedback connections from the outputs to the inputs of gate 1 and gate 2 as shown in Figure. Truth
tables in figure were formed with the assumption that the inputs do not change during the clock
pulse (CLK = 1). But the consideration is not true because of the feedback connections

Trailing or negative edge

—| At rq—
: o \
Leading or positive edge 4 /

'—Tj

C T

e Consider, for example, that the inputs are J= K =1 and Q = 1, and a pulse as shown in
Figure is applied at the clock input.

e After a time interval t equal to the propagation delay through two NAND gates in series,
the outputs will change to Q = 0. So now we have J=K =1and Q =0.

e After another time interval of t the output will change back to Q = 1. Hence, we conclude
that for the time duration of tP of the clock pulse, the output will oscillate between 0 and
1. Hence, at the end of the clock pulse, the value of the output is not certain. This situation
is referred to as a race-around condition.

e Generally, the propagation delay of TTL gates is of the order of nanoseconds. So if
the clock pulse is of the order of microseconds, then the output will change thousands of
times within the clock pulse.

e This race-around condition can be avoided if tp< t < T. Due to the small propagation delay
of the ICs it may be difficult to satisfy the above condition.

e A more practical way to avoid the problem is to use the master-slave (M-S) configuration
as discussed below.

Applications of flip-flops:

Frequency Division: When a pulse waveform is applied to the clock input of a J-K flip-
flop that is connected to toggle, the Q output is a square wave with half the frequency of the clock
input. If more flip-flops are connected together as shown in the figure below, further division of
the clock frequency can be achieved

Parallel data storage: a group of flip-flops is called register. To store data of N bits, N
flip-flops are required. Since the data is available in parallel form. When a clock pulse is applied
to all flip-flops simultaneously, these bits will transfer will be transferred to the Q outputs of the
flip flops.

Serial data storage: to store data of N bits available in serial form, N number of D-flip-
flops is connected in cascade. The clock signal is connected to all the flip-flops. The serial data is
applied to the D input terminal of the first flip-flop.

Transfer of data: data stored in flip-flops may be transferred out in a serial fashion, i.e.,
bit-by-bit from the output of one flip-flops or may be transferred out in parallel form.

Excitation Tables:

Previous State -> Present State “

0--0 (4]

0->1 1

1->0 0

1-=1 1

| PreviousState > PresentState | J | K |

0-=0 (o] X
0->1 1 X
1->0 X 1
1->1 X o]

Previous State -> Present State —“

0->0 0
0->1 1
1->0 0
1-21 X

Previous State -> Present State

0->0 0
1
1

X
0
1
0

0->1
1-0
1->1

L]

Conversions of flip-flops:

Twpe A FF

L]

Conversion '
(given) '
L]

L]

L]

i
l—E,. Logic
I—.

1998

Twype B FF (desired) ;

The key here is to use the excitation table, which shows the necessary triggering signal
(S,R,J,K, D and T) for a desired flip-flop state transition :

Qe Qe+ |S R|J K|[D|T
0 0 0 x|0 x| 010
0 1 I 911 == 1 1
1 0 ZL 1 i 0|1
1 1 x 0O|x 0O 110
Convert a D-FF to a T-FF:
Q
T -') D-FF
—_—] o > I

Q!ﬂ
clock

We need to design the circuit to generate the triggering signal D as a function of T and Q:
. Consider the excitation table:

D= {(T,Q).
@ Qu]T|D
0 0 00
0 1 11
1 0 1(0
1 1 01

Treating as a function of and current FF state , we have

FD_ D-FF .

> .
D=TQ+TQ =TaQ clock |_ Q

Convert a RS-FF to a D-FF:

We need to design the circuit to generate the triggering signals S and R as functions of
and consider the excitation table:

5 L S Q Q@ Qun|[D[S R
—1 9 > 0 0 010 x
— R 5 0 1« |['L|'T 8
Q 1 o0 |o]o 1

clock 1 1 1 |x O

The desired signal and can be obtained as functions of and current FF state from
the Karnaugh maps:

D \ 0 1 D N 1
01 0 01 X1
1] 1] X | 0

S=D R=D"

D 5 _Q
>R

Q
clock

Convert a RS-FF to a JK-FF:

We need to design the circuit to generate the triggering signals S and R as functions of, J,
K.
Consider the excitation table: The desired signal and as functions of, and current FF state
can be obtained from the Karnaugh maps:

Q: Q1 |J K|S R
I § Q 0 0 0 x|0 x
- ? > 0 1 1 x|1 O
K R Q' 1 0 |x 1|0 1
1 1 x 0|x 0O

clock

K-maps:

QJ QJ
fN 00 01 1110 N\ 00 01 11 10
ol o] 1|x [x ol x| o]lo]o
1| 0] 1 1| X of 1]1
§=Q’J R=QK
—D—s ¢
D
K_.\ R Q'.'
S=QJ, R=QK v

clock

The Master-Slave JK Flip-flop:

The Master-Slave Flip-Flop is basically two gated SR flip-flops connected together in a series configuration
with the slave having an inverted clock pulse. The outputs from Q and Q from the "Slave" flip-flop
are fed back to the inputs of the "Master" with the outputs of the "Master" flip-flop being connected to the
two inputs of the "Slave" flip-flop. This feedback configuration from the slave's output to the master's input
gives the characteristic toggle of the JK flip-flop as shown below.

The input signals J and K are connected to the gated "master” SR flip-flop which "locks™ the input condition
while the clock (CIk) input is "HIGH" at logic level "1". As the clock input of the "slave" flip-flop is the
inverse (complement) of the "master" clock input, the "slave” SR flip- flop does not toggle. The outputs from
the "master" flip-flop are only "seen" by the gated "slave™ flip-flop when the clock input goes "LOW" to
logic level "0". When the clock is "LOW?", the outputs from the "master" flip-flop are latched and any
additional changes to its inputs are ignored. The gated "slave” flip-flop now responds to the state of its inputs
passed over by the "master" section. Then on the "Low-to-High" transition of the clock pulse the inputs of
the "master" flip-flop are fed through to the gated inputs of the "slave" flip-flop and on the "High-to- Low"
transition the same inputs are reflected on the output of the "slave™ making this type of flip-flop edge or
pulse-triggered. Then, the circuit accepts input data when the clock signal is "HIGH", and passes the data to
the output on the falling-edge of the clock signal. In other words, the Master-Slave JK Flip-flop is a
"Synchronous™ device as it only passes data with the timing of the clock signal.

Shift registers:

In digital circuits, a shift register is a cascade of flip-flops sharing the same clock, in which
the output of each flip-flop is connected to the "data" input of the next flip-flop in the chain,
resulting in a circuit that shifts by one position the "bit array" stored in it, shifting in the data present
at its input and shifting out the last bit in the array, at each transition of the clock input. More
generally, a shift register may be multidimensional, such that its "data in" and stage outputs are
themselves bit arrays: this is implemented simply by running several shift registers of the same bit-
length in parallel.

Shift registers can have both parallel and serial inputs and outputs. These are often configured as

serial-in, parallel-out (SIPO) or as parallel-in, serial-out (P1SO). There are also types that have
both serial and parallel input and types with serial and parallel output. There are also bi-
directional shift registers which allow shifting in both directions: L—R or R—L. The serial input
and last output of a shift register can also be connected to create a circular shift register

Shift registers are a type of logic circuits closely related to counters. They are basically for the
storage and transfer of digital data.
Buffer register:
The buffer register is the simple set of registers. It is simply stores the binary word. The buffer
may be controlled buffer. Most of the buffer registers used D Flip-flops.

X1

Clock

Figure: logic diagram of 4-bit buffer register
The figure shows a 4-bit buffer register. The binary word to be stored is applied to the data
terminals. On the application of clock pulse, the output word becomes the same as the word applied
at the terminals. i.e., the input word is loaded into the register by the application of clock pulse.
When the positive clock edge arrives, the stored word becomes:
Q4Q3Q2Q1=X4sX35X2X1
Q=X
Controlled buffer register:
If goes LOW, all the FFs are RESET and the output becomes, Q=0000.
When is HIGH, the register is ready for action. LOAD is the control input. When
LOAD is HIGH, the data bits X can reach the D inputs of FF*s.
Q4Q3Q2Q1=XsX3X2X1
Q=X
When load is low, the X bits cannot reach the FF°‘s.

Data transmission in shift registers:

datain __, .. data out

clock

stage A | stage B stage C | stage D

Serial-in, serial-out shift register with 4-stages

D, [13 Dc Dy

data in . .. data out

clock _ .
mode -

stage A stage B stage C stage D

' ' ; '

Q. Qg Qe Q

Parallel-in, parallel-out shift register with 4-stages

data in - - data out

clock .}

stage A stage B stage C stage D

) . . !

Q. Qs Q- Qb

Serial-in, parallel-out shift register with 4-stages

data in __,] ~ data out

clock _ .|

stage A stage B stage C stage D

Parallel-in, serial-out shift register with 4-stages

A number of ff's connected together such that data may be shifted into and shifted out of them is
called shift register. data may be shifted into or out of the register in serial form or in parallel form.
There are four basic types of shift registers.

1. Serial in, serial out, shift right, shift registers

2. Serial in, serial out, shift left, shift registers

3. Parallel in, serial out shift registers

4. Parallel in, parallel out shift registers

Serial IN, serial OUT, shift right, shift left register:

The logic diagram of 4-bit serial in serial out, right shift register with four stages. The register can
store four bits of data. Serial data is applied at the input D of the first FF. the Q output of the first

FF is connected to the D input of another FF. the data is outputted from the Q terminal of the last
FF.

1 1

0 [0/0

Serial

DE”E'_ p ol oo ol b aHlsa
dain | FFA FFB FFC FFD | Serial

Data out
CLK CLK CLK CLK

Clock [

When serial data is transferred into a register, each new bit is clocked into the first FF at the positive
going edge of each clock pulse. The bit that was previously stored by the first FF is transferred to
the second FF. the bit that was stored by the Second FF is transferred to the third FF.

Serial-in, parallel-out, shift register:

A A A
Senal
Datain 3 - 1 |
—— " Lhew e Sroew e

\ EE(Data out

~—dCLK ~ICLK —{CLK ~4CLK

l LR ‘ CLR | CLR

Clear | I | | |
|

Clock | _I'L 1

In this type of register, the data bits are entered into the register serially, but the data stored in the
register is shifted out in parallel form.

Once the data bits are stored, each bit appears on its respective output line and all bits are
available simultaneously, rather than on a bit-by-bit basis with the serial output. The serial-in,
parallel out, shift register can be used as serial-in, serial out, shift register if the output is taken
from the Q terminal of the last FF.

Parallel-in, serial-out, shift register:

For a parallel-in, serial out, shift register, the data bits are entered simultaneously into their
respective stages on parallel lines, rather than on a bit-by-bit basis on one line as with serial data
bits are transferred out of the register serially. On a bit-by-bit basis over a single line.

There are four data lines A,B,C,D through which the data is entered into the register in parallel
form. The signal shift/ load allows the data to be entered in parallel form into the register and the
data is shifted out serially from terminalQ4

Parallel-in, parallel-out, shift register
Parallel oulpuls

A OB QC a.
J]] J
D Q 1D Q J D Q _J —a D Q
FFA FFB FFC FFD
CLK LK LK CiK
1 -
Clock
FA FE PC FD

Parallel inputs

In a parallel-in, parallel-out shift register, the data is entered into the register in parallel form,
and also the data is taken out of the register in parallel form. Data is applied to the D input terminals
of the FF‘s. When a clock pulse is applied, at the positive going edge of the pulse, the D inputs are
shifted into the Q outputs of the FFs. The register now stores the data. The stored data is available
instantaneously for shifting out in parallel form.

Bidirectional shift register:

A bidirectional shift register is one which the data bits can be shifted from left to right or
from right to left. A fig shows the logic diagram of a 4-bit serial-in, serial out, bidirectional shift
register. Right/left is the mode signal, when right /left is a 1, the logic circuit works as a shift-
register.the bidirectional operation is achieved by using the mode signal and two NAND gates and
one OR gate for each stage.

A HIGH on the right/left control input enables the AND gates G1, G2, G3 and G4 and
disables the AND gates G5,G6,G7 and G8, and the state of Q output of each FF is passed through
the gate to the D input of the following FF. when a clock pulse occurs, the data bits are then
effectively shifted one place to the right. A LOW on the right/left control inputs enables the AND
gates G5, G6, G7 and G8 and disables the And gates G1, G2, G3 and G4 and the Q output of each
FF is passed to the D input of the preceding FF. when a clock pulse occurs, the data bits are then
effectively shifted one place to the left. Hence, the circuit works as a bidirectional shift register

LEFT ! RIGHT

o

el Do g g rg
hASE Dutput data
—x —* — —x
g B [y g
CLEAR T T T 7
CLK
Input data

Figure: logic diagram of a 4-bit bidirectional shift register
Universal shift register:

A register is capable of shifting in one direction only is a unidirectional shift register. One that can
shift both directions is a bidirectional shift register. If the register has both shifts and parallel load
capabilities, it is referred to as a universal shift registers. Universal shift register is a bidirectional
register, whose input can be either in serial form or in parallel form and whose output also can be
in serial form or | parallel form.

The most general shift register has the following capabilities.

1. A clear control to clear the register to 0

2. A clock input to synchronize the operations

3. Asshift-right control to enable the shift-right operation and serial input and output lines
associated with the shift-right

4. A shift-left control to enable the shift-left operation and serial input and output lines
associated with the shift-left

5. A parallel loads control to enable a parallel transfer and the n input lines associated with
the parallel transfer

6. N parallel output lines

7. A control state that leaves the information in the register unchanged in the presence of
the clock.

A universal shift register can be realized using multiplexers. The below fig shows the logic
diagram of a 4-bit universal shift register that has all capabilities. It consists of 4 D flip-flops and
four multiplexers. The four multiplexers have two common selection inputs s1 and s0. Input 0 in
each multiplexer is selected when S1S0=00, input 1 is selected when S1S0=01 and input 2 is
selected when S1S0=10 and input 4 is selected when S1S0=11. The selection inputs control the
mode of operation of the register according to the functions entries. When S1S0=0, the present
value of the register is applied to the D inputs of flip-flops. The condition forms a path from the
output of each flip-flop into the input of the same flip-flop. The next clock edge transfers into each
flip-flop the binary value it held previously, and no change of state occurs. When S1S0=01,
terminal 1 of the multiplexer inputs have a path to the D inputs of the flip-flop. This causes a shift-
right operation, with serial input transferred into flip-flopA4. When S1S0=10, a shift left operation
results with the other serial input going into flip-flop Al. Finally when S1S0=11, the binary
information on the parallel input lines is transferred into the register simultaneously during the
next clock cycle

Parallel outputs

Ay A, A, A,
Clear —9 @ fo - r " I—O @
P P Pas P D
CLK -
St —— 4x1 4x1 4x1 4x1
So MUX MUX MUX MUX
3210 3210 3210 3210
1 I 1 I 1] Y
Serial
inputfor —— Serial
shift-right | I I inputfor
s 3 2 1 shift-left

4-bit universal shift register

Figure: logic diagram 4-bit universal shift register

Function table for theregister

mode control

SO | S1 | register operation

No change
Shift Right
Shift left

Parallel load

= (kO O
= |O |k |O

Counters:

Counter is a device which stores (and sometimes displays) the number of times particular
event or process has occurred, often in relationship to a clock signal. A Digital counter is a set of
flip flops whose state change in response to pulses applied at the input to the counter. Counters
may be asynchronous counters or synchronous counters. Asynchronous counters are also called
ripple counters

In electronics counters can be implemented quite easily using register-type circuits such as the
flip-flops and a wide variety of classifications exist:

o Asynchronous (ripple) counter — changing state bits are used as clocks to subsequent state
flip-flops

e Synchronous counter — all state bits change under control of a singleclock

« Decade counter — counts through ten states per stage

o Up/down counter — counts both up and down, under command of a control input

e Ring counter — formed by a shift register with feedback connection in aring

Johnson counter — a twisted ring counter

Cascaded counter

Modulus counter.

Each is useful for different applications. Usually, counter circuits are digital in nature, and count
in natural binary Many types of counter circuits are available as digital building blocks, for
example a number of chips in the 4000 series implement different counters.

Occasionally there are advantages to using a counting sequence other than the natural binary
sequence such as the binary coded decimal counter, a linear feed-back shift register counter, or a
gray-code counter.

Counters are useful for digital clocks and timers, and in oven timers, VCR clocks, etc.

Asynchronous counters:

An asynchronous (ripple) counter is a single JK-type flip-flop, with its J (data) input fed
from its own inverted output. This circuit can store one bit, and hence can count from zero to one
before it overflows (starts over from 0). This counter will increment once for every clock cycle
and takes two clock cycles to overflow, so every cycle it will alternate between a transition from
0 to 1 and a transition from 1 to 0. Notice that this creates a new clock with a 50% duty cycle at
exactly half the frequency of the input clock. If this output is then used as the clock signal for a
similarly arranged D flip-flop (remembering to invert the output to the input), one will get another
1 bit counter that counts half as fast. Putting them together yields a two-bit counter:

Two-bit ripple up-counter using negative edge triggered flip flop:

Two bit ripple counter used two flip-flops. There are four possible states from 2 — bit up-
counting l.e. 00, 01, 10 and 11.

The counter is initially assumed to be at a state 00 where the outputs of the tow flip-flops are
noted as Q1Qo. Where Q1 forms the MSB and Qo forms the LSB.

For the negative edge of the first clock pulse, output of the first flip-flop FF1toggles its state.
Thus Q1 remains at 0 and Qo toggles to 1 and the counter state are now read as 01.

During the next negative edge of the input clock pulse FF1toggles and Qo= 0. The output Q0
being a clock signal for the second flip-flop FF2 and the present transition acts as a negative edge
for FF2 thus toggles its state Q1 = 1. The counter state is now read as 10.

For the next negative edge of the input clock to FF; output QO toggles to 1. But this transition
from O to 1 being a positive edge for FF, output Q1 remains at 1. The counter state is now read as
11.

For the next negative edge of the input clock, Qo toggles to 0. This transition from 1 to 0 acts
as a negative edge clock for FF2and its output Q1 toggles to 0. Thus the starting state 00 is attained.
Figure shown below

HIGH HIGH

gk I —ih
CLK —+—of> o>

http://en.wikipedia.org/wiki/Flip-flop_(electronics)#JK_flip-flop
http://en.wikipedia.org/wiki/Duty_cycle

1
iy VLl AT 10 L3571
1
s o= B K-S OR B X 1
1
Qo B 3a =X F
1

O
o

Two-bit ripple down-counter using negative edge triggered flip flop:

HIGH

CLOCK CLK J CLK

CLK o
i
Qy O —
| frre— O
Ql' o
2
73—

0 1 2 3 4 5 6 7 0

A 2-bit down-counter counts in the order 0,3,2,1,0,1....... ,i.e,00,11,10,01,00,11,etc. the above
fig. shows ripple down counter, using negative edge triggered J-K FFs and its timing diagram.
e For down counting, Q1° of FF1 is connected to the clock of Ff2. Let initially all the FF1
toggles, so, Q1 goes froma 0 toa 1 and Q1° goes froma 1 to aO.

The negative-going signal at Q1° is applied to the clock input of FF2, toggles Ff2 and,
therefore, Q2 goes from a 0 to a 1.s0, after one clock pulse Q2=1 and Q1=1, l.e., the state
of the counter is 11.

At the negative-going edge of the second clock pulse, Q1 changes from a 1 to a 0 and QI°
fromaOtoal.

This positive-going signal at Q1° does not affect FF2 and, therefore, Q2 remains at a 1.
Hence , the state of the counter after second clock pulse is 10

At the negative going edge of the third clock pulse, FF1 toggles. So Q1, goes froma0to a
1 and QI° from 1 to 0. This negative going signal at Q1 toggles FF2 and, so, Q2 changes
from 1 to O, hence, the state of the counter after the third clock pulse is01.

At the negative going edge of the fourth clock pulse, FF1 toggles. So Q1, goes from a 1 to
a0and Q1° from 0 to 1. . This positive going signal at Q1° does not affect FF2 and, so, Q2
remains at 0, hence, the state of the counter after the fourth clock pulse is 00.

Two-bit ripple up-down counter using negative edge triggered flip flop:

Up/Down - | >
O ! % O
\7:. -
l JI ol [J 1o
‘ C : c
ERPRREIE (8 U S
LK Q - K Q.

Figure: asynchronous 2-bit ripple up-down counter using negative edge triggered flip flop:

As the name indicates an up-down counter is a counter which can count both in upward
and downward directions. An up-down counter is also called a forward/backward counter
or a bidirectional counter. So, a control signal or a mode signal M is required to choose the
direction of count. When M=1 for up counting, Q1 is transmitted to clock of FF2 and when
M=0 for down counting, Q1° is transmitted to clock of FF2. This is achieved by using two
AND gates and one OR gates. The external clock signal is applied toFF1.

Clock signal to FF2= (Q1.Up)+(Q1°. Down)=QIlm+Q1‘M*

Design of Asynchronous counters:

To design a asynchronous counter, first we write the sequence , then tabulate the values of

reset signal R for various states of the counter and obtain the minimal expression for R and R*
using K-Map or any other method. Provide a feedback such that R and R resets all the FF*s after
the desired count

Design of a Mod-6 asynchronous counter using T FFs:

A mod-6 counter has six stable states 000, 001, 010, 011, 100, and 101. When the sixth clock
pulse is applied, the counter temporarily goes to 110 state, but immediately resets to 000 because
of the feedback provided. it is -divide by-6-counterll, in the sense that it divides the input
clock frequency by 6.it requires three FFs, because the smallest value of n satisfying the
conditionN<2" is n=3; three FFs can have 8 possible states, out of which only six are utilized and
the remaining two states 110and 111, are invalid. If initially the counter is in 000 state, then after
the sixth clock pulse, it goes to 001, after the second clock pulse, it goes to 010, and so on.

R'

E

1 1
1 | Q2 |:L
L 12
|5 Q3

Clk — > FF1 FE2
ar - > o N FF3
CLR — 23—
CLR R

Clock | LI LT LI LT LI LT
o1 —J L1 L1 L
- S N ()
Q3 l -

R I~

After sixth clock pulse it goes to 000. For the design, write the truth table with present state
outputs Q3, Q2 and QL1 as the variables, and reset R as the output and obtain an expression for R
in terms of Q3, Q2, and Ql1that decides the feedback into be provided. From the truth table,
R=Q3Q2. For active-low Reset, R is used. The reset pulse is of very short duration, of the order
of nanoseconds and it is equal to the propagation delay time of the NAND gate used. The
expression for R can also be determined as follows.

R=0 for 000 to 101, R=1 for 110, and R=X=for111
Therefore,
R=0Q3Q2Q1+Q3Q2Q1=Q3Q2

The logic diagram and timing diagram of Mod-6 counter is shown in the above fig.

The truth table is as shown in below.

After States
pulses Q3 Q2 Q1 R
0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 0
4 1 0 0 0
5 1 0 1 0
6 1 1¢ OJ, 1
OJ' 0 0 0
7 0 0 0 0

Design of a mod-10 asynchronous counter using T-flip-flops:

A mod-10 counter is a decade counter. It also called a BCD counter or a divide-by-10 counter.
It requires four flip-flops (condition 10 <2" is n=4). So, there are 16 possible states, out of which
ten are valid and remaining six are invalid. The counter has ten stable state, 0000 through 1001,
i.e., it counts from 0 to 9. The initial state is 0000 and after nine clock pulses it
goes to 1001. When the tenth clock pulse is applied, the counter goes to state 1010 temporarily,
but because of the feedback provided, it resets to initial state 0000. So, there will be a glitch in
the waveform of Q2. The state 1010 is a temporary state for which the reset signal R=1, R=0 for
0000 to 1001, and R=C for 1011 to 1111.

-
—
L T1 a1 |l |:L 1 __L—}y
FF1 P 2 @3 |
Kk —F . FF2 FF3 RENL
a1 - > b
22' = . o
CLR CIR p—
CLR |' R

The count table and the K-Map for reset are shown in fig. from the K-Map R=Q4Q2. So,
feedback is provided from second and fourth FFs. For active —HIGH reset, Q4Q2 is applied to the
clear terminal. For active-LOW reset 4 2 is connected isof all Flip=flops.

After _Count
pulses Q4 Q3 Q2 Q1
Qa1 0 0 0 0 O
Q403 N 00011110 1 o 0 0 1
00 2 o 0 1 0
1 R : ol
L | XpoL 5 0o 0 0 1
6 0O 1 1 0
7 o 1 1 1
8 1 0 0 O
9 o 1 0 1
10 0O 0 0 O

Synchronous counters:

Asynchronous counters are serial counters. They are slow because each FF can change state
only if all the preceding FFs have changed their state. if the clock frequency is very high, the
asynchronous counter may skip some of the states. This problem is overcome in synchronous
counters or parallel counters. Synchronous counters are counters in which all the flip flops are
triggered simultaneously by the clock pulses Synchronous counters have a common clock pulse
applied simultaneously to all flip-flops.”1 A 2-Bit Synchronous Binary Counter

HIGH
FFO FF1

7 : ol —go, CLK |1 —7—‘ T‘ —4—’
I
|

l§

o

> C > C
9

Design of synchronous counters:
For a systematic design of synchronous counters. The following procedure is used.

Step 1:State Diagram: draw the state diagram showing all the possible states state diagram which
also be called nth transition diagrams, is a graphical means of depicting the sequence of states
through which the counter progresses.

Step2: number of flip-flops: based on the description of the problem, determine the required
number n of the flip-flops- the smallest value of n is such that the number of states N<2"--- and the
desired counting sequence.

Step3: choice of flip-flops excitation table: select the type of flip-flop to be used and write the
excitation table. An excitation table is a table that lists the present state (ps) , the next state(ns) and
required excitations.

Step4: minimal expressions for excitations: obtain the minimal expressions for the excitations of
the FF using K-maps drawn for the excitation of the flip-flops in terms of the present states and
inputs.

Stepb: logic diagram: draw a logic diagram based on the minimal expressions

Design of a synchronous 3-bit up-down counter using JK flip-flops:

Stepl: determine the number of flip-flops required. A 3-bit counter requires three FFs. It has 8
states (000,001,010,011,101,110,111) and all the states are valid. Hence no don‘t cares. For
selecting up and down modes, a control or mode signal M is required. When the mode signal M=1
and counts down when M=0. The clock signal is applied to all the FFs simultaneously.

Step2: draw the state diagrams: the state diagram of the 3-bit up-down counter is drawn as

Step3: select the type of flip flop and draw the excitation table: JK flip-flops are selected and the
excitation table of a 3-bit up-down counter using JK flip-flops is drawn as shown in fig.

PS mode | NS required excitations

Q3 Q2 Q1 | M Q3 |Q2 |Q1 |J3 |K3 |J2 [K2 |J1 |K1
0 0 0 0 1 1 1 1 |x 1 |x 1 | X
0 0 0 1 0 0 1 0 |x 0 |x 1 |x
0 0 1 0 0 0 0 0 |x 0 |x X 1
0 0 1 1 0 1 0 0 |x 1 |x X 1
0 1 0 0 0 0 1 0 |x x |1 1 |x
0 1 0 1 0 1 1 0 |x X |0 1 |X
0 1 1 0 0 1 0 0 |x Xx |0 X 1
0 1 1 1 1 0 0 1 |X X |1 X |1
1 0 0 0 0 1 1 X |1 1 |x 1 |X
1 0 0 1 1 0 1 x |0 0 |x 1 |x
1 0 1 0 1 0 0 X |0 0 |x X |1
1 0 1 1 1 1 0 X |0 1 |x X |1
1 1 0 0 1 0 1 X |0 X |1 1 |[x
1 1 0 1 1 1 1 X |0 X |0 1 |[x
1 1 1 0 1 1 0 X 0 X 0 X 1
1 1 1 1 0 0 0 X 1 X 1 X 1

Step4: obtain the minimal expressions: From the excitation table we can conclude that J1=1 and
K1=1, because all the entries for Jland K1 are either X or 1. The K-maps for J3, K3,J2 and K2
based on the excitation table and the minimal expression obtained from them are shown in fig.

00 01 11 10

Q3Q2\ , | Q1M
1
[1]
X | x [[x
X | X |[X |[X

Step5: draw the logic diagram: a logic diagram using those minimal expressions can be drawn as
shown in fig.

I
HIGH o —
7, 7,

“o o
o

— e —= C

2o O
K(i k‘l
DOWN)
O, DOWN

Design of a synchronous modulo-6 gray cod counter:

Step 1: the number of flip-flops: we know that the counting sequence for a modulo-6 gray code
counter is 000, 001, 011, 010, 110, and 111. It requires n=3FFs (N<2", i.e., 6<2%). 3 FFs can have
8 states. So the remaining two states 101 and 100 are invalid. The entries for excitation

corresponding to invalid states are don‘t cares.
Step2: the state diagram: the state diagram of the mod-6 gray code converter is drawn as shown

in fig.
(0)—(oo)— CP
¥

|
@@

Step3: type of flip-flop and the excitation table: T flip-flops are selected and the excitation table
of the mod-6 gray code counter using T-flip-flops is written as shown in fig.

required

PS NS excitations
Q3102 |Q1 Q3 |Q2 |Q1L |T3 |T2 |T1
0 0 0 0 0 1 0 0 1
0 0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 0 1
0 1 0 1 1 0 1 0 0
1 1 0 1 1 1 0 0 1

1 1 1 0 0 0 1 1 1

Step4: The minimal expressions: the K-maps for excitations of FFs T3,T2,and T1 in terms of
outputs of FFs Q3,Q2, and Q1, their minimization and the minimal expressions for excitations
obtained from them are shown if fig

BC BC BC BC BC BC BC BC
oo o1 11 10 oo o1 11 10
Ao 1 1 > 1 A0 > > > >
o ! [s) = o Et [=) =
A 3 3 3 3¢ LN 1 1 3¢ 1
1 s 4 3 1 = 7 =
(@) Map for Jda (B) Map for K
da, = 1 K, = 1
B BC BC BC BC BC B BT
oo o1 11 10 oo o1 11 10
A o o o 3 3 A 0 3 3 b4 o
o -4 [= o - (=) =
A 1 o > > oA > > > 1
1 s 7 3 1 s 7 =
() Map for Jdg () Map for Kg
Ja = AC Ko = A
BC BC BC BC BC B BC B
oo o1 11 10 oo o 11 10
A o o 3 < o A o < o b 3
o A [=] = o 4 [=} =
A o 3 3 1 LN 3 1 < 3
1 s 4 3 1 = ra =
(=) Map for Jo (A Map for Ko
do = AB e — A

Step5: the logic diagram: the logic diagram based on those minimal expressions is drawn as shown
in fig.

Q301 3 [sETat]

Qz'ol ﬁ} - Q3’0201 ﬁ)
Qa3 —

Qzo1 > TL a1 +— T2 az

Qz2'a1 L FF1 FF2

LK CLK CLK
o1 |— (=% a3 |—

T3 [SE I
FF3

CLE

Design of a synchronous BCD Up-Down counter using FFs:

Stepl: the number of flip-flops: a BCD counter is a mod-10 counter has 10 states (0000 through
1001) and so it requires n=4FFs(N<2",, i.e., 10<2%). 4 FFS can have 16 states. So out of 16 states,
six states (1010 through 1111) are invalid. For selecting up and down mode, a control or mode
signal M is required. , it counts up when M=1 and counts down when M=0. The clock signal is
applied to all FFs.

Step2: the state diagram: The state diagram of the mod-10 up-down counter is drawn as shown
in fig.

Step3: types of flip-flops and excitation table: T flip-flops are selected and the excitation table of
the modulo-10 up down counter using T flip-flops is drawn as shown in fig.

The remaining minterms are don‘t cares(}.d(20,21,22,23,24,25,26,37,28,29,30,31)) from
the excitation table we can see that T1=1 and the expression for T4,T3,T2 are asfollows.
T4=>m(0,15,16,19)+d(20,21,22,23,24,25,26,27,28,29,30,31)
T3=Ym(7,15,16,8)+d(20,21,22,23,24,25,26,27,28,29,30,31)
T2=Ym(3,4,7,8,11,12,15,16)+d(20,21,22,23,24,25,26,27,28,29,30,31)

PS NS

3
o
ol
@D

required excitations
T4 |T3 T2 |T1

=
w
N
hhrd
=~
w
N
hhrd

PPPPOOO0OO0OO0O0 0000000 oo o0
O 0|0 OoR P PP PP RPRPOOOOOO O o0
O 00O P PP OOOoOoOIR PP P OOoOoO o0
P PO o R, FPOOoO R RFPOORRPOORRFP OO
HOI—‘OI—‘OI—‘OI—‘OI—‘OI—‘OI—‘OI—‘OI—‘OZ
O|R|P O O|0|0|0|0|0|0|0|0|0|0|0|O |00
O|0|O|P|O|RP|IFP PP PPOIFPOIO0OI0I0|0|I0|0 |0

O|0|0O|P|IOPIFPO|IFR OO IOIFRPIFPOIFPIOIOoO|IO0
O|O|P|POoO|IO|FRr PO |IO|FP PO |IO|IR P IOoO|OoIFk IO

P OIO|RP PO OO0 O0OO0O0O0O0O|0O|0|0|0|O|F

o|lo|lo|r| k| o|lojo|o|o|o|r || o|lolo|o|lo|o|o
o|lo|o|r|r|lololr|r|loo|lr|lrlololrrlololo
RiRrRrRPrRrRRRPRRRRIRRIR R R R R R R

Step4: The minimal expression: since there are 4 state variables and a mode signal, we require 5
variable kmaps. 20 conditions of Q4Q3Q2Q1M are valid and the remaining 12 combinations are
invalid. So the entries for excitations corresponding to those invalid combinations are don‘t cares.
Minimizing K-maps for T2 we get

T 2= Q4Q1‘M+Q4‘Q1M+Q2Q1‘M*+Q3Q1‘M*

Stepb: the logic diagram: the logic diagram based on the above equation is shown in fig.

a1
FF1

a1

FF3

a3’

Qu I ., .. w@zglwm . w@TotM
o 1 et = e S — o,
g 1M y __ — % . Qe Q1M —
Tty —F S |amiu— —_—
-.':-:J oL M < —_ -~ - 2 e . < —
o ! R Q30201M
— T ™ Q2 1+— LE] Qs —1 T4 Q4

Q4

CLEK,

Shift register counters:
One of the applications of shift register is that they can be arranged to form several types of

counters. The most widely used shift register counter is ring counter as well as the twisted ring
counter.

Ring counter: this is the simplest shift register counter. The basic ring counter using D flip- flops
is shown in fig. the realization of this counter using JK FFs. The Q output of each stage is connected
to the D flip-flop connected back to the ring counter.

D1

a1

FF1
ar L

D2
FF2

02

a2’

n3

FF3

Q3

03

D4
FF4

04

o4

CLK

FIGURE: logic diagram of 4-bit ring counter using D flip-flops

Only asingle 1 is in the register and is made to circulate around the register as long as clock pulses
are applied. Initially the first FF is present to a 1. So, the initial state is 1000, i.e., Q1=1,
Q2=0,Q3=0,Q4=0. After each clock pulse, the contents of the register are shifted to the right by
one bit and Q4 is shifted back to Q1. The sequence repeats after four clock pulses. The number

of distinct states in the ring counter, i.e., the mod of the ring counter is equal to number of FFs used
in the counter. An n-bit ring counter can count only n bits, where as n-bit ripple counter can count
2" bits. So, the ring counter is uneconomical compared to a ripple counter but has advantage of
requiring no decoder, since we can read the count by simply noting which FF is set. Since it is
entirely a synchronous operation and requires no gates external FFs, it has the further advantage
of being very fast.

Timing diagram:

State D 1 2 3 U
1 2 3 4 5
Shift -
FPulses
Qp,
1 0 0 0 1
Qg
0 1 0 0 0
Qe
0 0 1 0 0
Qp
0 0 0 1 0

e

Figure: state diagram

Twisted Ring counter (Johnson counter):

This counter is obtained from a serial-in, serial-out shift register by providing feedback
from the inverted output of the last FF to the D input of the first FF. the Q output of each is
connected to the D input of the next stage, but the Q° output of the last stage is connected to the D
input of the first stage, therefore, the name twisted ring counter. This feedback arrangement

produces a unique sequence of states.

The logic diagram of a 4-bit Johnson counter using D FF is shown in fig. the realization
of the same using J-K FFs is shown in fig.. The state diagram and the sequence table are shown in
figure. The timing diagram of a Johnson counter is shown infigure.

Let initially all the FFs be reset, i.e., the state of the counter be 0000. After each clock
pulse, the level of Q1 is shifted to Q2, the level of Q2to Q3, Q3 to Q4 and the level of Q4‘to Q1

and the sequences given in fig.

Shilft
Pulses

Reset

Figure: timing diagram

Qa Qp Gc Qg
Qa J Qa Qc J Qp[—*
CLK A —4~CLKE 4> CLK C —d4>CLK D
K ﬁ.ﬁ K ﬁa ﬁc K ﬁD
Figure: Johnson counter with JK flip-flops
1 2 3 4 7 8 2 3 4
Sae 1 2] [3] [4] [s 7| |8 10| [11] n2
Shift
Pulse I I 1 1 1 1 1 I | | 1
1 1 1 1 1 1 1 1 1
Qo1 1 1 0 0 11
| 1 1 T T I 1 1
| 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 | I
Qg 0o [1 1 1 0 0 1 1
I 1 1 1 I I |
1 1 1 1 1 1 1 1 1 1
1 1 1 I I 1 1 1
Qe 0 0 0|1 11 | 0 0 0 1
- 1 1 1 1 ! ! T I 1
1 | 1 1 1 | 1 |
1 1 1 1 1
Qp 0 0 0 |1 1 |0 0 0 r

State diagram:

after

clock
v @ i ulse

HOOOOHHHHO}O
[y
OCOO0ORRRLRRLROO
N
COoOORRRLRRLROOO
@
OOl—\I—‘I—‘l—‘OOOOIO
IS

O©oo~No ok~ whNhEFE O

Excitation table
Synthesis of sequential circuits:
The synchronous or clocked sequential circuits are represented by two models.

1. Moore circuit: in this model, the output depends only on the present state of the flip-
flops

2. Meelay circuit: in this model, the output depends on both present state of the flip-
flop. And the inputs.

Sequential circuits are also called finite state machines (FSMs). This name is due to the fast that
the functional behavior of these circuits can be represented using a finite number of states.

State diagram: the state diagram or state graph is a pictorial representation of the relationships
between the present state, the input, the next state, and the output of a sequential circuit. The state
diagram is a pictorial representation of the behavior of a sequential circuit.

The state represented by a circle also called the node or vertex and the transition between
states is indicated by directed lines connecting circle. a directed line connecting a circle with itself
indicates that the next state is the same as the present state. The binary number inside each circle
identifies the state represented by the circle. The direct lines are labeled with two binary numbers
separated by a symbol. The input value is applied during the present state is labeled after the
symbol.

| =5 W NS,O/P
TN N INPUT X
. ,;:/ PS X=0 X=1
6(3—33 l(=1 a a0 bo
0/0 o Yo P

: R‘l A b bl «¢0

i 0* B Q _2w & 1 C d,0 ¢l

R d do al

1/1 fl‘f_/

Fig :a) state diagram (meelay circuit) fig: b) state table

In case of moore circuit ,the directed lines are labeled with only one binary number representing
the input that causes the state transition. The output is indicated with in the circle below the present
state, because the output depends only on the present state and not on the input.

0

& NS
o F % 1 INPUT X
/”QN[\‘;’;—O PS X=0 X=1 O/P
1 (?(Fw () a a b 0
R b b c 0
—\\ e = ‘_,Z'
0 QJ) = C d C 1
% d a d 0
1
Fig: a) state diagram (moore circuit) fig:b) state table

Serial binary adder:

Stepl: word statement of the problem: the block diagram of a serial binary adder is shown in
fig. it is a synchronous circuit with two input terminals designated X1and X2 which carry the two
binary numbers to be added and one output terminal Z which represents the sum. The inputs and
outputs consist of fixed-length sequences Os and 1s.the output of the serial Z;at time tiis a function
of the inputs Xa(ti) and X>(ti) at that time ti.1 and of carry which had been generated at ti.

1. The carry which represent the past history of the serial adder may be a 0 or 1. The circuit has
two states. If one state indicates that carry from the previous addition is a 0, the other state indicates
that the carry from the previous additionisa 1

SERIALADDER |—

Y Y
FF —

Figure: block diagram of serial binary adder

Step2 and 3: state diagram and state table: let a designate the state of the serial adder at t;if a
carry 0 was generated at ti-1, and let b designate the state of the serial adder at t; if carry 1 was
generated at ti.1 the state of the adder at that time when the present inputs are applied is referred to
as the present state(PS) and the state to which the adder goes as a result of the new carry value is
referred to as next state(NS).

The behavior of serial adder may be described by the state diagram and state table.

PS NS ,O/P
00/0 11/0 01/0 X1 X2
A / > . o 0 1 1
01/1 (" A B, 10/0 o 1 0 1
10/ R i 11/1 A A0 BO Bl B0
; B Al BO B0 Bl

Figures: serial adder state diagram and state table

If the machine is in state B, i.e., carry from the previous addition is a 1, inputs X:=0 and X>=1
gives sum, 0 and carry 1. So the machine remains in state B and outputs a 0. Inputs X:=1 and X>=0
gives sum, 0 and carry 1. So the machine remains in state B and outputs a 0. Inputs X:=1 and X>=1
gives sum, 1 and carry 0. So the machine remains in state B and outputs a 1. Inputs X;1=0 and X>=0
gives sum, 1 and carry 0. So the machine goes to state A and outputs a 1. The state table also gives
the same information.

Setp4: reduced standard from state table: the machine is already in this form. So no need to do
anything

Stepb: state assignment and transition and output table:
The states, A=0 and B=1 have already been assigned. So, the transition and output table is as
shown.

PS NS Oo/P
0 O 1 1 0 0 1
o 1 0 1 0 1 0

STEPG6: choose type of FF and excitation table: to write table, select the memory element the
excitation table is as shown in fig.

PS I/P

w

I/P-FF O/P
D

X
[N
b
N

PP PP OOO0OOK
PP OOKRBEFL OO
PORLROFRORO
PRPPOPRPOOCO|IKZ
PR P OFRrOOO
PO ORORRERO|N

'MODULEYV
Sequential Logic Circuits — 11

Steps in the design process for sequential circuits
e State Diagrams and State Tables
e Examples

e Steps in Design of a Sequential Circuit
1 Specification — A description of the sequential circuit. Should include a detailing of the inputs,
the outputs, and the operation. Possibly assumes that you have knowledge of digital system basics.
2. Formulation: Generate a state diagram and/or a state table from the statement of the problem.
3. State Assignment: From a state table assign binary codes to the states.
4. Flip-flop Input Equation Generation: Select the type of flip-flop for the circuit and generate
the needed input for the required state transitions
5. Output Equation Generation: Derive output logic equations for generation of the output from
the inputs and current state.
6. Optimization: Optimize the input and output equations. Today, CAD systems are typically
used for this in real systems.
7. Technology Mapping: Generate a logic diagram of the circuit using ANDs, ORs, Inverters,
and F/Fs.
8. Verification: Use a HDL to verify thedesign.
Mealy and Moore
e Sequential machines are typically classified as either a Mealy machine or a Moore
machine implementation.
e Moore machine: The outputs of the circuit depend only upon the current state ofthe
circuit.
e Mealy machine: The outputs of the circuit depend upon both the current state ofthe
circuit and the inputs.

An example to go through the steps
The specification: The circuit will have one input, X, and one output, Z. The output Z will be 0
except when the input sequence 1101 are the last 4 inputs received on X. In that case it will be a
1
Generation of a state diagram

e Create states and meaning for them.
State A — the last input was a 0 and previous inputs unknown. Can also be the reset state.
State B — the last input was a 1 and the previous input was a 0. The start of a new sequence
possibly.

e Capture this in a state diagram

0/0

Capture this in a state diagram

Circles represent the states
Lines and arcs represent the transition between states.
The notation Input/output on the line or arc specifies the input that causes this transition
and the output for this change of state.
e Add a state C — Have detected the input sequence 11 which is the start of the sequence

0/0

Add a state D
State D — have detected the 3 input in the start of a sequence, a 0, now having
110. From State D, if the next input is a 1 the sequence has been detected and a 1
is output.

0/0

The previous diagram was incomplete.

In each state the next input could be a 0 or a 1. This must be included

e The state table

e This can be done directly from the state diagram

Next State Output
Prresent State | X =0 | X=1 X=0 | X=1]
A A B 0 0
B A C 0 0
C D C 0 0
D A B 0 1

e Now need to do a state assignment
Select a state assignment

e Will select a gray encoding
e For this state A will be encoded 00, state B 01, state C 11 and state D 10

Next State Output
Prresent State | X =0 | X=1 | X=0| X=I
00 00 01 0 0
0] 00 I 0 0
[10 [0 0
10 00 01 0 1
Flip-flop input equations
e Generate the equations for the flip-flop inputs
e Generate the Do equation
QuQ
(I) (j@; Do =QyQ + XQ

o Generate the D1 equation

QuQ:
X N\00 01 11 10

—_— D X
a7

The output equation
* The nextstep is to generate the equation for the output Z and what is needed to generate
o g-reate a K-map from the truth table.
QQ
X N00_0F 11 10
0 -
l] Z=XQQ

Now map to a circuit

e The circuit has 2 D type F/Fs

L

D SET Q
I > 0
CLR v
X SET
¢ D*aQ
> |
CLR a

O
Clk

Sequence detector:

Stepl: word statement of the problem: a sequence detector is a sequential machine which produces

an output 1 every time the desired sequence is detected and an output 0 at all other times
Suppose we want to design a sequence detector to detect the sequence 1010 and say that

overlapping is permitted i.e., for example, if the input sequence is 01101010 the corresponding

output sequence is 00000101.

Step2 and 3: state diagram and state table: the state diagram and the state table of the sequence
detector. At the time t1, the machine is assumed to be in the initial state designed arbitrarily as A.
while in this state, the machine can receive first bit input, eithera 0 o r a 1. If the input bit is 0, the
machine does not start the detection process because the first bit in the desired sequence isa
1. If the input bit is a 1 the detection process starts.

PS NS,Z

X=0 X=1
A A0 B,0
B C,0 B,0
C A0 D,0
D Cl B.0

Figure: state diagram and state table of sequence detector

So, the machine goes to state B and outputs a 0. While in state B, the machinery may receive 0 or
1 bit. If the bit is 0, the machine goes to the next state, say state ¢, because the previous two bits
are 10 which are a part of the valid sequence, and outputs O.. if the bit is a 1, the two bits become
11 and this not a part of the valid sequence

Step4: reduced standard form state table: the machine is already in this form. So no need to do
anything.
Step5: state assignment and transition and output table: there are four states therefore two states
variables are required. Two state variables can have a maximum of four states, so, all states are
utilized and thus there are no invalid states. Hence, there are no don‘t cares. Let a=00, B=01, C=10
and D=11 be the state assignment.

NS(Y1Y2) O/P(2)
PS(yly2 X=0 X=1 X=0 X=1
A=00 0 0 0 1 0 0
B=01 1 0 0 1 0 0
cs10 0 0 11 0 0
D=11 1 1 01 1 0

Step6: choose type of flip-flops and form the excitation table: select the D flip-flops as memory
elements and draw the excitation table.

INPUTS -

FFS Oo/P
D1
0

I/P

L)]
O
N

HHHHOOOO’~<'U
= Ww
PP OOREF OO
N
I—‘OI—‘OI—‘OI—‘O‘X
OHHOOHOO‘-<Z
PO P ORFRORF O|IL
N
Or P OoOORr O
PO P ORFRORrO
Or OO0 0O OoOoO|N

Step7: K-maps and minimal functions: based on the contents of the excitation table , draw the k-
map and simplify them to obtain the minimal expressions for D1 and D2 in terms of y1, y2 and X
as shown in fig. The expression for z (z=y1,y2) can be obtained directly from table

Step8: implementation: the logic diagram based on these minimal expressions

Finite State Machine:

Finite state machine can be defined as a type of machine whose past histories can affect its future
behavior in a finite number of ways. To clarify, consider for example of binary full adder. Its output
depends on the present input and the carry generated from the previous input. It may have a large
number of previous input histories but they can be divided into two types: (i) Input

The most general model of a sequential circuit has inputs, outputs and internal states. A
sequential circuit is referred to as a finite state machine (FSM). A finite state machine is abstract
model that describes the synchronous sequential machine. The fig. shows the block diagram of a
finite state model. X1, X2,....., Xy, are inputs. Zi, Z2,....,Zm are outputs. Y1,Y2,....Yk are state
variables, and Y1,Y2,....Ykrepresent the next state.

Clock pulse

l

Capabilities and limitations of finite-state machine

Let a finite state machine have n states. Let a long sequence of input be given to the machine. The
machine will progress starting from its beginning state to the next states according to the state
transitions. However, after some time the input string may be longer than n, the number of states.
As there are only n states in the machine, it must come to a state it was previously been in and from
this phase if the input remains the same the machine will function in a periodically repeating
fashion. From here a conclusion that _for a n state machine the output will become periodic after
a number of clock pulses less than equal to n can be drawn. States are memory elements. As for a
finite state machine the number of states is finite, so finite number of memory elements are required
to design a finite state machine.

Limitations:

1. Periodic sequence and limitations of finite states: with n-state machines, we can generate
periodic sequences of n states are smaller than n states. For example, in a 6-state machine,
we can have a maximum periodic sequence as 0,1,2,3,4,5,0,1....

2. No infinite sequence: consider an infinite sequence such that the output is 1 when and only
when the number of inputs received so far is equal to P(P+1)/2 for P=1,2,3.....i.e., the
desired input-output sequence has the following form:

Input: X

Output: 1 01 001 0000100001 00000 1

Such an infinite sequence cannot be produced by a finite state machine.

3. Limited memory: the finite state machine has a limited memory and due to limited memory
it cannot produce certain outputs. Consider a binary multiplier circuit for multiplying two
arbitrarily large binary numbers. The memory is not sufficient to store arbitrarily large
partial products resulted duringmultiplication.

Finite state machines are two types. They differ in the way the output is generate they are:

1. Mealy type model: in this model, the output is a function of the present state andthe
present input.

2. Moore type model: in this model, the output is a function of the present state only.

Mathematical representation of synchronous sequential machine:

The relation between the present state S(t), present input X(t), and next state s(t+1) can be
given as

S(t+1)= 1{S(t). X(1)}

The value of output Z(t) can be given as

Z(t)= g{S(t),X(t)} for mealy model

Z(t)= G{S(1)} for Moore model
Because, in a mealy machine, the output depends on the present state and input, where as in a
Moore machine, the output depends only on the present state.

Comparison between the Moore machine and mealy machine:

Moore machine mealy machine
1. its output is a function of present 1. its output is a function of present state
state only Z(t)= g{S(t)} as well as present input Z(t)=g{S(t),X(t)}
2. input changes do not affect the 2. input changes may affect the output of
output the circuit
3. it requires more number of states | 3. it requires less number of states for
for implementing same function implementing same function

Mealy model:

When the output of the sequential circuit depends on the both the present state of the flip-flops
and on the inputs, the sequential circuit is referred to as mealy circuit or mealy machine.
The fig. shows the logic diagram of the mealy model. Notice that the output depends up on the
present state as well as the present inputs. We can easily realize that changes in the input during
the clock pulse cannot affect the state of the flip-flop. They can affect the output of the circuit. If
the input variations are not synchronized with a clock, he derived output will also not be
synchronized with the clock and we get false output. The false outputs can be eliminated by
allowing input to change only at the active transition of the clock.

D_‘l:Df
Z
{>o

The behavior of a clocked sequential circuit can be described algebraically by means of state
equations. A state equation specifies the next state as a function of the present state and inputs.
The mealy model shown in fig. consists of two D flip-flops, an input x and an output z. since the
D input of a flip-flop determines the value of the next state, the state equations for the model can
be written as

Y1 (t+1)=y1(O)x(D)+y2()x(1)

Yo(t+1)= 1(t)x(t)

Fig: logic diagram of a mealy model

And the output equation is
Z(O)={ ya(t)+y2(t)} X(t)

Where y(t+1) is the next state of the flip-flop one clock edge later, x(t) is the present input, and
z(t) is the present output. If y1(t+1) are represented by y1(t) and y2(t) , in more compact form, the
equations are

Y1(t+1)=yl=ylx+y2x

Y2(t+1)=y2=y1‘x

Z=(yl+y2)x°

The stable table of the mealy model based on the above state equations and output equation is
shown in fig. the state diagram based on the state table is shown in fig.

[+1]1]
‘ ’ 1/0
PS NS o/P o o o
x=0 =1 x=0 =1
Y1 ¥z Yo Yz | ¥y Y2 z z
o] (o] o 4] 0 1 o v} 10 1/0
a 1 0 0 1 1 1 4]
1 L8]] 1] 1 1] 1 0
1 1 0 0 1 1] 1 a o o
(a) State table (b) State diagram

In general form, the mealy circuit can be represented with its block schematic as shown in below
fig.

* * o Output
- - .| Decoder
Inputs . Memory i —*
- NBII : : - Dutputg
. State : elements . :
» Decoder - N
- ¥ ——

rreyY ¥

Moore model: when the output of the sequential circuit depends up only on the present state of
the flip-flop, the sequential circuit is referred as to as the Moore circuit or the Moore machine.

Notice that the output depend only on the present state. It does not depend upon the input at all.
The input is used only to determine the inputs of flip-flops. It is not used to determine the output.
The circuit shown has two T flip-flops, one input x, and one output z. it can be described
algebraically by two input equations an output equation.

T1=y2X
To=x
Z=y1y»
! L— .
s 1 I~ ol I BDa
S
¥if— r Vo l——
clo

The characteristic equation of a T-flip-flop is
Q(t+1)=TQ+T*Q
The values for the next state can be derived from the state equations by substituting Trand Tz in
the characteristic equation yielding
Yi(t+1)=Yi=(y2x) 0 =(2)yl+(y2x) 1
=yl 2+ yl + 1y2x
=y2 (t+1)=x ICJE)y2= X 2+ y2

The state table of the Moore model based on the above state equations and output equation is
shown in fig.

PS NS o/F
=0 =1
¥ Y2 | Yy ¥i Yy Y z
0 0 0 0 0 1 0
0 1 o 1 1 0 0
1 0 1 0 1 1 0
1 1 1 1 0 0 1
(a) State table (b) State diagram

In general form , the Moore circuit can be represented with its block schematic as shown in
below fig.

.
— » N
. . Memory . Outputs
Inputs . : elements | - p
: Mext state . .
decoder - -
Figure: moore circuit model:
—_— s -
. > . . Memaory * 0 —
inpuds . Next + | elements| + decnder : Quiputa
slate . "
—* decoder > - .

Figure: moore circuit model with an output decoder

Important definitions and theorems:
A). Finite state machine-definitions:

Consider the state diagram of a finite state machine shown in fig. it is five-state machine with
one input variable and one output variable.

Successor: looking at the state diagram when present state is A and input is 1, the next state is D.
this condition is specified as D is the successor of A. similarly we can say that A is the 1 successor
of B, and C,D is the 11 successor of B and C, C is the 00 successor of A and D, D is the 000
successor of A,E, is the 10 successor of A or 0000 successor of A and soon.

Terminal state: looking at the state diagram , we observe that no such input sequence exists which
can take the sequential machine out of state E and thus state E is said to be a terminal state.

Strongly-connected machine: in sequential machines many times certain subsets of states may not
be reachable from other subsets of states. Even if the machine does not contain any terminal state.
If for every pair of states s;, sj, of a sequential machine there exists an input sequence which takes
the machine M from s; to sj, then the sequential machine is said to be strongly connected.

B). state equivalence and machine minimization:

In realizing the logic diagram from a stat table or state diagram many times we come across
redundant states. Redundant states are states whose functions can be accomplished by other states.
The elimination of redundant states reduces the total number of states of the machines which in
turn results in reduction of the number of flip-flops and logic gates, reducing the cost of the final
circuit.

Two states are said to be equivalent. When two states are equivalent, one of them can be removed
without altering the input output relationship.

State equivalence theorem: it states that two states si1, and sz are equivalent if for every possible
input sequence applied. The machine goes to the same next state and generates the same output.
That is

If S1(t+1)= so(t+1) and z1=2», then s1=s>

C). distinguishable states and distinguishing sequences:

Two states sa, and sy of a sequential machine are distinguishable, if and only if there exists at
least one finite input sequence which when applied to the sequential machine causes different
outputs sequences depending on weather sz or Sy is the initial state.

Consider states A and B in the state table, when input X=0, their outputs are 0 and 1 respectively
and therefore, states A and B are called 1-distinguishabke. Now consider states A and E . the output
sequence is as follows.

X=0 A C,0-and E D, 0 ; outpsits are the same

/
C—>E, 0 and D_, b,1; outputs are different

Here the outputs are different after 2-state transition and hence states A and E are 2- distungishable.
Again consider states A and C . the output sequence is as follows:
X=0 A= C,0 and C— E, 0; outputs are the same

4/

C_ E,0O and E_ D,0; outputs are the

same E D,0 -and D B,1 ; outputs are

different
Here the outputs are different after 3- transition and hence states A and B are 3-distuingshable. the
concept of K- distuingshable leads directly to the definition of K-equivalence. States that are not

K-distinguishable are said to be K-equivalent.

Truth table for Distunigshable states:

PS NS,Z

X=0 X=1
A C,0 F,0
B D,1 F,0
C E,0 B,0
D B,1 E,0
E D,0 B,0
F D.1 B.0

Merger Chart Methods:
Merger graphs:

The merger graph is a state reducing tool used to reduce states in the incompletely specified
machine. The merger graph is defined as follows.

1. Each state in the state table is represented by a vertex in the merger graph. So it contains
the same number of vertices as the state table contains states.

2. Each compatible state pair is indicated by an unbroken line draw between the two state
vertices

3. Every potentially compatible state pair with non-conflicting outputs but with different next
states is connected by a broken line. The implied states are written in theline break between
the two potentially compatible states.

4. If two states are incompatible no connecting line is drawn.

Consider a state table of an incompletely specified machine shown in fig. the corresponding
merger graph shown in fig.

State table:

PS NS,Z
11 12 13 14
A E1l B,1
B D,1 F,1
C F,1
D C1
E co .. A0 F1
F DO A1l B.0
A
A
B F
» B
E
L «*
- C
D
a) Merger graph b) simplified merger graph

States A and B have non-conflicting outputs, but the successor under input I,are compatible only
if implied states D and E are compatible. So, draw a broken line from A to B with DE written in
between states A and C are compatible because the next states and output entries of states A and
C are not conflicting. Therefore, a line is drawn between nodes A and C. states A and D have non-
conflicting outputs but the successor under input Iz are B and C. hence join A and D by a broken
line with BC entered In between.

Two states are said to be incompatible if no line is drawn between them. If implied states are
incompatible, they are crossed and the corresponding line is ignored. Like, implied states D and E
are incompatible, so states A and B are also incompatible. Next, it is necessary to check whether
the incompatibility of A and B does not invalidate any other broken line. Observe that states E and
F also become incompatible because the implied pair AB is incompatible. The broken lines which
remain in the graph after all the implied pairs have been verified to be compatible are regarded as
complete lines.

After checking all possibilities of incompatibility, the merger graph gives the following seven
compatible pairs.

(A,C)(A,D)(B,C)(B,D)(C,D)(B,E) (B, F)

These compatible pairs are further checked for further compatibility. For example, pairs
(B,C)(B,D)(C,D) are compatible. So (B, C, D) is also compatible. Also pairs (A,c)(A,D)(C,D) are
compatible. So (A,C,D) is also compatible. . In this way the entire set of compatibles of sequential
machine can be generated from its compatible pairs.

To find the minimal set of compatibles for state reduction, it is useful to find what are called the
maximal compatibles. A set of compatibles state pairs is said to be maximal, if it is not completely
covered by any other set of compatible state pairs. The maximum compatible can be found by
looking at the merger graph for polygons which are not contained within any higher order complete
polygons. For example only triangles (A, C,D) and (B,C,D) are of higher order. The set of maximal
compatibles for this sequential machine given as

(A, C,D)B,C,D)(B,E) (B, F)

Example:

Draw the merger graph and obtain the set of maximal compatibles for the
incompletely specified sequential machine whose state table is given in Table 7.24.

Table 7.24 Example 7.9: State table

PS - NS, Z

]I- Ii
A E, 0 B, 0
B F,0 A0
C E, - C,0
D F, 1 D, 0
E C, 1 C,0
F D, - B, 0

*

mark X in the corresponding cell. For example, states B and C are incompatible because their
outputs are conflicting and hence the cell corresponding to them contains a cross mark x. Similarly
states B, E; D, E; E, F are incompatible. Hence put a X mark in the corresponding cells. On the
other hand, states A and B are compatible and hence the cell corresponding to them contains the
check mark . Similarly, cells corresponding to states A, D; A \E; A, G; B, G; C,F; D, F ; D, G are
also compatible. So a check mark is put in those cells also. The implied pairs or pairs corresponding
to the state pair are written within the cell as shown in Table 7.26. For example, states A and C are
compatible only when implied states E and F are compatible. Therefore, EF is written in the cell
corresponding to states A and C. States C and E are compatible only when implied states A and B,
and D and F are compatible. So AB and DF are written in the cell corresponding to states C and E.
In a similar way, the entire merger table is written. Now it is necessary to check whether the
implied pairs are compatible or not by observing the merger table. The implied states are
incompatible if the corresponding cell contains a x. For example, implied pair E, F is incompatible
because cell EF contains a x. Similarly, implied pairs EF, AF are incompatible because EF contains
a x. Itis indicated by a x.

PS NS, Z
00 m 11 10
A E.0 - - -
B - E 1 E 1 Al
C F. 0 - A0 F, 1
D - - Al -
E - (o)} B,0 D, 1
F C,.0 C 1 - -
G E0 - - Al
Figure: state table
B| v
c|pE| x
D| v |AE| x
AB
E| /| % |pp| *
FICE|CF| + | v | %
Glv|v|¥|v|ao|ce

State Minimization:
Completely Specified Machines

e Two states, siand sjof machine M are distinguishable if and only if there exists a finite
input sequence which when applied to M causes different output sequences dependingon
whether M started in s; ors;.

e Such a sequence is called a distinguishing sequence for (si, Sj).

o If there exists a distinguishing sequence of length k for (s;, sj), they are said to be k-
distinguishable.

EXAMPLE:

11
=

e

X
D
D
E
E
F
C

 states A and B are 1-distinguishable, since a 1 input applied to A yields an output 1,
versus an output 0 from B.

+ states A and E are 3-distinguishable, since input sequence 111 applied to A yieldsoutput
100, versus an output 101 from E.

« States sjand s;j (si~ sj) are said to be equivalent iff no distinguishing sequence exists for
(si, Sj)-

« If si~sjand sj~ sk, then si~ sk. So state equivalence is an equivalence relation (i.e. it isa
reflexive, symmetric and transitive relation).

« An equivalence relation partitions the elements of a set into equivalence classes.

« Property: If sj~s;j, their corresponding X-successors, for all inputs X, are also equivalent.

« Procedure: Group states of M so that two states are in the same group iff they are
equivalent (forms a partition of the states).

Completely Specified Machines

Pi: partition using distinguishing sequences of length i.
Partition: Distinguishing Sequence:
Po=(ABCDEF)

P1=(ACE)BDF) x =1
P, =(ACE)(B D)(F) x=1:x=1
Ps = (AC)(E)(B D)(F) x=1; x =1; x =1

Ps= (A C)(E)(B D)(F)
Algorithm terminates when Py = Pk+1
Outline of state minimization procedure:

« All states equivalent to each other form an equivalence class. These may becombined
into one state in the reduced (quotient) machine.

« Start an initial partition of a single block. Iteratively refine this partition by separating
the 1-distinguishable states, 2-distinguishable states and so on.

« To obtain Py+1, for each block Bi of Py, create one block of states that not 1-
distinguishable within B;, and create different blocks states that are 1-distinguishable
within B;.

Theorem: The equivalence partition is unique.

Theorem: If two states, Siand Sj, Of machine M are distinguishable, then they are (n-1)-

distinguishable, where n is the number of states in M.

Definition: Two machines, M1 and My, are equivalent (M1~ M) if, for every state in Mz

there is a corresponding equivalent state in M2 and vice versa.

Theorem. For every machine M there is a minimum machine Mred ~ M. Mreq IS Unique up to
isomorphism.

Completely Specified Machines

* Reduced machine obtained from previous example:

NS, z

0000000

P4= (A C)(E)(B D)(F)
= Pyd

L IS MO A el X

State Minimization of CSMs: Complexity
Algorithm DFA ~ DFAmin
Input: A finite automaton M = (Q, 2, J, q o, F) with no unreachable states.
Output: A minimum finite automaton M‘ = (Q", 2., &, q ‘o, F).
Method:
1. t:=2; Qo:= { undefined }; Q1:=F; Q2:= Q\F.
2. while thereis0 <i<t,a € > with §Qi,a) < Qj, forall j <t
do (a) Choose such an i, a, and j <t with 6 (Qi,a) N Qj= <.
(b) Q+1:={q € Qi| 6(q.a) € Qj };
Qi:= Qi\ Qt+1;
t:=t+1.
end.
3. (* Denote [q] the equivalence class of state ¢ , and {Qi } the set of all equivalence
classes. *)
0" :={Q1, Q2 ..., Qt}.
q ‘0= [qo].
Fi={[dleQ'laeF}
o0’ ([ql,a):=[dq,a)] forallg e Q,a € 2.

Standard implementation: O (kn ?), where n =|Q| and k = ||

Modification of the body of the while loop:

1. Choose such an i, a € 2, and choose j1,j» <t with ji#]2, 0(Qi,a) N Qi I, and &
(Qi,a) N Q2= <.

2.1f{q € Qi| Aa,a) € Qu} <Ka € Qi| &a.a) € Qj2}|

then Qi+1:={q € Qi| &g,a) € Qi1 }
else Qi+1:={q € Qi| &q,a) € Q2 }fl;
Qi = Qi\ Qt+1;
t:=t+1.
(i.e. put smallest setint +1)
Note: |Qt+1| < 1/2|Qi|. Therefore, for all g € Q, the name of the class which contains a given
state g changes at most log(n) times.
Goal: Develop an implementation such that all computations can be assigned to transitions
containing a state for which the name of the corresponding class is changed.
Suitable data structures achieve an O (kn log n) implementation.
State Minimization:
Incompletely Specified Machines
Statement of the problem: given an incompletely specified machine M, find a machine M’
such that:
— on any input sequence, M’ produces the same outputs as M, whenever M is
specified.
— there does not exist a machine M’ with fewer states than M~ which has the same

property

Machine M:

5
x=0 x=1
sl

Attempt to reduce this case to usual state minimization of completely specified machines.

¢ Brute Force Method: Force the don‘t cares to all their possible values and choosethe
smallest of the completely specified machines soobtained.

¢ In this example, it means to state minimize two completely specified machines obtained
from M, by setting the don‘t care to either 0 and 1.

Suppose that the - is set to be a 0.
PS NS, z
x=0 x=1
sl

52
3

e States s1 and s2 are equivalent if s3 and s2 are equivalent, but s3 and s2 assertdifferent
outputs under input 0, so s1 and s2 are not equivalent.
e States s1 and s3 are not equivalent either.

e So this completely specified machine cannot be reduced further (3 states isthe
minimum).

Suppose that the - is set to be a 1.
PS NS, z
x=0 x=1

sl
s2
%

e States sl is incompatible with both s2 and s3.
e States s3 and s2 are equivalent.
e So number of states is reduced from 3 to 2.

Machine M’ :

Can this always be done?
Machine M:

x=1

s2,0
51,0
s2,0

53 0 52 0
52 52, 51,0
s3 sl 1 2,0

Machine M;:

x=0 x=1

53,0 2,0
52 s2, s1,0
53 51,1 52,0

Machine Mz and Mz are formed by filling in the unspecified entry in M with 0 and 1,
respectively.

Both machines Mz and M3 cannot be reduced.

Conclusion?: M cannot be minimized further!

But is it a correct conclusion?

Note: that we want to _merge‘ two states when, for any input sequence, they generate the same
output sequence, but only where both outputs are specified.

Definition: A set of states is compatible if they agree on the outputs where they are all specified.

x=0 x=1
sl

Machine M”’ :

s2
=3

In this case we have two compatible sets: A = (s1, s2) and B = (s3, s2). A reduced machine Mreq
can be built as follows.
Machine Myeg

A set of compatibles that cover all states is: (s3s6), (s4s6), (51s6), (54s5), (52s5).
But (s3s6) requires (s4s6),

(s4s6) requires(s4sbs), (s4s5) requires (s1s5),

(s1s6) requires (s1s2), (s1s2) requires (s3s6),

(s2s5) requires (s1s2).
So, this selection of compatibles requires too many other compatibles...

Another set of compatibles that covers all states is (s152s5), (s3s6), (s4s5).
But (s1s2s5) requires (s3s6) (s3s6) requires (s4s6)

(s4s6) requires (s4s5) (s4s5) requires (s1s5).

So must select also (s4s6) and (s1s5).

Selection of minimum set is a binate covering problem

When a next state is unspecified, the future behavior of the machine is unpredictable. This
suggests the definition of admissible input sequence.
Definition. An input sequence is admissible, for a starting state of a machine if no unspecified
next state is encountered, except possibly at the final step.
Definition. State s; of machine Mz is said to cover, or contain, state sj of M provided

1. every input sequence admissible to s;is also admissible to si, and

2. its application to both M1and Ma (initially is sjand s;, respectively) resultsin

identical output sequences whenever the outputs of M are specified.

Definition. Machine Mz is said to cover machine M if for every state sjin My, there is a
corresponding state siin M1 such that s; covers s;.

Algorithmic State Machines:

e The binary information stored in the digital system can be classified as either data or
control information.

e The data information is manipulated by performing arithmetic, logic, shift and other data
processing tasks.

e The control information provides the command signals that controls the various
operations on the data in order to accomplish the desired data processing task.

e Design a digital system we have to design two subsystems data path subsystem and
control subsystem.

External —» Input data ——» - » Output data
inputs Control

logic Datapath

Commands

Status conditions

Interaction between control logic and datapath.

ASM CHART:

e A special flow chart that has been developed specifically to define digital hardware
algorithms is called ASM chart.
¢ A hardware algorithm is a step by step procedure to implement the desire task.

Difference b/n conventional flow chart and ASM chart:

e conventional flow chart describes the sequence of procedural steps and decision paths for
an algorithm without concern for their time relationship

® An ASM chart describes the sequence of events as well as the timing relationship b/n the
states of sequential controller and the events that occur while going from one state to the
next

1. State box: A state of a clocked sequential circuit is represented by a rectangle called stare
box. It is equivalent to a node in the state diagram or a row in the state table. The name of the state

is written to the left of the box. The binary code assigned to the state is indicated outside on the top
right-side of the box. A list of unconditional outputs if any associated with the state are written
within the box. L L

2, Decision box: The decision box or condition box is represented by a diamond-shaped symbol
with one input and two or more output paths. The output branches are true and false branches. The
decision box describes the effect of an input on the control subsystem. A Boolean variable or input
or expression written inside the diamond indicates a condition which is evaluated to determine

which branch to take.

ASM consists of
1. State box
2. Decision box
3. Conditional box

State box
State entry State entry
l YY «— State code l 011
Register operation
State name— S or output A &=
State exit State exit
(a) General description (b) Specific example
Decision box
Entry Entry
(False) 0 Input 1 (True) (False) 0 1 (True)

condition
X

Exit path 1 Exit path 2 Exit path 1 Exit path 2
(a) General description (b) Specific example

Decision box.

3. Conditional output box: The conditional output box is represented by a rectangle with rounded
corners or by an oval with one input line and one output line. The outputs that depend on both the
state of the system and the inputs are indicated inside the box.

Entry

|

List of
conditional outputs

|

Exit

Conditional output box.
SALIENT FEATURES OF ASM CHARTS

1. An ASM chart describes the sequence of events as well as the timing relationship between
the states of a sequential controller and the events that occur while going from one state
to the next.

2. An ASM chart contains one or more interconnected ASM blocks.

3. Each ASM block contains exactly one state box together with the decision boxes and
conditional output boxes associated with that state.

4. Every block in an ASM chart specifies the operations that are to be performed during one
common clock pulse.

5. An ASM block has exactly one entrance path and one or more exit paths represented by
the structure of the decision boxes.

6. A path through an ASM block from entrance to exit is referred to as a link path.

7. The operations specified within the state and conditional output boxes in the block are
performed in the datapath subsystem.

8. Internal feedback within an ASM block is not permitted. Even so, following a decision
box or conditional output boxes, the machine may reenter the same state.

9. Each block in the ASM chart describes the state of the system during one clock pulse
interval. When a digital system enters the state associated with a given ASM block, the
outputs indicated within the state box become true. The conditions associated with the
decision boxes are evaluated to determine which path or paths to be followed to enter the
next ASM block.

(a) Siato diagram
State diagram and ASI char for mod-6 counter

BINARY MULTIPLIER
1101

1010

0000
1101
0000
1101

10000010

S i e T

(b) ASAM charr

13, ... Multiplicand
10, ... Multiplier

Partial product 1
Partial product 2
Partial product 3
Partial product 4

l30"J ... Product

Data path subsystem for binary multiplier

Muiltiplicand
| Boct [8o |- [8 [8] 30 ot
o n bit bus 1
z
v A

Add
4| n-bit adder |" """""" i ’:;ﬁ:f

I
'
n i
]
i
Shift right |
,/ -------------- -'----”----------------------------:
L7 y 4 s
I-c | lAn~| An-z _-"'-_"l A' I AO I Qn»l On-z ‘‘‘‘‘‘‘‘ | Q! I QO
1-bit Multiplier
register

Datapath subsystem for binary multiplier.

Multiplication Operation Steps
1. Bit 0 of multiplier operand (Qo of Q register) is checked.

2. If bit 0 (Qg) is one then multiplicand and partial product are added and all bits
of C, A and Q registers are shifted to the right one bit, so that the C bit goes
into An-1, Ap goes into Q,-1, and Qypis lost. If bit 0 (Qgp) is 0, then no
addition is performed, only shift operation is carried out.

3. Steps 1 and 2 are repeated n times to get the desired result in the A and Q

registers.

. A ————— O
B ——— Multiplicand
— MNMultiplier
Tount —~——

[A =— A 5]

Shift right €. A and O
Count —-— Coumnt — 1

B C A Q Components Count P
101 0 0000 1010 B «— Multiplicand
Q «— Multiplier 100 (&)
A—0,C<«—0O,Pe—n
101 0 0000 1010 Pe—P-1
Q,=0 011 (3)
O 0000 0101 C A Q shifted right
101 0 1 101 0101 Pe—P-1
Q,=1.A<— A+ B 010 (2)
0110 1010 C A Q shifted right
101 O 0110 1010 Pe—P-1
Q,=0, 001 (1)
0 0011 0101 C A Q shifted right
101 1 0000 0101 Pe—P-1
Q,=1. A« A+ B 000 (0)
O 1000 0010 C A Q shifted right
Flow chart for multiplication in a computer.
i | + OO State O
Sol Initial state
o
L O1 State 1
A =— O
s, C -—— O
P
3 l, 10 State 2

[A=—A+B.C=— cC_.|

l 11 State 3

s, | éhiﬂ right cAaQ |

2

o

1

ASM FOR WEIGHING MACHINE

ASM chart for a binary multiplier.

In the algorithm for tabular minimization of Boolean expressions, we have to arrange the minterms
in the ascending order of their weights. This is only one of the many situations when we have to
examine the Is of a given binary word. The weight of a binary number is defined as the number of
Is present in its binary representation.

Input data
Clk
Shift right
Serial input = 0 ——— 1 Right shift register R D Q
Load input Flip-flop

| Zero checking circuit 0]

I Z=1HR=0

Start
el el
To S
T,
T2 | 3
m— T:!

All 1s

Count
Datapath subsystemn for weighing machine.

(ol
So Initial State

o

- 10
szl Shift right into F l

4 11
ss| |

F
1
ASM chart for weighing machine.

State S,; Initially the weighing machine is in state S . The weighing process starts when start (S)
signal becomes 1. While in state S, if S is 1, the clock pulse causes three jobs to be done
simultaneously:

1. Binary number is loaded into register R.
2. W register is set to all 1s.
3. The machine is transferred to state S .

State §,- While in state S, the clock pulse causes two jobs to be done simultancously:
1. Counter W is incremented by 1(in the first round. all 1s become all Os).

2. If Z 1s 0, the machine goes to the state S,: if Z is 1. the machine goes to state S

State S,: In this state, register R is shifted right by 1 bit so that LSB goes into F and MSB is
loaded with 0.

State 8,: In this state, the value of F is checked. If it is 0, the machine is transferred 0 the

state S,, otherwise the machine is transferred to state 5,. Thus, when F = 1, W is incremented.
All the operations occur in coincidence with the clock pulse while in the corresponding state.

Also notice that the register R should eventually contain all Os when the last 1 is shifted into it

11
w((8) (31w
0/0
(a) State diagram
PS NS, O/P
Input D
D=0 D=1
A A, 0 B, 1
B A, O B, 1

(b) State table

101 111

00/0 ‘ 00/1
01/0 10/1

(a) State diagram

PS NS, O/P \K/

Input J-K
00 01 10 1
A ADO A,0 B, 1 B, 1
B B, 1 A, 0 B,1 A0

(b) State table (c) ASM chart

1

