






Linked List In JAVA 

IT Dept Page 1 

UNIT-I 

Data structures in Java 

Collection framework provides interfaces and class implementations that enable data handling 

easy and meaningful. Using collections one can store, retrieve and manipulate the data very 

effectively and easily. 

Before we start lets first discuss the Architecture of Collection framework and hierarchy of 

Classes and Interfaces. 

Collection Interface 

The Collection Interface resides at the top of the Hierarchy, although Java does not 

provides a direct implementation of Collection framework but Collection Interface is being 

implemented by List and Set Classes. 

Data Structure: 

A data structure is a specialized format for organizing and storing data. General data structure 

types include the array, the file, the record, the table, the tree, and so on. Any data structure is 

designed to organize data to suit a specific purpose so that it can be accessed and worked with in 

appropriate ways. 

Linked List: 

A linked list is a data structure used for collecting a sequence of objects that allows efficient 

addition and removal of elements in the middle of the sequence. 

The Structure of Linked Lists: 

To understand the inefficiency of arrays and the need for a more 

efficient data structure, imagine a program that maintains a 

sequence of employee names. If an employee leaves the company, 

the name must be removed. In an array, the hole in the sequence 

needs to be closed up by moving all objects that come after it. 

www.Jntufastupdates.com 1



Linked List In JAVA 

IT Dept Page 2 

Conversely, suppose an employee is added in the middle of the sequence. Then all names 

following the new hire must be moved toward the end. Moving a large number of elements can 

involve a substantial amount of processing time.  

A linked list structure avoids this movement. A linked list uses a sequence of nodes. A node is an 

object that stores an element and references to the neighboring nodes in the sequence.  

A linked list consists of a number of nodes, each of which has a reference to the next node. 

Figure: A Linked List Tom Diana Harry 

When you insert a new node into a linked list, only the neighboring node references need to be 

updated. 

Figure: Inserting a Node into a Linked List 

The same is true when you remove a node. What’s the catch? Linked lists allow efficient 

insertion and removal, but element access can be inefficient.  

Figure: Removing a Node from a Linked List 

For example, suppose you want to locate the fifth element. You must first traverse the 

first four. This is a problem if you need to access the elements in arbitrary order. The term 

“random access” is used in computer science to describe an access pattern in which elements are 

accessed in arbitrary (not necessarily random) order.  

In contrast, sequential access visits the elements in sequence. Of course, if you mostly 

visit all elements in sequence (for example, to display or print the elements), the inefficiency of 

random access is not a problem. You use linked lists when you are concerned about the 

efficiency of inserting or removing elements and you rarely need element access in random 

order. 

 The Java library provides a LinkedList class in the java.util package. It is a generic class,

just like the ArrayList class. That is, you specify the type of the list elements in angle

brackets, such as LinkedList<String> or LinkedList<Employee>.

www.Jntufastupdates.com 2



Linked List In JAVA 

IT Dept Page 3 

 The below Table shows important methods of the LinkedList class. As you can see from

Table, there are methods for accessing the beginning and the end of the list directly.

However, to visit the other elements, you need a list iterator.

Working with Linked Lists 
LinkedList<String> list = new LinkedList<String>(); An empty list. 

list.addLast(“Harry”); Adds an element to the end of the list. Same as add. 

list.addFirst(“Sally”); 
Adds an element to the beginning of the list. list is 

now [Sally, Harry]. 

list.getFirst(); 
Gets the element stored at the beginning of the list; 

here “Sally”. 

list.getLast(); 
Gets the element stored at the end of the list; here 

“Harry”. 

String removed = list.removeFirst(); 

Removes the first element of the list and returns it. 

removed is “Sally” and list is [Harry]. Use 

removeLast to remove the last element. 

List Iterator: 

An iterator encapsulates a position anywhere inside the linked list. Conceptually, you 

should think of the iterator as pointing between two elements, just as the cursor in a word 

processor points between two characters. In the conceptual view, think of each element as being 

like a letter in a word processor, and think of the iterator as being like the blinking cursor 

between letters. 

You obtain a list iterator with the listIterator method of the LinkedList class: 

LinkedList<String> employeeNames = . . .; 

ListIterator<String> iterator = employeeNames.listIterator(); 

Note that the iterator class is also a generic type. A ListIterator<String> iterates through a list of 

strings; a ListIterator<Book> visits the elements in a LinkedList<Book>. Initially, the iterator 

points before the first element.  

You can move the iterator position with the next method: iterator.next(); 

The next method throws a NoSuchElementException if you are already past the end of the list. 

You should always call the iterator’s hasNext method before calling next—it returns true if there 

is a next element. 

if (iterator.hasNext()) 

{ 

   iterator.next(); 

} 

www.Jntufastupdates.com 3



Linked List In JAVA 

IT Dept Page 4 

The next method returns the element that the iterator is passing. When you use a 

ListIterator<String>, the return type of the next method is String. In general, the return type of 

the next method matches the list iterator’s type parameter. 

You traverse all elements in a linked list of strings with the following loop: 

while (iterator.hasNext()) 

{ 

  String name = iterator.next(); 

} 

Methods of the Iterator and ListIterator Interfaces 

ListIterator<String> iter = list.listIterator() Provides an iterator for visiting all list elements. 

String s = iter.next(); 

Assume that iter points to the beginning of the list 

[Sally] before calling next.  

After the call, s is “Sally” and the iterator points to 

the end. 

iter.previous(); 

iter.set(“Juliet”); 

The set method updates the last element returned by 

next or previous.  

The list is now [Juliet]. 

iter.hasNext() 
Returns false because the iterator is at the end of the 

collection. 

if (iter.hasPrevious()) 

{ 

s = iter.previous(); 

} 

hasPrevious returns true because the iterator is not 

at the beginning of the list. previous and 

hasPrevious are ListIterator methods. 

iter.add(“Diana”); 

Adds an element before the iterator position 

(ListIterator only). 

The list is now [Diana, Juliet]. 

iter.next(); 

iter.remove(); 

remove removes the last element returned by next or 

previous.  

The list is now [Diana]. 

Figure: A Conceptual View of the List Iterator 

www.Jntufastupdates.com 4



Linked List In JAVA 

IT Dept Page 5 

Example: 

import java.util.LinkedList; 

import java.util.ListIterator; 

 /** This program demonstrates the LinkedList class.  */ 

public class ListDemo 

{ 

 public static void main(String[] args) 

 { 

 LinkedList<String> staff = new LinkedList<String>(); 

 staff.add("Diana"); 

     staff.add("Harry"); 

     staff.add("Romeo"); 

     staff.add("Tom"); 

 System.out.println("Elements are: "+staff); 

     // | in the comments indicates the iterator position 

 ListIterator<String> iterator = staff.listIterator(); // |DHRT 

     iterator.next(); // D|HRT 

 iterator.next(); // DH|RT 

 // Add more elements after second element 

 iterator.add("Juliet"); // DHJ|RT 

 iterator.add("Nina"); // DHJN|RT 

 iterator.next(); // DHJNR|T 

 // Remove last traversed element 

 iterator.remove(); // DHJN|T 

 // Print all elements 

     System.out.println("After Modifications Elements are: "+staff); 

 } 

 } 

Output: 

Elements are: [Diana, Harry, Romeo, Tom] 

After Modifications Elements are: [Diana, Harry, Juliet, Nina, Tom] 

Stack: 

 A stack lets you insert and remove elements only at one end, traditionally called the top of

the stack.

 New items can be added to the top of the stack. Items are removed from the top of the stack

as well.

 Therefore, they are removed in the order that is opposite from the order in which they have

been added, called last-in, first-out or LIFO order.

www.Jntufastupdates.com 5



Linked List In JAVA 

IT Dept Page 6 

     For example, if you add items A, B, and C and then remove them, you obtain C, B, and A. 

With stacks, the addition and removal operations are called push and pop. 

Stack<String> s = new Stack<String>(); 

s.push("A"); s.push("B"); s.push("C");

while (s.size() > 0)

{

System.out.print(s.pop() + " "); // Prints C B A

}

 There are many applications for stacks in computer science. Consider the undo feature of a

word processor. When you select “Undo”, the last command is undone, then the next-to-last,

and so on.

 Another important example is the run-time stack that a processor or virtual machine keeps

to store the values of variables in nested methods. Whenever a new method is called, its

parameter variables and local variables are pushed onto a stack. When the method exits, they

are popped off again.

 The Java library provides a simple Stack class with methods push, pop, and peek, the latter

gets the top element of the stack but does not remove it.

Working with Stacks 

Stack<Integer> s = new Stack<Integer>(); Constructs an empty stack. 

s.push(1);

s.push(2);

s.push(3);

Adds to the top of the stack; s is now [1, 2, 3]. 

(Following the toString method of the Stack 

class, we show the top of the stack at the end.) 

int top = s.pop(); Removes the top of the stack; top is set to 3 and s is 

now [1, 2]. 

head = s.peek(); Gets the top of the stack without removing it; 

Head is set to 2; 

Example: 
import java.util.Stack; 

public class StackDemo 

{ 

 public static void main(String[] args) 

 { 

       Stack<String> s = new Stack<String>(); 

s.push("Phani"); s.push("Srikanth"); s.push("Srinu");

System.out.println("Elements are: "+s);

s.pop();

System.out.println(“After pop Elements are: ”);

while (s.size() > 0)

{

System.out.print(s.pop() + " "); 

 } 

     } 

} 

www.Jntufastupdates.com 6



Linked List In JAVA 

IT Dept Page 7 

Output: 

Elements are: [Phani, Srikanth, Srinu] 

After pop Elements are: Srikanth Phani 

Queue: 

A queue lets you add items to one end of the queue (the tail) and remove them from the 

other end of the queue (the head). 

 Queues yield items in a first-in, first-out or FIFO fashion.

 Items are removed in the same order in which they were added.

A typical application is a print queue. A printer may be accessed by several applications, 

perhaps running on different computers. If each of the applications tried to access the printer at 

the same time, the printout would be garbled. Instead, each application places its print data into 

a file and adds that file to the print queue. 

When the printer is done printing one file, it retrieves the next one from the queue. 

Therefore, print jobs are printed using the “first-in, first-out” rule, which is a fair arrangement for 

users of the shared printer. 

 The Queue interface in the standard Java library has methods add to add an element to the

tail of the queue, remove to remove the head of the queue, and peek to get the head element

of the queue without removing it.

Working with Queues 

Queue<Integer> q = new LinkedList<Integer>(); The LinkedList class implements the Queue interface. 

q.add(1);

q.add(2);

q.add(3);

Adds to the tail of the queue; q is now [1, 2, 3]. 

int head = q.remove(); Removes the head of the queue; head is set to 1 and q 

is [2, 3]. 

head = q.peek(); Gets the head of the queue without removing it; head 

is set to 2. 

 The LinkedList class implements the Queue interface. Whenever you need a queue, simply

initialize a Queue variable with a LinkedList object:

Queue<String> q = new LinkedList<String>(); 

q.add("A"); q.add("B"); q.add("C");

while (q.size() > 0)

{

 System.out.print(q.remove() + " ");   // Prints A B C 

} 

Set: 

 The Set interface in the standard Java library has the same methods as the Collection

interface.

 There is an essential difference between arbitrary collections and sets.

www.Jntufastupdates.com 7



Linked List In JAVA 

IT Dept Page 8 

 A set does not admit duplicates. If you add an element to a set that is already present, the

insertion is ignored.

 The Java platform contains three general-purpose Set implementations: HashSet, TreeSet,

and LinkedHashSet.

 HashSet: which stores its elements in a hash table, is the best-performing implementation;

however it makes no guarantees concerning the order of iteration.

 TreeSet: which stores its elements in a red-black tree, orders its elements based on

ascending order, it is substantially slower than HashSet.

 LinkedHashSet: which is implemented as a hash table with a linked list running through it,

orders its elements based on the order in which they were inserted into the set (insertion-

order).

The methods declared by Set are summarized in the following table: 

SN Methods with Description 

1 add( ) 

Adds an object to the collection 

2 clear( ) 

Removes all objects from the collection 

3 contains( ) 

Returns true if a specified object is an element within the collection 

4 isEmpty( ) 

Returns true if the collection has no elements 

5 iterator( ) 

Returns an Iterator object for the collection which may be used to retrieve an object 

6 remove( ) 

Removes a specified object from the collection 

7 size( ) 

Returns the number of elements in the collection 

Example: 

Set have its implementation in various classes like HashSet, TreeSet, LinkedHashSet. 

Following is the example to explain Set functionality: 

www.Jntufastupdates.com 8

https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashSet.html


Linked List In JAVA 

IT Dept Page 9 

import java.util.*; 

public class SetDemo { 

  public static void main(String args[]) { 

     int count[] = {34, 22,10,60,30,22}; 

     Set<Integer> set = new HashSet<Integer>(); 

     try{ 

        for(int i = 0; i<5; i++){ 

set.add(count[i]); 

        } 

        System.out.println(set); 

        TreeSet sortedSet = new TreeSet<Integer>(set); 

        System.out.println("The sorted list is:"); 

        System.out.println(sortedSet); 

        System.out.println("The First element of the set is: "+ (Integer)sortedSet.first()); 

        System.out.println("The last element of the set is: "+ (Integer)sortedSet.last()); 

     } 

     catch(Exception e){} 

  } 

} 

This would produce the following result: 

[amrood]$ java SetDemo 

[34, 30, 60, 10, 22] 

The sorted list is: 

[10, 22, 30, 34, 60] 

The First element of the set is: 10 

The last element of the set is: 60 

Map Interface: 

The Map interface maps unique keys to values. A key is an object that you use to retrieve a 

value at a later date. 

 Given a key and a value, you can store the value in a Map object. After the value is

stored, you can retrieve it by using its key.

 Several methods throw a NoSuchElementException when no items exist in the

invoking map.

 A ClassCastException is thrown when an object is incompatible with the elements in a

map.

 A NullPointerException is thrown if an attempt is made to use a null object and null is

not allowed in the map.

www.Jntufastupdates.com 9



Linked List In JAVA 

IT Dept Page 10 

 An UnsupportedOperationException is thrown when an attempt is made to change an

unmodifiable map.

SN Methods with Description 

1 void clear( ) 

Removes all key/value pairs from the invoking map. 

2 boolean containsKey(Object k) 

Returns true if the invoking map contains k as a key. Otherwise, returns false. 

3 boolean containsValue(Object v) 

Returns true if the map contains v as a value. Otherwise, returns false 

4 Set entrySet( ) 

Returns a Set that contains the entries in the map. The set contains objects of type 

Map.Entry. This method provides a set-view of the invoking map. 

5 boolean equals(Object obj) 

Returns true if obj is a Map and contains the same entries. Otherwise, returns false. 

6 Object get(Object k) 

Returns the value associated with the key k. 

7 int hashCode( ) 

Returns the hash code for the invoking map. 

8 boolean isEmpty( ) 

Returns true if the invoking map is empty. Otherwise, returns false. 

9 Set keySet( ) 

Returns a Set that contains the keys in the invoking map. This method provides a set-

view of the keys in the invoking map. 

10 Object put(Object k, Object v) 

Puts an entry in the invoking map, overwriting any previous value associated with the 

key. The key and value are k and v, respectively. Returns null if the key did not already 

exist. Otherwise, the previous value linked to the key is returned. 

11 void putAll(Map m) 

Puts all the entries from m into this map. 

www.Jntufastupdates.com 10



Linked List In JAVA 

IT Dept Page 11 

12 Object remove(Object k) 

Removes the entry whose key equals k. 

13 int size( ) 

Returns the number of key/value pairs in the map. 

14 Collection values( ) 

Returns a collection containing the values in the map. This method provides a collection-

view of the values in the map. 

Example: 

Map has its implementation in various classes like HashMap. Following is the example to 

explain map functionality: 

import java.util.*; 

public class CollectionsDemo { 

   public static void main(String[] args) { 

      Map<String,Integer> m1 = new HashMap<String,Integer > (); 

      m1.put("Zara", "8"); 

      m1.put("Mahnaz", "31"); 

      m1.put("Ayan", "12"); 

      m1.put("Daisy", "14"); 

      System.out.println(); 

      System.out.println(" Map Elements"); 

      System.out.print("\t" + m1); 

   } 

} 

This would produce the following result: 

Map Elements 

        {Mahnaz=31, Ayan=12, Daisy=14, Zara=8} 

Generics: 

Generics was added in Java 5 to provide compile-time type checking and removing risk 

of ClassCastException that was common while working with collection classes. The whole 

collection framework was re-written to use generics for type-safety. Let’s see how generics help 

us using collection classes safely. 

List list = new ArrayList(); 

list.add("abc"); 

list.add(new Integer(5)); //OK 

String str=(String) list.get(0);   //type casting leading to ClassCastException at runtime 

String str=(String) list.get(1); 

www.Jntufastupdates.com 11



Linked List In JAVA 

IT Dept Page 12 

Above code compiles fine but throws ClassCastException at runtime because we are 

trying to cast Object in the list to String whereas one of the element is of type Integer. After Java 

5, we use collection classes like below. 

List<String> list1 = new ArrayList<String>(); // java 7 ? List<String> list1 = new ArrayList<>(); 

list1.add("abc"); 

//list1.add(new Integer(5)); //compiler error 

for(String str : list1){ 

     //no type casting needed, avoids ClassCastException 

} 

Notice that at the time of list creation, we have specified that the type of elements in the 

list will be String. So if we try to add any other type of object in the list, the program will throw 

compile time error. Also notice that in for loop, we don’t need type casting of the element in 

the list, hence removing the ClassCastException at runtime. 

Generic Class: 

We can define our own classes with generics type. A generic type is a class or interface that is 

parameterized over types. We use angle brackets (< >) to specify the type parameter. 

To understand the benefit, let’s see we have a simple class as: 

public class GenericsTypeOld 

{ 

private Object t; 

public Object get() 

{ 

return t; 

} 

public void set(Object t) 

{ 

this.t = t; 

} 

public static void main(String args[]) 

{ 

GenericsTypeOld type = new GenericsTypeOld(); 

type.set("Pankaj"); 

String str = (String) type.get(); //type casting, error prone and can cause ClassCastException 

} 

} 

Notice that while using this class, we have to use type casting and it can produce 

ClassCastException at runtime. Now we will use java generic class to rewrite the same class as 

shown below. 

www.Jntufastupdates.com 12



Linked List In JAVA 

IT Dept Page 13 

public class GenericsType<T> 

{ 

private T t; 

public T get() 

{ 

return this.t; 

} 

public void set(T t1) 

{ 

this.t=t1; 

} 

public static void main(String args[]) 

{ 

GenericsType<String> type = new GenericsType<String>(); 

type.set("Pankaj"); //valid 

GenericsType type1 = new GenericsType(); //raw type 

type1.set("Pankaj"); //valid 

type1.set(10); //valid and autoboxing support 

} 

} 

 Notice the use of GenericsType class in the main method. We don’t need to do type-casting

and we can remove ClassCastException at runtime.

 If we don’t provide the type at the time of creation, compiler will produce a warning that

“GenericsType is a raw type. References to generic type GenericsType<T> should be

parameterized”.

 When we don’t provide type, the type becomes Object and hence it’s allowing both String

and Integer objects but we should always try to avoid this because we will have to use type

casting while working on raw type that can produce runtime errors.

Tip: We can use @SuppressWarnings("rawtypes") annotation to suppress the compiler 

warning, check out java annotations tutorial. 

 Also notice that it supports java autoboxing. That means, the numerical number is

automatically convert into String.

Java Generic Type: 

 Java Generic Type Naming convention helps us understanding code easily and having a

naming convention is one of the best practices of java programming language.

 So generics also come with its own naming conventions.

 Usually type parameter names are single, uppercase letters to make it easily distinguishable

from java variables.

 The most commonly used type parameter names are:

 E – Element (used extensively by the Java Collections Framework, for example

ArrayList, Set etc.)

www.Jntufastupdates.com 13



Linked List In JAVA 

IT Dept Page 14 

 K – Key (Used in Map)

 N – Number

 T – Type

 V – Value (Used in Map)

 S,U,V etc. – 2nd, 3rd, 4th types

Java Generic Method: 

Sometimes we don’t want whole class to be parameterized, in that case we can create java 

generics method. Since constructor is a special kind of method, we can use generics type in 

constructors too. 

Here is a class showing example of java generic method. 

class GenericsType<T> 

{ 

private T t; 

public T get() 

{ 

return this.t; 

} 

public void set(T t1) 

{ 

this.t=t1; 

} 

} 

public class GenericsMethods 

{ 

//Java Generic Method 

public static <T> boolean isEqual(GenericsType<T> g1, GenericsType<T> g2) 

{ 

return g1.get().equals(g2.get()); 

} 

public static void main(String args[]) 

{ 

GenericsType<String> g1 = new GenericsType<>(); 

g1.set("Pankaj"); 

GenericsType<String> g2 = new GenericsType<>(); 

g2.set("Pankaj"); 

boolean isequal = GenericsMethods.<String>isEqual(g1, g2); 

//above statement can be written simply as 

isequal = GenericsMethods.isEqual(g1, g2); 

System.out.println(isequal); 

} 

} 

www.Jntufastupdates.com 14



Linked List In JAVA 

IT Dept Page 15 

Notice the isEqual method signature showing syntax to use generics type in methods. 

Also notice how to use these methods in our java program. We can specify type while calling 

these methods or we can invoke them like a normal method. Java compiler is smart enough to 

determine the type of variable to be used, this facility is called as type inference. 

Wrapper classes: 

Introduction: 

Java is an object-oriented language and can view everything as an object. A simple file 

can be treated as an object (with java.io.File), an image can be treated as an object (with 

java.awt.Image) and a simple data type can be converted into an object (with wrapper classes).  

Wrapper classes are used to convert any data type into an object. 

The primitive data types are not objects; they do not belong to any class; they are defined 

in the language itself. Sometimes, it is required to convert data types into objects in Java 

language. For example, upto JDK1.4, the data structures accept only objects to store. A data type 

is to be converted into an object and then added to a Stack or Vector etc. For this conversion, the 

designers introduced wrapper classes. 

 Each of Java's eight primitive data types has a class dedicated to it. These are known as

wrapper classes, because they "wrap" the primitive data type into an object of that class.

 The wrapper classes are part of the java.lang package, which is imported by default into all

Java programs.

The following two statements illustrate the difference between a primitive data type and an 

object of a wrapper class: 

int  x = 25; 

Integer  y = new Integer(33); 

The first statement declares an int variable named x and initializes it with the value 25. The 

second statement instantiates an Integer object. The object is initialized with the value 33 and a 

reference to the object is assigned to the object variable y. 

Below table lists wrapper classes in Java API with constructor details. 

Primitive Wrapper Class Constructor Argument 

boolean Boolean boolean or String 

byte Byte byte or String 

char Character char 

int Integer int or String 

float Float float, double or String 

www.Jntufastupdates.com 15



Linked List In JAVA 

IT Dept Page 16 

double Double double or String 

long Long long or String 

short Short short or String 

Below is wrapper class hierarchy as per Java API 

As explain in above table all wrapper classes (except Character) take String as argument 

constructor. Please note we might get NumberFormatException if we try to assign invalid 

argument in constructor. For example to create Integer object we can have following syntax. 

Integer intObj = new Integer (25); 

Integer intObj2 = new Integer ("25"); 

Here in we can provide any number as string argument but not the words etc. Below statement 

will throw run time exception (NumberFormatException) 

Integer intObj3 = new Integer ("Two"); 

The following discussion focuses on the Integer wrapper class, but applies in a general sense to 

all eight wrapper classes. 

The most common methods of the Integer wrapper class are summarized in below table. Similar 

methods for the other wrapper classes are found in the Java API documentation. 

Method Purpose 

parseInt(s) returns a signed decimal integer value equivalent to string s 

toString(i) returns a new String object representing the integer i 

byteValue() returns the value of this Integer as a byte 

doubleValue() returns the value of this Integer as an double 

www.Jntufastupdates.com 16



Linked List In JAVA 

IT Dept Page 17 

floatValue() returns the value of this Integer as a float 

intValue() returns the value of this Integer as an int 

shortValue() returns the value of this Integer as a short 

longValue() returns the value of this Integer as a long 

int compareTo(int 

i) 

Compares the numerical value of the invoking object with 

that of i. Returns 0 if the values are equal. Returns a 

negative value if the invoking object has a lower value. 

Returns a positive value if the invoking object has a greater 

value. 

static int 

compare(int num1, 

int num2) 

Compares the values of num1 and num2. Returns 0 if the 

values are equal. Returns a negative value if num1 is less 

than num2. Returns a positive value if num1 is greater than 

num2. 

boolean 

equals(Object 

intObj) 

Returns true if the invoking Integer object is equivalent to 

intObj. Otherwise, it returns false. 

Wrapping and Unwrapping: 

int marks = 50; 

Integer m1 = new Integer(marks); 

In the above statement, an int data type marks is given an object form m1 just by passing the 

variable to the constructor of Integer class. Wherever, marks is required as an object, m1 can be 

used. 

After using the Integer object in programming, now the programmer may require back the data 

type, as objects cannot be used in arithmetic operations. Now the object m1 should be 

unwrapped. 

int iv = m1.intValue(); 

For unwrapping, the method intValue() of Integer class used. The int value iv can be used in 

arithmetic operations. 

www.Jntufastupdates.com 17



Linked List In JAVA 

IT Dept Page 18 

Let’s see java program which explain few wrapper classes methods. 

public class WrappingUnwrapping 

{ 

  public static void main(String args[]) 

  {      //  data types 

    byte grade = 2; 

    int marks = 50; 

    float price = 8.6f;                 // observe a suffix of <strong>f</strong> for float 

    double rate = 50.5; 

// data types to objects 

    Byte g1 = new Byte(grade); // wrapping  

    Integer m1 = new Integer(marks); 

    Float f1 = new Float(price); 

    Double r1 = new Double(rate); 

// let us print the values from objects 

    System.out.println("Values of Wrapper objects (printing as objects)"); 

    System.out.println("Byte object g1:  " + g1); 

    System.out.println("Integer object m1:  " + m1); 

    System.out.println("Float object f1:  " + f1); 

    System.out.println("Double object r1:  " + r1); 

        // objects to data types (retrieving data types from objects) 

    byte bv = g1.byteValue(); // unwrapping 

    int iv = m1.intValue(); 

    float fv = f1.floatValue(); 

    double dv = r1.doubleValue(); 

// let us print the values from data types 

    System.out.println("Unwrapped values (printing as data types)"); 

    System.out.println("byte value, bv: " + bv); 

    System.out.println("int value, iv: " + iv); 

    System.out.println("float value, fv: " + fv); 

    System.out.println("double value, dv: " + dv); 

  } 

} 

As you can observe from the screenshot, constructors of wrapper classes are used to convert data 

types into objects and the methods of the form XXXValue() are used to retrieve back the data 

type from the object. 

www.Jntufastupdates.com 18



Linked List In JAVA 

IT Dept Page 19 

Serialization: 

Java provides a mechanism, called object serialization where an object can be represented as a 

sequence of bytes that includes the object's data as well as information about the object's type 

and the types of data stored in the object. 

After a serialized object has been written into a file, it can be read from the file and 

deserialized that is, the type information and bytes that represent the object and its data can be 

used to recreate the object in memory. 

 Most impressive is that the entire process is JVM independent, meaning an object can be

serialized on one platform and deserialized on an entirely different platform.

 Classes ObjectInputStream and ObjectOutputStream are high-level streams that contain

the methods for serializing and deserializing an object.

The ObjectOutputStream class contains many write methods for writing various data types, but 

one method in particular stands out: 

  public final void writeObject(Object x) throws IOException 

The above method serializes an Object and sends it to the output stream. Similarly, the 

ObjectInputStream class contains the following method for deserializing an object: 

 public final Object readObject() throws IOException, ClassNotFoundException 

This method retrieves the next Object out of the stream and deserializes it. The return value is 

Object, so you will need to cast it to its appropriate data type. 

To demonstrate how serialization works in Java, use the Employee class. Suppose that we have 

the following Employee class, which implements the Serializable interface: 

public class Employee implements java.io.Serializable 

{ 

   public String name; 

   public String address; 

   public transient int SSN; 

   public int number; 

    public void mailCheck() 

   { 

      System.out.println("Mailing a check to " + name + " " + address); 

   } 

} 

Notice that for a class to be serialized successfully, two conditions must be met: 

www.Jntufastupdates.com 19



Linked List In JAVA 

IT Dept Page 20 

 The class must implement the java.io.Serializable interface.

 All of the fields in the class must be serializable. If a field is not serializable, it must be

marked transient.

If you are curious to know if a Java Standard Class is serializable or not, check the 

documentation for the class. The test is simple: If the class implements java.io.Serializable, then 

it is serializable; otherwise, it's not.  

Serializing an Object: 

The ObjectOutputStream class is used to serialize an Object. The following SerializeDemo 

program instantiates an Employee object and serializes it to a file. 

When the program is done executing, a file named employee.ser is created. The program does 

not generate any output, but study the code and try to determine what the program is doing. 

Note: When serializing an object to a file, the standard convention in Java is to give the file 

a .ser extension. 

import java.io.*; 

public class SerializeDemo 

{ 

   public static void main(String [] args) 

   { 

      Employee e = new Employee(); 

e.name = "Phani Kumar";

e.address = "Ongole";

e.SSN = 11122333;

e.number = 101;

try

{

         FileOutputStream fileOut = new FileOutputStream("H://employee.ser"); 

         ObjectOutputStream out = new ObjectOutputStream(fileOut); 

         out.writeObject(e); 

         out.close(); 

         fileOut.close(); 

         System.out.printf("Serialized data is saved in H://employee.ser"); 

      } 

      catch(IOException i) 

{ 

    i.printStackTrace(); 

      } 

   } 

} 

Deserializing an Object: 

www.Jntufastupdates.com 20



Linked List In JAVA 

IT Dept Page 21 

The following DeserializeDemo program deserializes the Employee object created in the 

SerializeDemo program. Study the program and try to determine its output: 

import java.io.*; 

public class DeserializeDemo 

{ 

   public static void main(String [] args) 

   { 

      Employee e = null; 

      try 

      { 

         FileInputStream fileIn = new FileInputStream("H://employee.ser"); 

         ObjectInputStream in = new ObjectInputStream(fileIn); 

         e = (Employee) in.readObject(); 

         in.close(); 

         fileIn.close(); 

      }catch(IOException i) 

{ 

   i.printStackTrace(); 

         return; 

      }catch(ClassNotFoundException c) 

      { 

         System.out.println("Employee class not found"); 

c.printStackTrace();

return;

      } 

      System.out.println("Deserialized Employee..."); 

      System.out.println("Name: " + e.name); 

      System.out.println("Address: " + e.address); 

      System.out.println("SSN: " + e.SSN); 

      System.out.println("Number: " + e.number); 

    } 

} 

This would produce the following result: 

Deserialized Employee... 

Name: Phani Kumar 

Address:Ongole 

SSN: 0 

Number:101 

www.Jntufastupdates.com 21



Linked List In JAVA 

IT Dept Page 22 

Here are following important points to be noted: 

 The try/catch block tries to catch a ClassNotFoundException, which is declared by the

readObject() method. For a JVM to be able to deserialize an object, it must be able to

find the bytecode for the class. If the JVM can't find a class during the deserialization of

an object, it throws a ClassNotFoundException.

 Notice that the return value of readObject() is cast to an Employee reference.

 The value of the SSN field was 11122333 when the object was serialized, but because

the field is transient, this value was not sent to the output stream. The SSN field of the

deserialized Employee object is 0.

www.Jntufastupdates.com 22



1 

1. The Google File System

The Google File System, a scalable distributed file system for large distributed data- 

intensive applications. It provides fault tolerance while running on inexpensive 

commodity hardware, and it delivers high aggregate performance to a large number of 

clients. 

GFS provides a familiar file system interface, though itdoes not implement a standard 

API such as POSIX. Files areorganized hierarchically in directories and identified by 

path-names. We support the usual operations to create, delete,open, close, read, and write 

files. 

Moreover, GFS has snapshot and record append operations. Snapshot creates a copy of a 

file or a directory treeat low cost. Record append allows multiple clients to append data to 

the same file concurrently while guaranteeing the atomicity of each individual client’s 

append 

Architecture 

A GFS cluster consists of a single master and multiple chunk servers and is accessed by 

multiple clients, as shown in Figure . 

Each of these is typically a commodity Linux machine running a user-level server 

process. It is easy to run both a chunkserver and a client on the same machine, as long as 

machine resources permit and the lower reliability caused by running possibly flaky 

application code is acceptable. 

Each of these is typically a commodity Linux machine running a user-level server 

process. It is easy to run both a chunkserver and a client on the same machine, as long as 

machine resources permit and the lower reliability caused by running possibly flaky 

application code is acceptable. 

www.Jntufastupdates.com 1



2 

Files are divided into fixed-size chunks. Each chunk is identified by an immutable and 

globally unique 64 bit chunk handle assigned by the master at the time of chunk creation. 

Chunkservers store chunks on local disks as Linux files and read or write chunk data 

specified by a chunk handle and byte range. For reliability, each chunk is replicated on 

multiple chunkservers. By default, we store three replicas, though users can designate 

different replication levels for different regions of the file namespace. The master 

maintains all file system metadata. This includes the namespace, access control 

information, the mapping from files to chunks, and the current locations of chunks. 

It also controls system-wide activities such as chunk lease management, garbage 

collection of orphaned chunks, and chunk migration between chunkservers. The master 

periodically communicates with each chunkserver in HeartBeat messages to give it 

instructions and collect its state. 

www.Jntufastupdates.com 2



3 

GFS client code linked into each application implements the file system API and 

communicates with the master and chunkservers to read or write data on behalf of the 

application. Clients interact with the master for metadata operations, but all data-bearing 

communication goes directly to the chunkservers. We do not provide the POSIX API and 

therefore need not hook into the Linux vnode layer. 

Neither the client nor the chunkserver caches file data. Client caches offer little benefit 

because most applications stream through huge files or have working sets too large to be 

cached. Not having them simplifies the client and the overall system by eliminating cache 

coherence issues.(Clients do cache metadata, however.) Chunkservers need not cache file 

data because chunks are stored as local files and so Linux’s buffer cache already keeps 

frequently accessed data in memory. 

Single Master 

Having a single master vastly simplifies our design and enables the master to make 

sophisticated chunk placementApplication and replication decisions using global 

knowledge. However,we must minimize its involvement in reads and writes sothat it does 

not become a bottleneck. Clients never readand write file data through the master. 

Instead, a client asks the master which chunkservers it should contact. 

Chunk Size 

Chunk size is one of the key design parameters. We have chosen 64 MB, which is much 

larger than typical file system block sizes. Each chunk replica is stored as a plain Linux 

file on a chunkserver and is extended only as needed. 

Lazy space allocation avoids wasting space due to internalfragmentation, perhaps the 

greatest objection against such a large chunk size. 

A large chunk size offers several important advantages. 

First, it reduces clients’ need to interact with the master because reads and writes on the 

same chunk require only one initial request to the master for chunk location information. 

www.Jntufastupdates.com 3



4 

The reduction is especially significant for our work loads because applications mostly 

read and write large files sequentially. 

Even for small random reads, the client can comfortably cache all the chunk location 

information for a multi-TB working set. Second, since on a large chunk, a client is more 

likely to perform many operations on a given chunk, it can reduce network overhead by 

keeping a persistent TCP connection to the chunkserver over an extended period of time. 

Third, it reduces the size of the metadata stored on the master. This allows us to keep the 

metadata in memory, which in turn brings other advantages . 

On the other hand, a large chunk size, even with lazy space allocation, has its 

disadvantages. A small file consists of a small number of chunks, perhaps just one. The 

chunkservers storing those chunks may become hot spots if many clients are accessing 

the same file. In practice, hot spots have not been a major issue because our applications 

mostly read large multi-chunk files sequentially. 

However, hot spots did develop when GFS was first used by a batch-queue system: an 

executable was written to GFS as a single-chunk file and then started on hundreds of 

machines at the same time. 

Metadata 

The master stores three major types of metadata: the file and chunk namespaces, the 

mapping from files to chunks, and the locations of each chunk’s replicas.  

All metadata is kept in the master’s memory. The first two types (namespaces and file-to- 

chunk mapping) are also kept persistent by logging mutations to an operation log stored 

on the master’s local disk and replicated on remote machines. Using a log allows us to 

update the master state simply, reliably, and without risking inconsistencies in the event 

of a master crash. The master does not store chunk location information persistently. 

Instead, it asks each chunkserver about its chunks at master startup and whenever a 

chunkserver joins the cluster. 

www.Jntufastupdates.com 4



5 

In-Memory Data Structures 

Since metadata is stored in memory, master operations are fast. Furthermore, it is easy 

and efficient for the master to periodically scan through its entire state in the background. 

This periodic scanning is used to implement chunk garbage collection, re-replication in 

the presence of chunkserver failures, and chunk migration to balance load and disk space 

usage across chunkservers. 

Consistency Model 

GFS has a relaxed consistency model that supports our highly distributed applications 

well but remains relatively simple and efficient to implement. We now discuss GFS’s 

guarantees and what they mean to applications. 

We also highlight how GFS maintains these guarantees but leave the details to other parts 

of the paper. 

Guarantees by GFS 

Operation Log 

The operation log contains a historical record of critical metadata changes. It is central to 

GFS. Not only is it the only persistent record of metadata, but it also serves as a logical 

time line that defines the order of concurrent operations. 

Advantages and disadvantages of large sized chunks in Google File System 

Chunks size is one of the key design parameters. In GFS it is 64 MB, which is much larger than 

typical file system blocks sizes. Each chunk replica is stored as a plain Linux file on a chunk 

server and is extended only as needed. 

Advantages 

1. It reduces clients’ need to interact with the master because reads and writes on the same chunk

require only one initial request to the master for chunk location information. 

www.Jntufastupdates.com 5



6 

2. Since on a large chunk, a client is more likely to perform many operations on a given chunk, it

can reduce network overhead by keeping a persistent TCP connection to the chunk server over 

an extended period of time. 

3. It reduces the size of the metadata stored on the master. This allows us to keep the metadata in

memory, which in turn brings other advantages. 

Disadvantages 

1. Lazy space allocation avoids wasting space due to internal fragmentation.

2. Even with lazy space allocation, a small file consists of a small number of chunks, perhaps just

one. The chunk servers storing those chunks may become hot spots if many clients are accessing 

the same file. In practice, hot spots have not been a major issue because the applications mostly 

read large multi-chunk files sequentially. To mitigate it, replication and allowance to read from 

other clients can be done. 

2. Hadoop Distributed File System (HDFS) Building blocks of

Hadoop :

A. Namenode

B. Datanode

C. Secondary Name node

D. JobTracker

E. TaskTracker

Hadoop is made up of 2 parts: 

1. HDFS – Hadoop Distributed File System

2. MapReduce – The programming model that is used to work on the data present in HDFS.

HDFS – Hadoop Distributed File System

HDFS is a file system that is written in Java and resides within the user space unlike traditional

file systems like FAT, NTFS, ext2, etc that reside on the kernel space. HDFS was primarily

written to store large amounts of data (terrabytes and petabytes). HDFS was built inline with

Google’s paper on GFS.

www.Jntufastupdates.com 6



7 

MapReduce 

MapReduce is the programming model that uses Java as the programming language to retrieve 

data from files stored in the HDFS. All data in HDFS is stored as files. Even MapReduce was 

built inline with another paper by Google. 

Google, apart from their papers did not release their implementations of GFS and MapReduce. 

However, the Open Source Community built Hadoop and MapReduce based on those papers.  

The initial adoption of Hadoop was at Yahoo Inc., where it gained good momentum and went 

onto be a part of their production systems. After Yahoo, many organizations like LinkedIn, 

Facebook, Netflix and many more have successfully implemented Hadoop within their 

organizations. 

Hadoop uses HDFS to store files efficiently in the cluster. When a file is placed in HDFS it is 

broken down into blocks, 64 MB block size by default. These blocks are then replicated across 

the different nodes (DataNodes) in the cluster. The default replication value is 3, i.e. there will 

be 3 copies of the same block in the cluster. We will see later on why we maintain replicas of the 

blocks in the cluster. 

A Hadoop cluster can comprise of a single node (single node cluster) or thousands of nodes. 

Once you have installed Hadoop you can try out the following few basic commands to work with 

HDFS: 

 hadoop fs -ls

 hadoop fs -put <path_of_local> <path_in_hdfs>

 hadoop fs -get <path_in_hdfs> <path_of_local>

 hadoop fs -cat <path_of_file_in_hdfs>

 hadoop fs -rmr <path_in_hdfs>

the different components of a Hadoop Cluster are:

NameNode (Master) – NameNode, Secondary NameNode, JobTracker

DataNode 1 (Slave) – TaskTracker, DataNode

DataNode 2 (Slave) – TaskTracker, DataNode

DataNode 3 (Slave) – TaskTracker, DataNode

DataNode 4 (Slave) – TaskTracker, DataNode

DataNode 5 (Slave) – TaskTracker, DataNode

www.Jntufastupdates.com 7



8 

The above diagram depicts a 6 Node Hadoop Cluster 

In the diagram you see that the NameNode, Secondary NameNode and theJobTracker are 

running on a single machine. Usually in production clusters having more those 20-30 nodes, the 

daemons run on separate nodes. 

Hadoop follows a Master-Slave architecture. As mentioned earlier, a file in HDFS is split into 

blocks and replicated across Datanodes in a Hadoop cluster. You can see that the three files A, B 

and C have been split across with a replication factor of 3 across the different Datanodes. 

Now let us go through each node and daemon: 

NameNode 

The NameNode in Hadoop is the node where Hadoop stores all the location information of the 

files in HDFS. In other words, it holds the metadata for HDFS. Whenever a file is placed in the 

cluster a corresponding entry of it location is maintained by the NameNode. So, for the files A, B 

and C we would have something as follows in the NameNode: 

File A – DataNode1, DataNode2, DataNode4 

www.Jntufastupdates.com 8



9 

File B – DataNode1, DataNode3, DataNode4 

File C – DataNode2, DataNode3, DataNode4 

This information is required when retrieving data from the cluster as the data is spread across 

multiple machines. The NameNode is a Single Point of Failure for the Hadoop Cluster. 

Secondary NameNode 

IMPORTANT – The Secondary NameNode is not a failover node for theNameNode. 

The secondary name node is responsible for  performing periodic housekeeping functions  for  

the NameNode. It only creates checkpoints of the file system present in the NameNode. 

DataNode 

The DataNode is responsible for storing the files in HDFS. It manages the file blocks within the 

node. It sends information to the NameNode about the files and blocks stored in that node and 

responds to the NameNode for all filesystem operations. 

JobTracker 

JobTracker is responsible for taking in requests from a client and assigning TaskTrackers with 

tasks   to   be   performed.   The JobTracker tries   to   assign   tasks   to   the TaskTracker on 

the DataNode where the data is locally present (Data Locality). If that is not possible it will at 

least try to assign tasks to TaskTrackers within the same rack. If for some reason the node fails 

the JobTracker assigns the task to another TaskTracker where the replica of the data exists since 

the data blocks are replicated across the DataNodes. This ensures that the job does not fail even 

if a node fails within the cluster. 

TaskTracker 

TaskTracker is a daemon that accepts tasks (Map, Reduce and Shuffle) from the JobTracker. 

The TaskTracker keeps sending a heart beat message to theJobTracker to notify that it is alive. 

Along  with  the  heartbeat  it  also  sends  the  free  slots  available  within  it   to   process 

tasks. TaskTracker starts and monitors the Map & Reduce Tasks and sends progress/status 

information back to theJobTracker. 

All the above daemons run within have their own JVMs. 

A typical (simplified) flow in Hadoop is a follows: 

1. A Client (usaually a MapReduce program) submits a job to theJobTracker.

2. The JobTracker get  information  from  the NameNode on  the  location  of  the  data  within

the DataNodes. The JobTracker places the client program (usually a jar file along with the

www.Jntufastupdates.com 9



10 

configuration file) in the HDFS. Once placed, JobTracker tries to assign tasks 

to TaskTrackers on the DataNodes based on data locality. 

3. The TaskTracker takes care of starting the Map tasks on the DataNodesby picking up the client

program from the shared location on the HDFS.

4. The progress of the operation is relayed back to the JobTracker by theTaskTracker.

5. On completion of the Map task  an  intermediate  file  is  created  on  the  local  filesystem  of

the TaskTracker.

6. Results from Map tasks are then passed on to the Reduce task.

7. The Reduce tasks works on all data received from map tasks and writes the final output to

HDFS.

8. After the task complete the intermediate data generated by theTaskTracker is deleted.

A very important feature of Hadoop to note here is, that, the program goes to where the data is

and not the way around, thus resulting in efficient processing of data.

3. Introducing and Configuring Hadoop cluster

A. Local

B. Pseudo-distributed mode

C. Fully Distributed mode

Hadoop is supported by GNU/Linux platform and its flavors. Therefore, we have to install a 

Linux operating system for setting up Hadoop environment. 

Pre-installation Setup 

Before installing Hadoop into the Linux environment, we need to set up Linux using ssh 

(Secure Shell). Follow the steps given below for setting up the Linux environment. 

Creating a User 

At the beginning, it is recommended to create a separate user for Hadoop to isolate Hadoop file 

system from Unix file system. Follow the steps given below to create a user: 

 Open the root using the command “su”.

 Create a user from the root account using the command “useradd username”.

 Now you can open an existing user account using the command “su username”.

www.Jntufastupdates.com 10



11 

Open the Linux terminal and type the following commands to create a user. 

SSH Setup and Key Generation 

SSH setup is required to do different operations on a cluster such as starting, stopping, 

distributed daemon shell operations. To authenticate different users of Hadoop, it is required to 

provide public/private key pair for a Hadoop user and share it with different users. 

The following commands are used for generating a key value pair using SSH. Copy the public 

keys form id_rsa.pub to authorized_keys, and provide the owner with read and write 

permissions to authorized_keys file respectively. 

Installing Java 

Java is the main prerequisite for Hadoop. First of all, you should verify the existence of java in 

your system using the command “java -version”. The syntax of java version command is given 

below. 

If everything is in order, it will give you the following output. 

If java is not installed in your system, then follow the steps given below for installing java. 

$ java -version 

$ ssh-keygen -t rsa 

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys 

$ chmod 0600 ~/.ssh/authorized_keys 

$ su 

password: 

# useradd hadoop 

# passwd hadoop 

New passwd: 

Retype new passwd 

java version "1.7.0_71" 

Java(TM) SE Runtime Environment (build 1.7.0_71-b13) 

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode) 

www.Jntufastupdates.com 11



12 

Step 1 

Download java (JDK <latest version> - X64.tar.gz) by visiting the following 

linkhttp://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads1880260.html. 

Then jdk-7u71-linux-x64.tar.gz will be downloaded into your system. 

Step 2 

Generally you will find the downloaded java file in Downloads folder. Verify it and extract the 

jdk-7u71-linux-x64.gz file using the following commands. 

Step 3 

To make java available to all the users, you have to move it to the location “/usr/local/”. Open  

root, and type the following commands. 

Step 4 

For setting up PATH and JAVA_HOME variables, add the following commands to ~/.bashrc 

file. 

Now apply all the changes into the current running system. 

Step 5 

Use the following commands to configure java alternatives: 

export JAVA_HOME=/usr/local/jdk1.7.0_71 

export PATH=$PATH:$JAVA_HOME/bin 

$ cd Downloads/ 

$ ls 

jdk-7u71-linux-x64.gz 

$ tar zxf jdk-7u71-linux-x64.gz 

$ ls 

jdk1.7.0_71 jdk-7u71-linux-x64.gz 

$ su 

password: 

# mv jdk1.7.0_71 /usr/local/ 

# exit 

$ source ~/.bashrc 

www.Jntufastupdates.com 12

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads1880260.html


13 

Now verify the java -version command from the terminal as explained above. 

Downloading Hadoop 

Download and extract Hadoop 2.4.1 from Apache software foundation using the following 

commands. 

Hadoop Operation Modes 

Once you have downloaded Hadoop, you can operate your Hadoop cluster in one of the three 

supported modes: 

 Local/Standalone Mode : After downloading Hadoop in your system, by default, it is

configured in a standalone mode and can be run as a single java process.

 Pseudo Distributed Mode : It is a distributed simulation on single machine. Each

Hadoop daemon such as hdfs, yarn, MapReduce etc., will run as a separate java process.

This mode is useful for development.

 Fully Distributed Mode : This mode is fully distributed with minimum two or more

machines as a cluster. We will come across this mode in detail in the coming chapters.

Installing Hadoop in Standalone Mode 

Here we will discuss the installation of Hadoop 2.4.1 in standalone mode. 

$ su 

password: 

# cd /usr/local 

# wget http://apache.claz.org/hadoop/common/hadoop-2.4.1/ 

hadoop-2.4.1.tar.gz 

# tar xzf hadoop-2.4.1.tar.gz 

# mv hadoop-2.4.1/* to hadoop/ 

# exit 

# alternatives --install /usr/bin/java java usr/local/java/bin/java 2 

# alternatives --install /usr/bin/javac javac usr/local/java/bin/javac 2 

# alternatives --install /usr/bin/jar jar usr/local/java/bin/jar 2 

# alternatives --set java usr/local/java/bin/java 

# alternatives --set javac usr/local/java/bin/javac 

# alternatives --set jar usr/local/java/bin/jar 

www.Jntufastupdates.com 13

http://apache.claz.org/hadoop/common/hadoop-2.4.1/


14 

There are no daemons running and everything runs in a single JVM. Standalone mode is 

suitable for running MapReduce programs during development, since it is easy to test and 

debug them. 

Setting Up Hadoop 

You  can  set  Hadoop   environment   variables   by   appending   the   following   commands 

to ~/.bashrc file. 

Before proceeding further, you need to make sure that Hadoop is working fine. Just issue the 

following command: 

If everything is fine with your setup, then you should see the following result: 

It means your Hadoop's standalone mode setup is working fine. By default, Hadoop is 

configured to run in a non-distributed mode on a single machine. 

Example 

Let's check a simple example of Hadoop. Hadoop installation delivers the following example 

MapReduce jar file, which provides basic functionality of MapReduce and can be used for 

calculating, like Pi value, word counts in a given list of files, etc. 

Let's have an input directory where we will push a few files and our requirement is to count the 

total number of words in those files. To calculate the total number of words, we do not need to 

write our MapReduce, provided the .jar file contains the implementation for word count. You 

can try other examples using the same .jar file; just issue the following commands to check 

supported MapReduce functional programs by hadoop-mapreduce-examples-2.2.0.jar file. 

$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduceexamples-2.2.0.jar 

$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar 

export HADOOP_HOME=/usr/local/hadoop 

$ hadoop version 

Hadoop 2.4.1 

Subversion https://svn.apache.org/repos/asf/hadoop/common -r 1529768 

Compiled by hortonmu on 2013-10-07T06:28Z 

Compiled with protoc 2.5.0 

From source with checksum 79e53ce7994d1628b240f09af91e1af4 

www.Jntufastupdates.com 14



15 

Step 1 

Create temporary content files in the input directory. You can create this input directory 

anywhere you would like to work. 

It will give the following files in your input directory: 

These files have been copied from the Hadoop installation home directory. For your

experiment, you can have different and large sets of files.

Step 2

Let's start the Hadoop process to count the total number of words in all the files available in the

input directory, as follows:

Step 3

Step-2 will do the required processing and save the output in output/part-r00000 file, which you

can check by using:

It will list down all the words along with their total counts available in all the files available in

the input directory.

$cat output/*

$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduceexamples-2.2.0.jar

wordcount input output

$ mkdir input 

$ cp $HADOOP_HOME/*.txt input 

$ ls -l input 

total 24 

-rw-r--r-- 1 root root 15164 Feb 21 10:14 LICENSE.txt

-rw-r--r-- 1 root root 101 Feb 21 10:14 NOTICE.txt

-rw-r--r-- 1 root root 1366 Feb 21 10:14 README.txt

"AS 4

"Contribution" 1

"Contributor" 1

"Derivative 1

"Legal 1

www.Jntufastupdates.com 15



16 

Installing Hadoop in Pseudo Distributed Mode 

Follow the steps given below to install Hadoop 2.4.1 in pseudo distributed mode. 

Step 1: Setting Up Hadoop 

You  can  set  Hadoop   environment   variables   by   appending   the   following   commands 

to ~/.bashrc file. 

export HADOOP_HOME=/usr/local/hadoop 

export HADOOP_MAPRED_HOME=$HADOOP_HOME 

"License" 1 

"License"); 1 

"Licensor" 1 

"NOTICE” 1 

"Not 1 

"Object" 

"Source” 

"Work” 

"You" 

"Your") 

1 

1 

1 

1 

1 

"[]" 1 

"control" 1 

"printed 1 

"submitted" 1 

(50%) 1 

(BIS), 1 

(C) 1

(Don't) 1 

(ECCN) 1 

(INCLUDING 2 

(INCLUDING, 2 

............. 

www.Jntufastupdates.com 16



17 

Now apply all the changes into the current running system. 

Step 2: Hadoop Configuration 

You can find all the Hadoop configuration files in the location 

“$HADOOP_HOME/etc/hadoop”. It is required to make changes in those configuration files 

according to your Hadoop infrastructure. 

In order to develop Hadoop programs in java, you have to reset the java environment variables 

in hadoop-env.sh file by replacing JAVA_HOME value with the location of java in your 

system. 

The following are the list of files that you have to edit to configure Hadoop. 

core-site.xml 

The core-site.xml file contains information such as the port number used for Hadoop instance, 

memory allocated for the file system, memory limit for storing the data, and size of Read/Write 

buffers. 

Open the core-site.xml and add the following properties in between <configuration>, 

</configuration> tags. 

export JAVA_HOME=/usr/local/jdk1.7.0_71 

$ cd $HADOOP_HOME/etc/hadoop 

export HADOOP_COMMON_HOME=$HADOOP_HOME 

export HADOOP_HDFS_HOME=$HADOOP_HOME 

export YARN_HOME=$HADOOP_HOME 

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native 

export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin 

export HADOOP_INSTALL=$HADOOP_HOME 

$ source ~/.bashrc 

<configuration> 

<property> 

<name>fs.default.name </name> 

<value> hdfs://localhost:9000 </value> 

www.Jntufastupdates.com 17



18 

hdfs-site.xml 

The hdfs-site.xml file contains information such as the value of replication data, namenode 

path, and datanode paths of your local file systems. It means the place where you want to store 

the Hadoop infrastructure. 

Let us assume the following data. 

Open this file and add the following properties in between the <configuration> </configuration>  

tags in this file. 

</property> 

</configuration> 

dfs.replication (data replication value) = 1 

(In the below given path /hadoop/ is the user name. 

hadoopinfra/hdfs/namenode is the directory created by hdfs file system.) 

namenode path = //home/hadoop/hadoopinfra/hdfs/namenode 

(hadoopinfra/hdfs/datanode is the directory created by hdfs file system.) 

datanode path = //home/hadoop/hadoopinfra/hdfs/datanode 

<configuration> 

<property> 

<name>dfs.replication</name> 

<value>1</value> 

</property> 

<property> 

<name>dfs.name.dir</name> 

<value>file:///home/hadoop/hadoopinfra/hdfs/namenode </value> 

</property> 

<property> 

<name>dfs.data.dir</name> 

www.Jntufastupdates.com 18



19 

Note: In the above file, all the property values are user-defined and you can make changes 

according to your Hadoop infrastructure. 

yarn-site.xml 

This file is used to configure yarn into Hadoop. Open the yarn-site.xml file and add the 

following properties in between the <configuration>, </configuration> tags in this file.  

mapred-site.xml 

This file is used to specify which MapReduce framework we are using. By default, Hadoop 

contains a template of yarn-site.xml. First of all, it is required to copy the file from mapred- 

site,xml.template to mapred-site.xml file using the following command. 

Open mapred-site.xml file and add the following properties in between the <configuration>, 

</configuration>tags in this file. 

$ cp mapred-site.xml.template mapred-site.xml 

<configuration> 

<property> 

<name>yarn.nodemanager.aux-services</name> 

<value>mapreduce_shuffle</value> 

</property> 

</configuration> 

<value>file:///home/hadoop/hadoopinfra/hdfs/datanode </value> 

</property> 

</configuration> 

<configuration> 

<property> 

<name>mapreduce.framework.name</name> 

<value>yarn</value> 

</property> 

www.Jntufastupdates.com 19



20 

Verifying Hadoop Installation 

The following steps are used to verify the Hadoop installation. 

Step 1: Name Node Setup 

Set up the namenode using the command “hdfs namenode -format” as follows. 

The expected result is as follows. 

Step 2: Verifying Hadoop dfs 

The following command is used to start dfs. Executing this command will start your Hadoop 

file system. 

</configuration> 

$ cd ~ 

$ hdfs namenode -format 

10/24/14 21:30:55 INFO namenode.NameNode: STARTUP_MSG: 

/************************************************************ 

STARTUP_MSG: Starting NameNode 

STARTUP_MSG: host = localhost/192.168.1.11 

STARTUP_MSG: args = [-format] 

STARTUP_MSG: version = 2.4.1 

... 

... 

10/24/14 21:30:56 INFO common.Storage: Storage directory 

/home/hadoop/hadoopinfra/hdfs/namenode has been successfully formatted. 

10/24/14 21:30:56 INFO namenode.NNStorageRetentionManager: Going to 

retain 1 images with txid >= 0 

10/24/14 21:30:56 INFO util.ExitUtil: Exiting with status 0 

10/24/14 21:30:56 INFO namenode.NameNode: SHUTDOWN_MSG: 

/************************************************************ 

SHUTDOWN_MSG: Shutting down NameNode at localhost/192.168.1.11 

************************************************************/ 

www.Jntufastupdates.com 20



21 

The expected output is as follows: 

Step 3: Verifying Yarn Script 

The following command is used to start the yarn script. Executing this command will start your 

yarn daemons. 

The expected output as follows: 

Step 4: Accessing Hadoop on Browser 

The default port number to access Hadoop is 50070. Use the following url to get Hadoop 

services on browser. 

http://localhost:50070/ 

$ start-yarn.sh 

$ start-dfs.sh 

10/24/14 21:37:56 

Starting namenodes on [localhost] 

localhost: starting namenode, logging to /home/hadoop/hadoop 

2.4.1/logs/hadoop-hadoop-namenode-localhost.out 

localhost: starting datanode, logging to /home/hadoop/hadoop 

2.4.1/logs/hadoop-hadoop-datanode-localhost.out 

Starting secondary namenodes [0.0.0.0] 

starting yarn daemons 

starting resourcemanager, logging to /home/hadoop/hadoop 

2.4.1/logs/yarn-hadoop-resourcemanager-localhost.out 

localhost: starting nodemanager, logging to /home/hadoop/hadoop 

2.4.1/logs/yarn-hadoop-nodemanager-localhost.out 

www.Jntufastupdates.com 21



22 

Step 5: Verify All Applications for Cluster 

The default port number to access all applications of cluster is 8088. Use the following url to 

visit this service. 

C .Fully Distributed mode 

Compatibility Requirements 

http://localhost:8088/ 

www.Jntufastupdates.com 22



23 

S.No Category Supported 

1 Languages Java, Python, Perl, Ruby etc. 

2 Operating System Linux (Server Deployment) Mostly preferred, 

Windows (Development only), Solaris. 

3 Hardware 32 bit Linux ( 64 bit for large deployment ) 

Installation Items 

S.No Item Version 

1 jdk-6u25-linux-i586.bin Java 1.6 or higher 

2 hadoop-0.20.2-cdh3u0.tar.gz Hadoop 0.20.2 

Note: Both Items are required to be installed on Namenode and Datanode machines 

Installation Requirements 

S.No Requirement Reason 

1 Operating system – Linux

recommended for server deployment 

(Production env.) 

2 Language – Java 1.6 or higher 

3 Ram – at least 3 GB/node 

4 Hard disk – at least 1 TB For namenode machine. 

5 Should have root credentials For changing some system files 

you need admin permissions. 

www.Jntufastupdates.com 23



24 

High level Steps 

Step Activity Check 

# 

1 Binding IP address with the host name under /etc/hosts 

2 Setting passwordless SSH 

3 Installing Java 

4 Installing Hadoop 

5 Setting JAVA HOME and HADOOP HOME variables 

6 Updating .bash_profile file for hadoop 

7 Creating required folders for namenode and datanode 

8 Configuring the .xml files 

9 Setting the masters and slaves in all the machines 

10 Formatting the namenode 

11 Starting the Dfs services and mapred services 

12 Stopping all services 

Binding IP address with the host names 

Before starting the installation of hadoop, first you need to bind the IP address of the machines 

along with their host names under /etc/hosts file. 

First check the hostname of your machine by using following command : 

$ hostname 

Open /etc/hosts file for binding IP with the hostname 

$ vi /etc/hosts 

Provide ip & hostname of the all the machines in the cluster 

e.g: 10.11.22.33 hostname1

10.11.22.34 hostname2 

www.Jntufastupdates.com 24



25 

Setting Passwordless SSh login 

SSH is used to login from one system to another without requiring passwords. This will be 

required when you run a cluster, it will not prompt you for the password again and again. 

First log in on Host1 (hostname of namenode machine) as hadoop user and generate a pair of 

authentication keys. Command is: 

hadoop@Host1$ ssh-keygen –t rsa 

Note:  Give the hostname which you got in step 5.3.1. Do not enter any passphrase if asked. 

Now  use  ssh  to  create a directory ~/.ssh as user hadoop on Host2 (Hostname other than 

namenode machine). 

hadoop@Host1$ ssh hadoop@Host2 mkdir –p .ssh 

hadoop@Host2’s password: 

Finally append Host1's new public key to hadoop@Host2: .ssh/authorized_keys and enter 

Host2's password one last time: 

hadoop@Host1$   cat /home/hadoop/.ssh/id_rsa.pub   |   ssh   hadoop@Host2 ‘ cat >> 

.ssh/authorized_keys ’ 

hadoop@Host2’s password: 

From now on you can log into Host2 as hadoop from Host1 without password: 

hadoop@Host1$ ssh hadoop@Host2 

Host2@hadoop$ 

NOTE: Do the following changes: 

 Change the permissions of .ssh to 700 

 Change the permissions of .ssh/authorized_keys to 640 

www.Jntufastupdates.com 25



26 

Prepare for installation 

Check for previous installed versions of java and hadoop on your machine 

$ rpm –qa | grep java 

It will display fully qualified paths of the version installed. 

Remove all the previous version of Java and Hadoop installed on the machine. 

$ rpm –e softwarename or path-name 

NOTE: All the installations and extractions are being done in /home/hadoop/ 

Installing Java 

Use the JDK bin file (jdk-6u25-linux-i586.bin) for installing java on your machine . Copy the 

.bin file in /home/hadoop/ 

Execute the command “./jdk-6u25-linux-i586.bin” in /home/hadoop/ (which will unzip the 

contents into folder jdk1.6.0_25) 

Extract the hadoop package 

Syntax 

$ tar –xzvf < hadoop-tar-package> 

$ tar –xzvf hadoop-0.20.0-cdh3u9.tar.gz 

Configuring HADOOP_HOME 

Check whether HADOOP_HOME is set up to the folder containing hadoop_core_VERSION.jar 

using 

$ echo $HADOOP_HOME 

If not set then set it 

$ export HADOOP_HOME=/home/hadoop/hadoop-version 

www.Jntufastupdates.com 26



27 

For e.g. 

$ cd /home/hadoop/ 

$ export HADDOP_HOME= /home/hadoop/hadoop-0.20.2-cdh3u0/ 

Setting JAVA_HOME 

$ cd /home/hadoop/hadoop-0.20.0-cdh3u0/conf/ 

$ vi hadoop-env.sh 

hadoop-env.sh file for setting JAVA_HOME 

Press :wq to save and exit the file 

You need to change the bash file also . 

$ vi ~/.bash_profile 

www.Jntufastupdates.com 27



28 

bash_profile file for setting environment variables and jar files 

Check for hadoop installation confirmation 

Run hadoop command to confirm whether the installation is successful. 

$ cd <hadoop-home-directory> 

Standard Path 

$ cd /home/hadoop/ hadoop-0.20.0-cdh3u0/ 

$ bin/hadoop 

On successful installation you should get the following message. 

www.Jntufastupdates.com 28



29 

CONFIGURING HADOOP IN FULLY DISTRIBUTED MODE 

Create the dfs.name.dir local directories on namenode machine 

$ cd /home/hadoop/ 

$ mkdir -p data/1/dfs/nn 

Creating the directories for storing the Data blocks and the temporary directory for storing 

process ids on datanode machines 

$ cd /home/hadoop/ 

$ mkdir –p data/1/dfs/dn data/2/dfs/dn data/3/dfs/dn 

$ mkdir –p /home/hadoop/ tmp 

Creating the directories for storing the temporary data (Task Tracker) and the system files for 

Map/Reduce jobs 

$ cd /home/hadoop/ 

$ mkdir –p data/1/mapred/local data/2/mapred/local data/3/mapred/local 

$ mkdir –p /home/hadoop/mapred/system 

Give full permission to all folder under /home/hadoop/ 

$ cd /home/hadoop/ 

$ chmod 777 * 

Navigate to /home/hadoop/hadoop-0.20.0-cdh3u0/conf directory 

$ cd /home/hadoop/hadoop-0.20.0-cdh3u0/conf 

Set up the configuration files under /home/hadoop/hadoop-0.20.0-cdh3u0/conf/ 

Core-Site.xml 

$ vi core-site.xml 

Parameters of core-site.xml 

fs.default.name URL for the Name Node 

URL for the temporary data 

This property specifies the number of times the file has to be replicated on 

cluster. 

www.Jntufastupdates.com 29



30 

core-site.xml 

hdfs-site.xml 

$ vi hdfs-site.xml 

Parameters of hdfs-site.xml 

This property specifies the directories where the NameNode stores its metadata 

and edit logs. Represented by the /home/hadoop/data/1/dfs/nn path examples. 

This property specifies the directories where the DataNode stores blocks. 

Represented by the /home/hadoop/data/1/dfs/dn, /home/hadoop/data/2/dfs/dn , 

/home/hadoop/data/3/dfs/dn 

hdfs-site.xml 

Press :wq to save and exit the file 

mapred-site.xml 

$ vi mapred-site.xml 

Parameters of mapred-site.xml 

www.Jntufastupdates.com 30



31 

mapred.local.dir This property specifies the directories where the TaskTracker will store 

temporary data and intermediate map output files while running Map Reduce jobs. 

Eg./home/hadoop/data/1/mapred/local,/home/hadoop/data/2/mapred/local, 

/home/hadoop/data/3/mapred/local. 

mapred.system.dir 

e.g./home/hadoop/mapred/system/.

mapred.job.tracker Host or IP and port of Job Tracker. 

mapred-site.xml 

Press :wq to save and exit the file 

Set the correct owner and permissions of the local directories: 

Directory Owner Permissions 

dfs.name.dir hdfs:hadoop drwx------ 

dfs.data.dir hdfs:hadoop drwx------ 

mapred.local.dir mapred:hadoop drwxr-xr-x 

/home/hadoop/data/2/dfs/dn/ 

$ chmod 700 /home/hadoop/data/1/dfs/nn/ 

$ chmod 700 /home/hadoop/data/1/dfs/dn/ 

www.Jntufastupdates.com 31



32 

Setting up the masters and slaves 

vi conf/masters 

hostname of machine acting as a SecondaryNamenode 

vi slaves 

hostname of machines acting as a Datanode & TaskTrackers 

Formatting the namenode 

You need to format the namenode every time you start the dfs services. This is because every 

time you start the services it causes some files to be written in the namenode folder which may 

get duplicated when you run the services for the second time. Do not format a running Hadoop 

namenode, otherwise it will cause all your data in the HDFS filesytem to be erased. 

$ cd /home/hadoop/hadoop-0.20.0-cdh3u0/ 

$ bin/hadoop namenode -format 

Note : Give “Y” when it asks for re-format 

Starting dfs service 

Run the command 

$ /bin/start-dfs.sh on the machine you want the namenode to run on. This will bring up HDFS 

with the namenode running on the machine you ran the previous command on, and datanodes on 

the machines listed in the conf/slaves file. 

$ cd /home/hadoop/hadoop-0.20.0-cdh3u0/ 

$ ./bin/start-dfs.sh 

NOTE: For any problems check the log files under all the machines under 

/home/hadoop/hadoop-0.20.2-cdh3u0/logs/ and refer to the troubleshooting guide for the same. 

Starting mapred service 

/home/hadoop/data/2/mapred/local/ /home/hadoop/data/3/mapred/local/ 

/home/hadoop/data/1/mapred/local/ 755 chmod $ 

/home/hadoop/data/3/dfs/dn/ 

www.Jntufastupdates.com 32



33 

For mapred services run the following command on the machine you want jobtracker to run on 

(in my case it was namenode machine) 

you can choose other machine also. 

$ ./bin/start-mapred.sh 

Checking the DFS service report 

$  ./bin/hadoop  dfsadmin  –report 

Checking on web interface DFS SERVICE 

http://ip-address of namenode machine:50070/ 

Checking on web interface Mapred Job 

http://ip of namenode machine:50030/ 

Stopping dfs and mapred services 

cd /home/hadoop/hadoop-0.20.0-cdh3u0/ 

$ ./bin/stop-all.sh 

4 Configuring XML files. 

Hadoop Cluster Configuration Files 

www.Jntufastupdates.com 33

http://ip-address/
http://ip/


34 

All these files are available under ‘conf’ directory of Hadoop installation directory. 

Here is a listing of these files in the File System: 

Let’s look at the files and their usage one by one! 

hadoop-env.sh 

This  file  specifies  environment  variables   that   affect   the   JDK   used   by Hadoop 

Daemon (bin/hadoop). 

As Hadoop framework is written in Java and uses Java Runtime environment, one of the 

important environment variables for Hadoop daemon is $JAVA_HOME in hadoop-env.sh. 

This variable directs Hadoop daemon to the Java path in the system. 

www.Jntufastupdates.com 34



35 

This file is also used for setting another Hadoop daemon execution environment such as heap 

size (HADOOP_HEAP), hadoop home (HADOOP_HOME), log file location 

(HADOOP_LOG_DIR), etc. 

Note: For the simplicity of understanding the cluster setup, we have configured only necessary 

parameters to start a cluster. 

The following three files are the important configuration files for the runtime environment 

settings of a Hadoop cluster. 

core-site.sh 

This file informs Hadoop daemon where NameNode runs in the cluster. It contains the 

configuration   settings   for   Hadoop   Core    such    as    I/O    settings    that    are    common 

to HDFS and MapReduce. 

Where hostname and port are the machine and port on which NameNode daemon runs and 

listens. It also informs the Name Node as to which IP and port it should bind. The commonly 

used port is 8020 and you can also specify IP address rather than hostname. 

hdfs-site.sh 

This file contains the configuration settings for HDFS daemons; the Name Node, the Secondary 

Name Node, and the data nodes. 

You can also configure hdfs-site.xml to specify default block replication and permission 

checking on HDFS. The actual number of replications can also be specified when the file is 

created. The default is used if replication is not specified in create time. 

www.Jntufastupdates.com 35



36 

The value “true” for property ‘dfs.permissions’ enables permission checking in HDFS and the 

value “false” turns off the permission checking. Switching from one parameter value to the other 

does not change the mode, owner or group of files or directories. 

mapred-site.sh 

This file contains the configuration settings for MapReduce daemons; the job tracker and the 

task-trackers. Themapred.job.tracker parameter is a hostname (or IP address) and port pair on 

which the Job Tracker listens for RPC communication. This parameter specify the location of the 

Job Tracker to Task Trackers and MapReduce clients. 

www.Jntufastupdates.com 36



37 

You can replicate all of the four files explained above to all the Data Nodes and Secondary 

Namenode. These files can then be configured for any node specific configuration e.g. in case of 

a different JAVA HOME on one of the Datanodes. 

The following two file ‘masters’ and ‘slaves’ determine the master and salve Nodes in Hadoop 

cluster. 

Masters 

This file informs about the Secondary Namenode location to hadoop daemon. The ‘masters’ file 

at Master server contains a hostname Secondary Name Node servers. 

The ‘masters’ file on Slave Nodes is blank. 

Slaves 

The ‘slaves’ file at Master node contains a list of hosts, one per line, that are to host Data Node 

and Task Tracker servers. 

The ‘slaves’ file on Slave server contains the IP address of the slave node. Notice that the 

‘slaves’ file at Slave node contains only its own IP address and not of any other Data Nodes in 

the cluster. 

www.Jntufastupdates.com 37



IT Dept Page 1 

UNIT-III 

MapReduce is a programming model for data processing. The model is simple, yet 

not too simple to express useful programs in. Hadoop can run MapReduce programs written 

in various languages; Most important, MapReduce programs are inherently parallel, thus 

putting very large-scale data analysis into the hands of anyone with enough machines at their 

disposal. MapReduce comes into its own for large datasets, so let’s start by looking at one. 

A Weather Dataset 

For our example, we will write a program that mines weather data. Weather sensors 

collecting data every hour at many locations across the globe gather a large volume of log 

data, which is a good candidate for analysis with MapReduce, since it is semistructured and 

record-oriented. 

Data Format 

The data we will use is from the National Climatic Data Center (NCDC, http://www 

.ncdc.noaa.gov/). The data is stored using a line-oriented ASCII format, in which each line is 

a record. The format supports a rich set of meteorological elements, many of which are 

optional or with variable data lengths. For simplicity, we shall focus on the basic elements, 

such as temperature, which are always present and are of fixed width. 

Example shows a sample line with some of the salient fields highlighted. The line has been 

split into multiple lines to show each field: in the real file, fields are packed into one line with 

no delimiters. 

Data files are organized by date and weather station. There is a directory for each year 

from 1901 to 2001, each containing a gzipped file for each weather station with its readings 

for that year. For example, here are the first entries for 1990: 

% ls raw/1990 | head 

010010-99999-1990.gz 

010014-99999-1990.gz 

010015-99999-1990.gz 

010016-99999-1990.gz 

010017-99999-1990.gz 

010030-99999-1990.gz 

Since there are tens of thousands of weather stations, the whole dataset is made up of 

a large number of relatively small files. It’s generally easier and more efficient to process a 

smaller number of relatively large files, so the data was preprocessed so that each year’s 

readings were concatenated into a single file. 

Analyzing the Data with Hadoop 

To take advantage of the parallel processing that Hadoop provides, we need to express 

our query as a MapReduce job. After some local, small-scale testing, we will be able to run it 

on a cluster of machines. 

Map and Reduce 

MapReduce works by breaking the processing into two phases: the map phase and 

the reduce phase. Each phase has key-value pairs as input and output, the types of which 

www.Jntufastupdates.com

http://www/


IT Dept Page 2 

may be chosen by the programmer. The programmer also specifies two functions: the map 

function and the reduce function. 

The input to our map phase is the raw NCDC data. We choose a text input format that 

gives us each line in the dataset as a text value. The key is the offset of the beginning of the 

line from the beginning of the file, but as we have no need for this, we ignore it. 

Our map function is simple. We pull out the year and the air temperature, since these 

are the only fields we are interested in. In this case, the map function is just a data preparation 

phase, setting up the data in such a way that the reducer function can do its work on it: 

finding the maximum temperature for each year. The map function is also a good place to 

drop bad records: here we filter out temperatures that are missing, suspect, or erroneous. 

To visualize the way the map works, consider the following sample lines of input data 

(some unused columns have been dropped to fit the page, indicated by ellipses): 

0067011990999991950051507004...9999999N9+00001+99999999999... 

0043011990999991950051512004...9999999N9+00221+99999999999... 

0043011990999991950051518004...9999999N9-00111+99999999999... 

0043012650999991949032412004...0500001N9+01111+99999999999... 

0043012650999991949032418004...0500001N9+00781+99999999999... 

These lines are presented to the map function as the key-value pairs: 

(0, 0067011990999991950051507004...9999999N9+00001+99999999999...) 

(106, 0043011990999991950051512004...9999999N9+00221+99999999999...) 

(212, 0043011990999991950051518004...9999999N9-00111+99999999999...) 

(318, 0043012650999991949032412004...0500001N9+01111+99999999999...) 

(424, 0043012650999991949032418004...0500001N9+00781+99999999999...) 

The keys are the line offsets within the file, which we ignore in our map function. The map 

function merely extracts the year and the air temperature (indicated in bold text), and emits 

them as its output (the temperature values have been interpreted as integers): 

(1950, 0) 

(1950, 22) 

(1950, −11) 

(1949, 111) 

(1949, 78) 

The output from the map function is processed by the MapReduce framework before being 

sent to the reduce function. This processing sorts and groups the key-value pairs by key. 

So, continuing the example, our reduce function sees the following input: 

(1949, [111, 78]) 

(1950, [0, 22, −11]) 

Each year appears with a list of all its air temperature readings. All the reduce function has to 

do now is iterate through the list and pick up the maximum reading: 

(1949, 111) 

(1950, 22) 

This is the final output: the maximum global temperature recorded in each year. 

www.Jntufastupdates.com



IT Dept Page 3 

The whole data flow is illustrated in the bellow Figure. At the bottom of the diagram 

is a Unix pipeline 

Figure 2-1. MapReduce logical data flow 

Java MapReduce 

Having run through how the MapReduce program works, the next step is to express it 

in code. We need three things: a map function, a reduce function, and some code to run 

the job. The map function is represented by an implementation of the Mapper interface, 

which declares a map() method. Example -1 shows the implementation of our map function. 

Example - 1. Mapper for maximum temperature example 

import java.io.IOException; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.LongWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapred.MapReduceBase; 

import org.apache.hadoop.mapred.Mapper; 

import org.apache.hadoop.mapred.OutputCollector; 

import org.apache.hadoop.mapred.Reporter; 

public class MaxTemperatureMapper extends MapReduceBase implements 

   Mapper <LongWritable, Text, Text, IntWritable> 

{ 

private static final int MISSING = 9999; 

public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, 

Reporter reporter) throws IOException 

{ 

String line = value.toString(); 

String year = line.substring(15, 19); 

int airTemperature; 

if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs 

airTemperature = Integer.parseInt(line.substring(88, 92)); 

} else { 

airTemperature = Integer.parseInt(line.substring(87, 92)); 

} 

String quality = line.substring(92, 93); 

if (airTemperature != MISSING && quality.matches("[01459]")) { 

output.collect(new Text(year), new IntWritable(airTemperature)); 

} 

} 

} 

www.Jntufastupdates.com



IT Dept Page 4 

The Mapper interface is a generic type, with four formal type parameters that specify 

the input key, input value, output key, and output value types of the map function. For the 

present example, the input key is a long integer offset, the input value is a line of text, the 

output key is a year, and the output value is an air temperature (an integer). Rather than use 

built-in Java types, Hadoop provides its own set of basic types that are optimized for network 

serialization. These are found in the org.apache.hadoop.io package. 

Here we use LongWritable, which corresponds to a Java Long, Text (like Java 

String), and IntWritable (like Java Integer). 

The map() method is passed a key and a value. We convert the Text value containing the line 

of input into a Java String, then use its substring() method to extract the columns we are 

interested in. 

The map() method also provides an instance of OutputCollector to write the output to. In this 

case, we write the year as a Text object (since we are just using it as a key), and the 

temperature is wrapped in an IntWritable. We write an output record only if the temperature 

is present and the quality code indicates the temperature reading is OK. 

The reduce function is similarly defined using a Reducer, as illustrated in Example - 2. 

Example - 2. Reducer for maximum temperature example 

import java.io.IOException; 

import java.util.Iterator; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapred.MapReduceBase; 

import org.apache.hadoop.mapred.OutputCollector; 

import org.apache.hadoop.mapred.Reducer; 

import org.apache.hadoop.mapred.Reporter; 

public class MaxTemperatureReducer extends MapReduceBase 

implements Reducer<Text, IntWritable, Text, IntWritable> 

{ 

public void reduce(Text key, Iterator<IntWritable> values, 

OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException 

{ 

int maxValue = Integer.MIN_VALUE; 

while (values.hasNext()) { 

maxValue = Math.max(maxValue, values.next().get()); 

} 

output.collect(key, new IntWritable(maxValue)); 

} 

} 

Again, four formal type parameters are used to specify the input and output types, this 

time for the reduce function. The input types of the reduce function must match the output 

types of the map function: Text and IntWritable. And in this case, the output types of the 

reduce function are Text and IntWritable, for a year and its maximum temperature, which we 

find by iterating through the temperatures and comparing each with a record of the highest 

found so far. 

www.Jntufastupdates.com



IT Dept Page 5 

The third piece of code runs the MapReduce job (see Example -3). 

Example -3. Application to find the maximum temperature in the weather dataset 

import java.io.IOException; 

import org.apache.hadoop.fs.Path; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapred.FileInputFormat; 

import org.apache.hadoop.mapred.FileOutputFormat; 

import org.apache.hadoop.mapred.JobClient; 

import org.apache.hadoop.mapred.JobConf; 

public class MaxTemperature 

{ 

public static void main(String[] args) throws IOException 

{ 

if (args.length != 2) 

{ 

System.err.println("Usage: MaxTemperature <input path> <output path>"); 

System.exit(-1); 

} 

JobConf conf = new JobConf(MaxTemperature.class); 

conf.setJobName("Max temperature"); 

FileInputFormat.addInputPath(conf, new Path(args[0])); 

FileOutputFormat.setOutputPath(conf, new Path(args[1])); 

conf.setMapperClass(MaxTemperatureMapper.class); 

conf.setReducerClass(MaxTemperatureReducer.class); 

conf.setOutputKeyClass(Text.class); 

conf.setOutputValueClass(IntWritable.class); 

JobClient.runJob(conf); 

} 

} 

A JobConf object forms the specification of the job. It gives you control over how the 

job is run. When we run this job on a Hadoop cluster, we will package the code into a JAR 

file (which Hadoop will distribute around the cluster). Rather than explicitly specify the name 

of the JAR file, we can pass a class in the JobConf constructor, which Hadoop will use to 

locate the relevant JAR file by looking for the JAR file containing this class. 

Having constructed a JobConf object, we specify the input and output paths. An input 

path is specified by calling the static addInputPath() method on FileInputFormat, and it 

can be a single file, a directory (in which case, the input forms all the files in that directory), 

or a file pattern. As the name suggests, addInputPath() can be called more

than once to use input from multiple paths. 

The output path (of which there is only one) is specified by the static setOutput 

Path() method on FileOutputFormat. It specifies a directory where the output files from the 

reducer functions are written. The directory shouldn’t exist before running the job, as 

Hadoop will complain and not run the job. This precaution is to prevent data loss (it can be 

very annoying to accidentally overwrite the output of a long job with another). 

www.Jntufastupdates.com



IT Dept Page 6 

Next, we specify the map and reduce types to use via the setMapperClass() and 

setReducerClass() methods. The setOutputKeyClass() and setOutputValueClass() 

methods control the output types for the map and the reduce functions, which are often the 

same, as they are in our case. 

If they are different, then the map output types can be set using the methods 

setMapOutputKeyClass() and setMapOutputValueClass(). The input types are controlled via 

the input format, which we have not explicitly set since we are using the default 

TextInputFormat. After setting the classes that define the map and reduce functions, we are 

ready to run the job.  

The static runJob() method on JobClient submits the job and waits for it to finish, 

writing information about its progress to the console. 

The output was written to the output directory, which contains one output file per 

reducer. The job had a single reducer, so we find a single file, named part-00000: 

% cat output/part-00000 

1949 111 

1950 22 

This result is the same as when we went through it by hand earlier. We interpret this 

as saying that the maximum temperature recorded in 1949 was 11.1°C, and in 1950 it was 

2.2°C. 

The new Java MapReduce API: 

Release 0.20.0 of Hadoop included a new Java MapReduce API, sometimes referred 

to as “Context Objects,” designed to make the API easier to evolve in the future. The new 

API is type-incompatible with the old, however, so applications need to be rewritten to take 

advantage of it. 

There are several notable differences between the two APIs: 

 The new API favours abstract classes over interfaces, since these are easier to evolve.

For example, you can add a method (with a default implementation) to an abstract class

without breaking old implementations of the class. In the new API, the Mapper and

Reducer interfaces are now abstract classes.

 The new API is in the org.apache.hadoop.mapreduce package (and subpackages). The

old API can still be found in org.apache.hadoop.mapred.

 The new API makes extensive use of context objects that allow the user code to

communicate with the MapReduce system. The MapContext, for example, essentially

unifies the role of the JobConf, the OutputCollector, and the Reporter.

 The new API supports both a “push” and a “pull” style of iteration. In both APIs, key-

value record pairs are pushed to the mapper, but in addition, the new API allows a

mapper to pull records from within the map() method. The same goes for the reducer. An

example of how the “pull” style can be useful is processing records in batches, rather

than one by one.

 Configuration has been unified. The old API has a special JobConf object for job

configuration, which is an extension of Hadoop’s vanilla Configuration object. In the

new API, this distinction is dropped, so job configuration is done through a

Configuration.

 Job control is performed through the Job class, rather than JobClient, which no longer

exists in the new API.

www.Jntufastupdates.com



IT Dept Page 7 

 Output files are named slightly differently: part-m-nnnnn for map outputs, and partr- 

nnnnn for reduce outputs (where nnnnn is an integer designating the part number,

starting from zero).

When converting your Mapper and Reducer classes to the new API, don’t forget to

change the signature of the map() and reduce() methods to the new form. Just changing your 

class to extend the new Mapper or Reducer classes will not produce a compilation error or 

warning, since these classes provide an identity form of the map() or reduce() method 

(respectively). Your mapper or reducer code, however, will not be invoked, which can lead to 

some hard-to-diagnose errors. 

Combiner 

A Combiner, also known as a semi-reducer, is an optional class that operates by accepting 

the inputs from the Map class and thereafter passing the output key-value pairs to the 

Reducer class. 

The main function of a Combiner is to summarize the map output records with the same key. 

The output (key-value collection) of the combiner will be sent over the network to the actual 

Reducer task as input. 

Combiner class 

The Combiner class is used in between the Map class and the Reduce class to reduce the 

volume of data transfer between Map and Reduce. Usually, the output of the map task is 

large and the data transferred to the reduce task is high. 

The following MapReduce task diagram shows the COMBINER PHASE. 

www.Jntufastupdates.com



IT Dept Page 8 

How Combiner Works? 

Here is a brief summary on how MapReduce Combiner works − 

 A combiner does not have a predefined interface and it must implement the Reducer

interface’s reduce() method.

 A combiner operates on each map output key. It must have the same output key-value

types as the Reducer class.

 A combiner can produce summary information from a large dataset because it

replaces the original Map output.

Although, Combiner is optional yet it helps segregating data into multiple groups for Reduce 

phase, which makes it easier to process. 

MapReduce Combiner Implementation 

The following example provides a theoretical idea about combiners. Let us assume we have 

the following input text file named input.txt for MapReduce. 

What do you mean by Object 

What do you know about Java 

What is Java Virtual Machine 

How Java enabled High Performance 

The important phases of the MapReduce program with Combiner are discussed below. 

Record Reader 

This is the first phase of MapReduce where the Record Reader reads every line from the 

input text file as text and yields output as key-value pairs. 

Input − Line by line text from the input file. 

Output − Forms the key-value pairs. The following is the set of expected key-value pairs. 

<1, What do you mean by Object> 

<2, What do you know about Java> 

<3, What is Java Virtual Machine> 

<4, How Java enabled High Performance> 

Map Phase 

The Map phase takes input from the Record Reader, processes it, and produces the output as 

another set of key-value pairs. 

Input − The following key-value pair is the input taken from the Record Reader. 

<1, What do you mean by Object> 

<2, What do you know about Java> 

<3, What is Java Virtual Machine> 

<4, How Java enabled High Performance> 

www.Jntufastupdates.com



IT Dept Page 9 

The Map phase reads each key-value pair, divides each word from the value using 

StringTokenizer, and treats each word as key and the count of that word as value. The 

following code snippet shows the Mapper class and the map function. 

public static class WordCountMapper extends Mapper<Object, Text, Text, IntWritable> 

{ 

   private final static IntWritable one = new IntWritable(1); 

   private Text word = new Text(); 

   public void map(Object key, Text value, Context context) throws IOException, 

InterruptedException 

   { 

      StringTokenizer itr = new StringTokenizer(value.toString()); 

      while (itr.hasMoreTokens()) 

      { 

         word.set(itr.nextToken()); 

         context.write(word, one); 

      } 

   } 

} 

Output − The expected output is as follows − 

<What,1> <do,1> <you,1> <mean,1> <by,1> <Object,1> 

<What,1> <do,1> <you,1> <know,1> <about,1> <Java,1> 

<What,1> <is,1> <Java,1> <Virtual,1> <Machine,1> 

<How,1> <Java,1> <enabled,1> <High,1> <Performance,1> 

Combiner Phase 

The Combiner phase takes each key-value pair from the Map phase, processes it, and 

produces the output as key-value collection pairs. 

Input − The following key-value pair is the input taken from the Map phase. 

<What,1> <do,1> <you,1> <mean,1> <by,1> <Object,1> 

<What,1> <do,1> <you,1> <know,1> <about,1> <Java,1> 

<What,1> <is,1> <Java,1> <Virtual,1> <Machine,1> 

<How,1> <Java,1> <enabled,1> <High,1> <Performance,1> 

The Combiner phase reads each key-value pair, combines the common words as key and 

values as collection. Usually, the code and operation for a Combiner is similar to that of a 

Reducer. Following is the code snippet for Mapper, Combiner and Reducer class 

declaration. 

job.setMapperClass(WordCountMapper.class); 

job.setCombinerClass(WordCountReducer.class); 

job.setReducerClass(WordCountReducer.class); 

www.Jntufastupdates.com



IT Dept Page 10 

Output − The expected output is as follows − 

<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1> <Object,1> 

<know,1> <about,1> <Java,1,1,1> 

<is,1> <Virtual,1> <Machine,1> 

<How,1> <enabled,1> <High,1> <Performance,1> 

Partitioner Phase 

The partitioning phase takes place after the map phase and before the reduce phase. The 

number of partitions is equal to the number of reducers. The data gets partitioned across 

the reducers according to the partitioning function. 

The difference between a partitioner and a combiner is that the partitioner divides 

the data according to the number of reducers so that all the data in a single partition gets 

executed by a single reducer. However, the combiner functions similar to the reducer and 

processes the data in each partition. The combiner is an optimization to the reducer. 

The default partitioning function is the hash partitioning function where the hashing 

is done on the key. However it might be useful to partition the data according to some other 

function of the key or the value. 

Reducer Phase 

The Reducer phase takes each key-value collection pair from the Combiner phase, processes 

it, and passes the output as key-value pairs. Note that the Combiner functionality is same as 

the Reducer. 

Input − The following key-value pair is the input taken from the Combiner phase. 

<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1> <Object,1> 

<know,1> <about,1> <Java,1,1,1> 

<is,1> <Virtual,1> <Machine,1> 

<How,1> <enabled,1> <High,1> <Performance,1> 

The Reducer phase reads each key-value pair. Following is the code snippet for the 

Combiner. 

public static class WordCountReducer extends Reducer<Text,IntWritable,Text,IntWritable> 

{ 

   private IntWritable result = new IntWritable(); 

   public void reduce(Text key, Iterable<IntWritable> values, Context context) throws 

IOException, InterruptedException 

   { 

      int sum = 0; 

      for (IntWritable val : values) 

      { 

www.Jntufastupdates.com



IT Dept Page 11 

         sum += val.get(); 

      } 

      result.set(sum); 

      context.write(key, result); 

   } 

} 

Output − The expected output from the Reducer phase is as follows – 

<What,3> <do,2> <you,2> <mean,1> <by,1> <Object,1> 

<know,1> <about,1> <Java,3> 

<is,1> <Virtual,1> <Machine,1> 

<How,1> <enabled,1> <High,1> <Performance,1> 

Record Writer 

This is the last phase of MapReduce where the Record Writer writes every key-value pair 

from the Reducer phase and sends the output as text. 

Input − Each key-value pair from the Reducer phase along with the Output format. 

Output − It gives you the key-value pairs in text format. Following is the expected output. 

What 3 

do 2 

you 2 

mean 1 

by 1 

Object         1 

know 1 

about          1 

Java 3 

is             1 

Virtual        1 

Machine        1 

How  1 

enabled        1 

High 1 

Performance    1 

www.Jntufastupdates.com



IT Dept Page 12 

www.Jntufastupdates.com



IT Dept Page 1 

Hadoop   and    Big Data 

Unit 4: Hadoop I/O: The Writable Interface, WritableComparable and comparators, Writable 

Classes: Writable wrappers for Java primitives, Text, BytesWritable, NullWritable, 

ObjectWritable and GenericWritable, Writable collections, Implementing a Custom Writable: 

Implementing a RawComparator for speed, Custom comparators 

Reference: Hadoop: The Definitive Guide by Tom White, 3rd Edition, O’reilly 

Unit 4 

1. Hadoop I/O:

 The Writable Interface,

 WritableComparable and comparators,

2. Writable Classes:

 Writable wrappers for Java primitives,

 Text,

 BytesWritable,

 NullWritable,

 ObjectWritable

 GenericWritable,

 Writable collections,

3. Implementing a Custom Writable:

 Implementing a Raw Comparator for speed,

 Custom comparators

www.Jntufastupdates.com



IT Dept Page 2 

1. Hadoop I/O

The Writable Interface

Writable in an interface in Hadoop and types in Hadoop must implement this interface. Hadoop 

provides these writable wrappers for almost all Java primitive types and some other types,but 

sometimes we need to pass custom objects and these custom objects should implement Hadoop's 

Writable interface. Hadoop MapReduce uses implementations of Writables for interacting with 

user-provided Mappers and Reducers. 

To implement the Writable interface we require two methods: 

public interface Writable { 

void readFields(DataInput in); 

void write(DataOutput out); 

} 

Why use Hadoop Writable(s)? 

As we already know, data needs to be transmitted between different nodes in a distributed 

computing environment. This requires serialization and de-serialization of data to convert the 

data that is in structured format to byte stream and vice-versa. Hadoop therefore uses simple and 

efficient serialization protocol to serialize data between map and reduce phase and these are 

called Writable(s). Some of the examples of writables as already mentioned before are 

IntWritable, LongWritable, BooleanWritable and FloatWritable. 

WritableComparable interface is just a sub interface of the Writable and java.lang.Comparable 

interfaces. For implementing a WritableComparable we must have compareTo method apart 

from readFields and write methods, as shown below: 

public interface WritableComparable extends Writable, Comparable 

{ 

void readFields(DataInput in); 

void write(DataOutput out); 

int compareTo(WritableComparable o) 

} 

Comparison of types is crucial for MapReduce, where there is a sorting phase during which keys 

are compared with one another. 

Implementing a comparator for WritableComparables like the 

org.apache.hadoop.io.RawComparator interface will definitely help speed up your Map/Reduce

www.Jntufastupdates.com



IT Dept Page 3 

(MR) Jobs. As you may recall, a MR Job is composed of receiving and sending key-value pairs. 

The process looks like the following. 

(K1,V1) –> Map –> (K2,V2) 

(K2,List[V2]) –> Reduce –> (K3,V3) 

The key-value pairs (K2,V2) are called the intermediary key-value pairs. They are passed from 

the mapper to the reducer. Before these intermediary key-value pairs reach the reducer, a shuffle 

and sort step is performed. 

The shuffle is the assignment of the intermediary keys (K2) to reducers and the sort is the sorting 

of these keys. In this blog, by implementing the RawComparator to compare the intermediary 

keys, this extra effort will greatly improve sorting. Sorting is improved because the 

RawComparator will compare the keys by byte. If we did not use RawComparator, the 

intermediary keys would have to be completely deserialized to perform a comparison. 

Note (In Short): 
1)WritableComparables can be compared to each other, typically via Comparators. Any type
which is to be used as a key in the Hadoop Map-Reduce framework should implement this

interface.

2) Any type which is to be used as a value in the Hadoop Map-Reduce framework should

implement the Writable interface.

Writables and its Importance in Hadoop 

Writable is an interface in Hadoop. Writable in Hadoop acts as a wrapper class to almost all the 

primitive data type of Java. That is how int of java has become IntWritable in Hadoop and String 

of Java has become Text in Hadoop. 

Writables are used for creating serialized data types in Hadoop. So, let us start by understanding 

what data type, interface and serilization is. 

Data Type 

A data type is a set of data with values having predefined characteristics. There are several kinds 

of data types in Java. For example- int, short, byte, long, char etc. These are called as primitive 

data types. All these primitive data types are bound to classes called as wrapper class. For 

example int, short, byte, long are grouped under INTEGER which is a wrapper class. These 

wrapper classes are predefined in the Java. 

Interface in Java 

An interface in Java is a complete abstract class. The methods within an interface are abstract 

methods which do not accept body and the fields within the interface are public, static and final, 

which means that the fields cannot be modified.

www.Jntufastupdates.com



IT Dept Page 4 

The structure of an interface is most likely to be a class. We cannot create an object for an 

interface and the only way to use the interface is to implement it in other class by using 
‘implements’ keyword. 

Serialization 

Serialization is nothing but converting the raw data into a stream of bytes which can travel along 

different networks and can reside in different systems. Serialization is not the only concern of 

Writable interface; it also has to perform compare and sorting operation in Hadoop. 

Why are Writables Introduced in Hadoop? 

Now the question is whether Writables are necessary for Hadoop. Hadoop frame work definitely 

needs Writable type of interface in order to perform the following tasks: 

Implement serialization, Transfer data between clusters and networks 

Store the de-serialized data in the local disk of the system 

Implementation of writable is similar to implementation of interface in Java. It can be done by 

simply writing the keyword ‘implements’ and overriding the default writable method. 

Writable is a strong interface in Hadoop which while serializing the data, reduces the data size 

enormously, so that data can be exchanged easily within the networks. It has separate read and 

write fields to read data from network and write data into local disk respectively. Every data 

inside Hadoop should accept writable and comparable interface properties. 

We have seen how Writables reduces the data size overhead and make the data transfer easier in 

the network. 

What if Writable were not there in Hadoop? 

Let us now understand what happens if Writable is not present in Hadoop. 

Serialization is important in Hadoop because it enables easy transfer of data. If Writable is not 

present in Hadoop, then it uses the serialization of Java which increases the data over-head in the 

network. 

smallInt serialized value using Java serializer 

aced0005737200116a6176612e6c616e672e496e74656765 

7212e2a0a4f781873802000149000576616c7565787200106a6176612e 

6c616e672e4e756d62657286ac951d0b94e08b020000787000000064 

smallInt serialized value using IntWritable 

00000064 

www.Jntufastupdates.com



IT Dept Page 5 

This shows the clear difference between serialization in Java and Hadoop and also the difference 

between ObjectInputStream and Writable interface. If the size of serialized data in Hadoop is 

like that of Java, then it will definitely become an overhead in the network. 

Also the core part of Hadoop framework i.e., shuffle and sort phase won’t be executed without 

using Writable. 

How can Writables be Implemneted in Hadoop? 

Writable variables in Hadoop have the default properties of Comparable. For example: 

When we write a key as IntWritable in the Mapper class and send it to the reducer class, there is 

an intermediate phase between the Mapper and Reducer class i.e., shuffle and sort, where each 

key has to be compared with many other keys. If the keys are not comparable, then shuffle and 

sort phase won’t be executed or may be executed with high amount of overhead. 

If a key is taken asIntWritable by default, then it has comparable feature because of 

RawComparator acting on that variable. It will compare the key taken with the other keys in the 

network. This cannot take place in the absence of Writable. 

Can we make custom Writables? The answer is definitely ‘yes’. We can make our own custom 

Writable type. 

Let us now see how to make a custom type in Java. 

The steps to make a custom type in Java is as follows: 

public class add { 

int a; 

int b; 

public add() { 

this.a = a; 

this.b = b; 

} 

}

www.Jntufastupdates.com



IT Dept Page 6 

Similarly we can make a custom type in Hadoop using Writables. 

For implementing Writables, we need few more methods in Hadoop: 

public interface Writable { 

void readFields(DataInput in); 

void write(DataOutput out); 

} 

Here, readFields, reads the data from network and write will write the data into local disk. Both 

are necessary for transferring data through clusters. DataInput and DataOutput classes (part of 

java.io) contain methods to serialize the most basic types of data. 

Suppose we want to make a composite key in Hadoop by combining two Writables then follow 

the steps below: 

public class add implements Writable{ 

public int a; 

public int b; 

public add(){ 

this.a=a; 

this.b=b; 

} 

public void write(DataOutput out) throws IOException { 

out.writeInt(a); 

out.writeInt(b); 

} 

public void readFields(DataInput in) throws IOException { 

a = in.readInt();

www.Jntufastupdates.com



IT Dept Page 7 

b = in.readInt(); 

} 

public String toString() { 

return Integer.toString(a) + ", " + Integer.toString(b) 

} 

} 

Thus we can create our custom Writables in a way similar to custom types in Java but with two 

additional methods, write and readFields. The custom writable can travel through networks and 

can reside in other systems. 

This custom type cannot be compared with each other by default, so again we need to make them 

comparable with each other. 

Let us now discuss what is WritableComparable and the solution to the above problem. 

As explained above, if a key is taken as IntWritable, by default it has comparable feature because 

of RawComparator acting on that variable and it will compare the key taken with the other keys 

in network and If Writable is not there it won’t be executed. 

By default, IntWritable, LongWritable and Text have a RawComparator which can execute this 

comparable phase for them. Then, will RawComparator help the custom Writable? The answer is 

no. So, we need to have WritableComparable. 

WritableComparable can be defined as a sub interface of Writable, which has the feature of 

Comparable too. If we have created our custom type writable, then 

why do we need WritableComparable? 

We need to make our custom type, comparable if we want to compare this type with the other. 

we want to make our custom type as a key, then we should definitely make our key type as 

WritableComparable rather than simply Writable. This enables the custom type to be compared 

with other types and it is also sorted accordingly. Otherwise, the keys won’t be compared with 

each other and they are just passed through the network. 

What happens if WritableComparable is not present? 

If we have made our custom type Writable rather than WritableComparable our data won’t be 

compared with other data types. There is no compulsion that our custom types need to be 

www.Jntufastupdates.com



IT Dept Page 8 

WritableComparable until unless if it is a key. Because values don’t need to be compared with 

each other as keys. 

If our custom type is a key then we should have WritableComparable or else the data won’t be 

sorted. 

How can WritableComparable be implemented in Hadoop? 

The  implementation  of  WritableComparable  is  similar  to  Writable  but  with  an  additional 

‘CompareTo’ method inside it. 

public interface WritableComparable extends Writable, Comparable 

{ 

void readFields(DataInput in); 

void write(DataOutput out); 

int compareTo(WritableComparable o) 

} 

How to make our custom type, WritableComparable? 

We can make custom type a WritableComparable by following the method below: 

public class add implements WritableComparable{ 

public int a; 

public int b; 

public add(){ 

this.a=a; 

this.b=b; 

} 

public void write(DataOutput out) throws IOException { 

out.writeint(a); 

out.writeint(b); 

} 

www.Jntufastupdates.com



IT Dept Page 9 

public void readFields(DataInput in) throws IOException { 

a = in.readint(); 

b = in.readint(); 

} 

public int CompareTo(add c){ 

int presentValue=this.value; 

int CompareValue=c.value; 

return (presentValue < CompareValue ? -1 : (presentValue==CompareValue ? 0 : 1)); 

} 

public int hashCode() { 

return Integer.IntToIntBits(a)^ Integer.IntToIntBits(b); 

} 

} 

These read fields and write make the comparison of data faster in the network. 

With the use of these Writable and WritableComparables in Hadoop, we can make our serialized 

custom type with less difficulty. This gives the ease for developers to make their custom types 

based on their requirement.

www.Jntufastupdates.com



IT Dept Page 10 

Writable Classes – Hadoop Data Types 

Hadoop     provides classes     that     wrap     the  Java primitive types     and implement 

the WritableComparable and Writable Interfaces. They are provided in 

the org.apache.hadoop.io package. 

All the Writable wrapper classes have a get() and a set() method for retrieving and storing the 

wrapped value. 

Primitive Writable Classes 

These are Writable Wrappers for Java primitive data types and they hold a single primitive value 

that can be set either at construction or via a setter method. 

All these primitive writable wrappers have get() and set() methods to read or write the wrapped 

value. Below is the list of primitive writable data types available in Hadoop. 

 BooleanWritable 

 ByteWritable 

 IntWritable 

 VIntWritable 

 FloatWritable 

 LongWritable 

 VLongWritable 

 DoubleWritable 

In the above list VIntWritable and VLongWritable are used for variable length Integer types and 

variable length long types respectively. 

Serialized sizes of the above primitive writable data types are same as the size of actual java data 

type. So, the size of IntWritable is 4 bytes and LongWritable is 8 bytes. 

Array Writable Classes 

Hadoop provided two types of array writable classes, one for single-dimensional and another 

for two-dimensional arrays. But theelements of these arrays must be other writable objects like 

IntWritable or LongWritable only but not the java native data types like int or float. 

 ArrayWritable 

 TwoDArrayWritable 

Map Writable Classes 

Hadoop provided below MapWritable data types which implement java.util.Map interface 

o AbstractMapWritable – This is abstract or base class for other MapWritable classes.

www.Jntufastupdates.com



IT Dept Page 11 

o  MapWritable – This is a general purpose map mapping Writable keys to Writable values.

o  SortedMapWritable    – This is a specialization of the MapWritable class that also implements the

SortedMap interface.

Other Writable Classes 

 NullWritable 

NullWritable is a special type of Writable representing a null value. No bytes are read or written 

when a data type is specified as NullWritable. So, in Mapreduce, a key or a value can be 

declared as a NullWritable when we don’t need to use that field. 

 ObjectWritable 

This  is  a  general-purpose  generic  object  wrapper  which  can  store  any  objects  like  Java 

primitives, String, Enum, Writable, null, or arrays. 

 Text 

Text can be used as the Writable equivalent of java.lang.String and It’s max size is 2 GB. Unlike 

java’s String data type, Text is mutable in Hadoop. 

 BytesWritable 

BytesWritable is a wrapper for an array of binary data. 

 GenericWritable 

It is similar to ObjectWritable but supports only a few types. User need to subclass this 

GenericWritable class and need to specify the types to support. 

Example Program to Test Writables 

Lets write a WritablesTest.java program to test most of the data types mentioned above in this 

post with get(), set(), getBytes(), getLength(), put(), containsKey(), keySet() methods. 

www.Jntufastupdates.com



IT Dept Page 12 

WritablesTest.java 

import org.apache.hadoop.io.* ; 

import java.util.* ; 

public class WritablesTest 

{ 

 public static class TextArrayWritable extends ArrayWritable 

{ 

public TextArrayWritable() 

{ 

super(Text.class) ; 

} 

} 

public static class IntArrayWritable extends ArrayWritable 

{ 

public IntArrayWritable() 

{ 

super(IntWritable.class) ; 

} 

} 

public static void main(String[] args) 

{ 

IntWritable i1 = new IntWritable(2) ; 

IntWritable i2 = new IntWritable() ; 

i2.set(5); 

IntWritable i3 = new IntWritable(); 

i3.set(i2.get()); 

System.out.printf("Int Writables Test I1:%d , I2:%d , I3:%d", i1.get(), i2.get(), i3.get()) ; 

BooleanWritable bool1 = new BooleanWritable() ; 

bool1.set(true); 

ByteWritable byte1 = new ByteWritable( (byte)7) ; 

System.out.printf("\n Boolean Value:%s Byte Value:%d", bool1.get(), byte1.get()) ; 

Text t = new Text("hadoop"); 

Text t2 = new Text(); 

t2.set("pig"); 

System.out.printf("\n t: %s, t.legth: %d, t2: %s, t2.length: %d \n", t.toString(), t.getLength(), 

t2.getBytes(), t2.getBytes().length); 

www.Jntufastupdates.com



IT Dept Page 13 

ArrayWritable a = new ArrayWritable(IntWritable.class) ; 

a.set( new IntWritable[]{ new IntWritable(10), new IntWritable(20), new IntWritable(30)}) ;

ArrayWritable b = new ArrayWritable(Text.class) ; 

b.set( new Text[]{ new Text("Hello"), new Text("Writables"), new Text("World !!!")}) ;

for (IntWritable i: (IntWritable[])a.get()) 

System.out.println(i) ; 

for (Text i: (Text[])b.get()) 

System.out.println(i) ; 

IntArrayWritable ia = new IntArrayWritable() ; 

ia.set(  new  IntWritable[]{  new  IntWritable(100),  new  IntWritable(300),  new 

IntWritable(500)}) ; 

IntWritable[] ivalues = (IntWritable[])ia.get() ; 

for (IntWritable i : ivalues) 

System.out.println(i); 

MapWritable m = new MapWritable() ; 

IntWritable key1 = new IntWritable(1) ; 

NullWritable value1 = NullWritable.get() ; 

m.put(key1, value1) ;

m.put(new VIntWritable(2), new LongWritable(163));

m.put(new VIntWritable(3), new Text("Mapreduce"));

System.out.println(m.containsKey(key1)) ; 

System.out.println(m.get(new VIntWritable(3))) ; 

m.put(new LongWritable(1000000000), key1) ;

Set<Writable> keys = m.keySet() ;

for(Writable w: keys) 

System.out.println(m.get(w)) ; 

} 

}

www.Jntufastupdates.com



IT Dept Page 14 

Implementing a Custom Writable: 

IMPLEMENTING RAWCOMPARATOR WILL SPEED UP YOUR HADOOP MAP/REDUCE 

(MR) JOBS 

Implementing the org.apache.hadoop.io.RawComparator interface will definitely help speed up 

your Map/Reduce (MR) Jobs. As you may recall, a MR Job is composed of receiving and 

sending key-value pairs. The process looks like the following. 

(K1,V1) –> Map –> (K2,V2) 

(K2,List[V2]) –> Reduce –> (K3,V3) 

The key-value pairs (K2,V2) are called the intermediary key-value pairs. They are passed from 

the mapper to the reducer. Before these intermediary key-value pairs reach the reducer, a shuffle 

and sort step is performed. The shuffle is the assignment of the intermediary keys (K2) to 

reducers and the sort is the sorting of these keys. In this blog, by implementing the 

RawComparator to compare the intermediary keys, this extra effort will greatly improve sorting. 

Sorting is improved because the RawComparator will compare the keys by byte. If we did not 

use RawComparator, the intermediary keys would have to be completely deserialized to perform 

a comparison.

www.Jntufastupdates.com



IT Dept Page 15 

BACKGROUND 

Two ways you may compare your keys is by implementing the 

org.apache.hadoop.io.WritableComparable  interface  or  by implementing  the  RawComparator 

interface. In the former approach,  you will compare (deserialized) objects, but in the latter 

approach, you will compare the keys using their corresponding raw bytes. 

The  empirical test to demonstrate the advantage of RawComparator over WritableComparable. 

Let’s say we are processing a file that has a list of pairs of indexes {i,j}. These pairs of indexes 

could refer to the i-th and j-th matrix element. The input data (file) will look something like the 

following. 

1, 2 

3, 4 

5, 6 

... 

... 

... 

0, 0 

What we want to do is simply count the occurrences of the {i,j} pair of indexes. Our MR Job will 

look like the following. 

(LongWritable,Text) –> Map –> ({i,j},IntWritable) 

({i,j},List[IntWritable]) –> Reduce –> ({i,j},IntWritable) 

METHOD 

The first thing we have to do is model our intermediary key K2={i,j}. Below is a snippet of the 

IndexPair. As you can see, it implements WritableComparable. Also, we are sorting the keys 

ascendingly by the i-th and then j-th indexes. 

public class IndexPair implements WritableComparable<IndexPair> { 

private IntWritable i; 

private IntWritable j;

www.Jntufastupdates.com



IT Dept Page 16 

public IndexPair(int i, int j) { 

this.i = new IntWritable(i); 

this.j = new IntWritable(j); 

} 

public int compareTo(IndexPair o) { 

int cmp = i.compareTo(o.i); 

if(0 != cmp) 

return cmp; 

return j.compareTo(o.j); 

} 

//.... 

} 

Below  is  a  snippet  of  the  RawComparator.  As  you  notice,  it  does  not  directly implement 

RawComparator. Rather, it extends WritableComparator (which implements RawComparator). 

We could have directly implemented RawComparator, but by extending WritableComparator, 

depending on the complexity of our intermediary key, we may use some of the utility methods of 

WritableComparator. 

public class IndexPairComparator extends WritableComparator { 

protected IndexPairComparator() { 

super(IndexPair.class); 

} 

@Override 

public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { 

int i1 = readInt(b1, s1); 

int i2 = readInt(b2, s2); 

int comp = (i1 < i2) ? -1 : (i1 == i2) ? 0 : 1;

www.Jntufastupdates.com

mailto:@Override


IT Dept Page 17 

if(0 != comp) 

return comp; 

int j1 = readInt(b1, s1+4); 

int j2 = readInt(b2, s2+4); 

comp = (j1 < j2) ? -1 : (j1 == j2) ? 0 : 1; 

return comp; 

} 

} 

As  you  can  see  the  above  code,  for  the  two  objects  we  are  comparing,  there  are  two 

corresponding byte arrays (b1 and b2), the starting positions of the objects in the byte arrays, and 

the length of the bytes they occupy. Please note that the byte arrays themselves represent other 

things and not only the objects we are comparing. That is why the starting position and length are 

also passed in as arguments. Since we want to sort ascendingly by i then j, we first compare the 

bytes representing the i-th indexes and if they are equal, then we compare the j-th indexes. You 

can   also   see   that   we   use   the   util   method,   readInt(byte[],   start),   inherited   from 

WritableComparator. This method simply converts the 4 consecutive bytes beginning at start into 

a primitive int (the primitive int in Java is 4 bytes). If the i-th indexes are equal, then we shift the 

starting point by 4, read in the j-th indexes and then compare them. 

A snippet of the mapper is shown below. 

public void map(LongWritable key, Text value, Context context) throws IOException, 

InterruptedException { 

String[] tokens = value.toString().split(","); 

int i = Integer.parseInt(tokens[0].trim()); 

int j = Integer.parseInt(tokens[1].trim()); 

IndexPair indexPair = new IndexPair(i, j); 

context.write(indexPair, ONE); 

}

www.Jntufastupdates.com



IT Dept Page 18 

A snippet of the reducer is shown below. 

public  void  reduce(IndexPair  key,  Iterable<IntWritable>  values,  Context  context)  throws 

IOException, InterruptedException { 

int sum = 0; 

for(IntWritable value : values) { 

sum += value.get(); 

} 

context.write(key, new IntWritable(sum)); 

} 

The snippet of code below shows how I wired up the MR Job that does NOT use raw byte 

comparison. 

public int run(String[] args) throws Exception { 

Configuration conf = getConf(); 

Job job = new Job(conf, "raw comparator example"); 

job.setJarByClass(RcJob1.class); 

job.setMapOutputKeyClass(IndexPair.class); 

job.setMapOutputValueClass(IntWritable.class); 

job.setOutputKeyClass(IndexPair.class); 

job.setOutputValueClass(IntWritable.class); 

job.setMapperClass(RcMapper.class); 

job.setReducerClass(RcReducer.class); 

job.waitForCompletion(true); 

return 0; 

} 

www.Jntufastupdates.com



IT Dept Page 19 

The snippet of code below shows how I wired up the MR Job using the raw byte comparator. 

public int run(String[] args) throws Exception { 

Configuration conf = getConf(); 

Job job = new Job(conf, "raw comparator example"); 

job.setJarByClass(RcJob1.class); 

job.setSortComparatorClass(IndexPairComparator.class); 

job.setMapOutputKeyClass(IndexPair.class); 

job.setMapOutputValueClass(IntWritable.class); 

job.setOutputKeyClass(IndexPair.class); 

job.setOutputValueClass(IntWritable.class); 

job.setMapperClass(RcMapper.class); 

job.setReducerClass(RcReducer.class); 

job.waitForCompletion(true); 

return 0; 

} 

As you can see, the only difference is that in the MR Job using the raw comparator, we explicitly 

set its sort comparator class. 

RESULTS 

I ran the MR Jobs (without and with raw byte comparisons) 10 times on a dataset of 4 million 

rows of {i,j} pairs. The runs were against Hadoop v0.20 in standalone mode on Cygwin. The 

average running time for the MR Job without raw byte comparison is 60.6 seconds, and the 

average running time for the job with raw byte comparison is 31.1 seconds. A two-tail paired t- 

test showed p < 0.001, meaning, there is a statistically significant difference between the two 

implementations in terms of empirical running time. 

www.Jntufastupdates.com



IT Dept Page 20 

I then ran each implementation on datasets of increasing record sizes from 1, 2, …, and 10 

million records. At 10 million records, without using raw byte comparison took 127 seconds 

(over 2 minutes) to complete, while using raw byte comparison took 75 seconds (1 minute and 

15 seconds) to complete. Below is a line graph. 

www.Jntufastupdates.com



IT Dept Page 21 

Custom comparators. 

Frequently, objects in one Tuple are compared to objects in a second Tuple. This is especially 

true during the sort phase of GroupBy and CoGroup in Cascading Hadoop mode. 

By default, Hadoop and Cascading use the native  Object    methods  equals()   and hashCode() 

to compare two values and get a consistent hash code for a given value, respectively. 

To override this default behavior, you can create a custom java.util.Comparator class to perform 

comparisons on a given field in a Tuple. For instance, to secondary-sort a collection  of  custom 

Person objects  in  a GroupBy, use  the   Fields.setComparator() method to designate the 

custom Comparator to the Fields instance that specifies the sort fields. 

Alternatively, you can set a default Comparator to be used by a Flow, or used locally on a 

given Pipe instance.      There      are      two      ways      to      do      this.      Call 

FlowProps.setDefaultTupleElementComparator()  on a Properties instance, or use the property 

key cascading.flow.tuple.element.comparator. 

If the hash code must also be customized, the custom Comparator can implement the interface 

cascading.tuple.Hasher 

public class CustomTextComparator extends 

{ 

private Collator collator; 

public CustomTextComparator() 

super(Text.class); 

final Locale locale = new Locale("pl"); 

collator = Collator.getInstance(locale); 

} 

public int compare(WritableComparable a, WritableComparable b) { 

synchronized (collator) { 

return collator.compare(((Text) a).toString(), ((Text) b).toString()); 

} 

} 

} 

www.Jntufastupdates.com



UNIT-VI HIVE Hadoop & Big Data 

IT Dept Page 1  

Applying Structure to Hadoop Data with Hive: Saying Hello to Hive, Seeing How the Hive is Put Together, 

Getting Started with Apache Hive, Examining the Hive Clients, Working with Hive Data Types, Creating and 

Managing Databases and Tables, Seeing How the Hive Data Manipulation Language Works, Querying and 
Analyzing Data. 

HIVE Introduction 
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It 

resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy. 

The term ‘Big Data’ is used for collections of large  datasets  that include huge 

volume, high velocity, and a variety of data that is increasing day by day. Using traditional 

data management systems, it is difficult to process Big  Data.  Therefore,  the   Apache  

Software   Foundation introduced a framework called Hadoop to solve Big Data management 

and processing challenges. 

Hadoop 

Hadoop is an open-source framework to store and process Big Data in a distributed 

environment. It contains two modules, one is MapReduce and another is Hadoop 

Distributed File System (HDFS). 

   MapReduce: It is a parallel programming model for processing large amounts of structured, semi-

structured, and unstructured data on large clusters of commodity hardware. 

   HDFS:Hadoop Distributed File System is a part of Hadoop framework, used to store and 

process the datasets. It provides a fault-tolerant file system to run on commodity hardware. 

The  Hadoop  ecosystem   contains   different   sub-projects   (tools)   such as  Sqoop, Pig, 

and Hive that are used to help Hadoop modules. 

 Sqoop: It  is  used  to  import  and  export  data  to  and  from  between HDFS and RDBMS. 

   Pig: It is a procedural language platform used to develop a script for MapReduce 

operations. 

   Hive: It is a platform used to develop SQL type scripts to do MapReduce 

operations. 

Note: There are various ways to execute MapReduce operations: 

 The traditional approach using Java MapReduce program for structured, 

semi- structured, and unstructured data. 

  The scripting approach for MapReduce to process structured and semi structured data using 

Pig. 

  The Hive Query Language (HiveQL or HQL) for MapReduce to process structured data 

using Hive. 

What is Hive 

www.Jntufastupdates.com 1



UNIT-VI HIVE Hadoop & Big Data 

IT Dept Page 2  

Hive is a  data  warehouse  infrastructure  tool to  process  structured data in Hadoop. It 

resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy. 

Initially Hive was developed by Facebook, later the Apache Software Foundation took it 

up and developed it further as an open source under the name Apache Hive. It is used by 

different companies. For example, Amazon uses it in Amazon Elastic MapReduce. 

Hive is not 

 A relational database 

 A design for OnLine Transaction Processing (OLTP) 

A language for real-time queries and row-level updates 

Features of Hive 

 It stores schema in a database and processed data into HDFS.

 It is designed for OLAP.

 It provides SQL type language for querying called HiveQL or HQL.

 It is familiar, fast, scalable, and extensible.

Architecture of Hive 

The following component diagram depicts the architecture of Hive: 

The apache Hive architecture 

This component diagram contains different units. The following 

table describes each unit: 

www.Jntufastupdates.com 2



UNIT-VI HIVE Hadoop & Big Data 

IT Dept Page 3  

Unit Name Operation 

User Interface 

Hive is a data warehouse infrastructure software that can create 

interaction between user and HDFS. The user interfaces that Hive 

supports are Hive Web UI, Hive command line, and Hive HD 

Insight (In Windows 

Meta Store 

Hive chooses respective database servers to store the schema or 

Metadata of tables, databases, columns in a table, their data 

types, and HDFS mapping. 

HiveQL Process Engine 

HiveQL is similar to SQL for querying on schema info on the 
Metastore. It is one of the replacements of traditional approach for 

MapReduce program. Instead of writing MapReduce program in 

Java, we can write a query for MapReduce job and process it. 

Execution Engine 
The conjunction part of HiveQL process Engine and 
MapReduce is Hive Execution Engine. Execution engine 

processes the query and generates results as same as 
MapReduce results. It uses the flavor of MapReduce 

Working of Hive 

The following diagram depicts the workflow between Hive and Hadoop. 

HDFS or HBASE 
Hadoop distributed file system or HBASE are the data 
storage techniques to store data into file system. 

www.Jntufastupdates.com 3



UNIT-VI HIVE Hadoop & Big Data 

IT Dept Page 4  

The following table defines how Hive interacts with Hadoop framework: 

Step Operation 

No. 

1 

Execute Query 

The Hive interface such as Command Line or Web UI sends query to Driver (any 

database driver such as JDBC, ODBC, etc.) to execute. 

2 
Get Plan 
The driver takes the help of query compiler that parses the query to check the syntax and 

query plan or the requirement of query. 

3 

Get Metadata 

The compiler sends metadata request to Metastore (any database). 

4 
Send Metadata 

Metastore sends metadata as a response to the compiler. 

5 

Send Plan 

The  compiler  checks  the  requirement  and  resends  the  plan  to  the driver. Up to 

here, the parsing and compiling of a query is complete. 

6 

Execute Plan 

The driver sends the execute plan to the execution engine. 

7 

Execute Job 

Internally, the process of execution job is a MapReduce  job.  The execution engine sends the job 

to  JobTracker,  which  is  in  Name  node and it assigns this job to TaskTracker, which is in Data 

node. Here, the query executes MapReduce job. 

7.1 

Metadata Ops 

Meanwhile  in  execution,  the  execution  engine  can  execute  metadata operations with 

Metastore. 

8 Fetch Result 

The execution engine receives the results from Data nodes. 

9 Send Results 

The execution engine sends those resultant values to the driver. 

10 Send Results 

The driver sends the results to Hive Interfaces. 

www.Jntufastupdates.com 4



UNIT-VI HIVE Hadoop & Big Data 

IT Dept 6 

Hive - Data Types 

All the data types in Hive are classified into four types, given as follows: 

 Column Types

 Literals

 Null Values

 Complex Types

Column Types 

Column type are used as column data types of Hive. They are as follows: 

Integral Types 

Integer type data can be specified using integral data types, INT. When the data range 

exceeds the  range  of  INT,  you need to  use  BIGINT  and if the data range is smaller 

than the INT, you use SMALLINT.  TINYINT  is smaller than SMALLINT. 

The following table depicts various INT data types: 

Type Postfix Example 

TINYINT Y 10Y 

SMALLINT S 10S 

INT - 10 

BIGINT L 10L 

String Types 

String type data types can be specified using single quotes (' ') or double quotes (" "). It 

contains two data types: VARCHAR and CHAR. Hive follows C-types escape characters. 

The following table depicts various CHAR data types: 

Data Type Length 

VARCHAR 1 to 65355 

CHAR 255 

www.Jntufastupdates.com 5



UNIT-VI HIVE Hadoop & Big Data 

IT Dept 7 

Timestamp 

It supports traditional UNIX timestamp with optional  nanosecond precision. It supports 

java.sql.Timestamp format “YYYY-MM-DD HH:MM:SS.fffffffff” and format “yyyy-mm-dd 

hh:mm:ss.ffffffffff”. 

Dates 

DATE values are described in year/month/day format in the form {{YYYY- MM-DD}}. 

Decimals 
The DECIMAL type in Hive is as same as Big Decimal format of Java. It is used for 

representing immutable  arbitrary  precision.  The  syntax  and example is as follows: 

Union Types 

Union is a collection of heterogeneous data types. You can create 

an instance using create union. The syntax and example is as follows: 

UNIONTYPE<int, double, array<string>, struct<a:int,b:string>>

{0:1} 

{1:2.0} 

{2:["three","four"]} 

{3:{"a":5,"b":"five"}} 

{2:["six","seven"]} 

{3:{"a":8,"b":"eight"}} 

{0:9} 

{1:10.0} 

Literals 

The following literals are used in Hive: 

Floating Point Types 

Floating point types are nothing but numbers with decimal 

points. Generally, this type of data is composed of DOUBLE data type. 

DECIMAL(precision, scale) 

decimal(10,0) 

www.Jntufastupdates.com 6



UNIT-VI HIVE Hadoop & Big Data 

IT Dept 8 

Decimal Type 

Decimal type data is nothing but floating point value with higher range than DOUBLE data type. The 

range of decimal type is approximately -10
-308 

to 10
308

.

Null Value 

Missing values are represented by the special value NULL. 

Complex Types 

The Hive complex data types are as follows: 

Arrays 

Arrays in Hive are used the same way they are used in Java. 

Maps 

Maps in Hive are similar to Java Maps. 

Structs 

Structs in Hive is similar to using complex data with comment. 

Hive - Create Database 

   Hive is a database technology that can define databases and tables to analyze 

structured data. The theme for structured data analysis is to store the data  in  a 

tabular  manner,  and  pass  queries  to  analyze it. This chapter explains how to create 

Hive database. Hive contains a default database named default. 

Create Database Statement 

  Create Database is a statement used to create a database in Hive. A database   in 

Hive    is    a namespace or    a    collection    of tables. The syntax for this 

statement is as follows: 

Here, IF NOT EXISTS is an optional clause, which notifies the user that a database with 

the same name already exists. We can use SCHEMA in place of

DATABASE in this command. The following query is 

executed to create a database named userdb: 

CREATE DATABASE|SCHEMA [IF NOT EXISTS] <database name> 

Syntax: STRUCT<col_name :  data_type [COMMENT col_comment], ...> 

Syntax: MAP<primitive_type, data_type> 

Syntax: ARRAY<data_type> 

www.Jntufastupdates.com 7



IT Dept 9 

UNIT-VI HIVE Hadoop & Big Data 

The following query is used to verify a databases list: 

Drop Database Statement 

Drop  Database  is  a  statement  that  drops  all  the  tables  and  deletes the database. Its 

syntax is as follows: 

The following queries are used to drop a database. Let us assume that the database name 

is userdb. 

The following query drops the database using CASCADE. It means dropping respective 

tables before dropping the database. 

The following query drops the database using SCHEMA. 

create Table Statement 

Create Table is a statement used to create a table in Hive. The syntax and example are as 

follows: 

Syntax 

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.] table_name 

[(col_name data_type [COMMENT col_comment], ...)] 

[COMMENT table_comment] 

[ROW FORMAT row_format] [STORED AS  file_format] 

hive> DROP SCHEMA userdb; 

hive>  DROP DATABASE IF  EXISTS userdb CASCADE; 

hive>  DROP DATABASE IF  EXISTS userdb; 

DROP DATABASE StatementDROP (DATABASE|SCHEMA) [IF EXISTS] database_name 

[RESTRICT|CASCADE]; 

hive> SHOW  DATABASES; 

default 

userdb 

hive> CREATE DATABASE [IF  NOT EXISTS] userdb; 

or 

hive> CREATE SCHEMA userdb; 

www.Jntufastupdates.com 8



IT Dept 1
0

UNIT-VI HIVE Hadoop & Big Data 

Example 

Let us assume you need to create a table named employee using CREATE TABLE 

statement. The following table lists the fields and their data types in employee table: 

Sr.No Field Name Data Type 

1 Eid int 

2 Name String 

3 Salary Float 

4 Designation string 

The following data is a Comment, Row formatted fields such as 

Field terminator, Lines terminator, and Stored File type. 

The following query creates a table named employee using the above data. 

If you add the option IF NOT EXISTS, Hive ignores the statement in case the table 

already exists. 

On successful creation of table, you get to see the following response: 

Load Data Statement 

Generally, after creating a table in SQL, we can insert data using the Insert statement. 

But in Hive, we can insert data using the LOAD DATA statement. 

While inserting data into Hive, it is better to use LOAD DATA to store bulk records. 

There are two ways to load data: one is from local file system and second is from Hadoop 

file system. 

OK 
Time taken: 5.905  seconds 
hive> 

hive>  CREATE  TABLE  IF  NOT  EXISTS  employee  ( eid  int, name  String, salary  String,  destination 
String) 
COMMENT ŧEmployee detailsŨ 
ROW FORMAT DELIMITED FIELDS TERMINATED BY ŧ\tŨ LINES TERMINATED BY ŧ\nŨ STORED AS 

TEXTFILE; 

COMMENT ŧEmployee detailsŨ FIELDS TERMINATED BY ŧ\tŨ LINES TERMINATED BY ŧ\nŨ STORED IN 

TEXT FILE 

www.Jntufastupdates.com 9



IT Dept 1
1

UNIT-VI HIVE Hadoop & Big Data 

Syntax 

The syntax for load data is as follows: 

LOCAL is identifier to specify the local path. It is optional. 

 OVERWRITE is optional to overwrite the data in the table. 

 PARTITION is optional. 

Example 

We will insert the following data into the table. It is a text 

file namedsample.txt in /home/user directory. 

1201 
1202 

Gopal 
Manisha

45000 
45000 

Technical manager 
Proof reader

1203 Masthanvali 40000 Technical writer 

1204 Kiran 40000 Hr Admin 

1205 Kranthi 30000 Op Admin 

The following query loads the given text into the table. 

hive>  LOAD  DATA  LOCAL  INPATH 
'/home/user/sample.txt' OVERWRITE INTO TABLE employee; 

On successful download, you get to see the following response: 

Alter Table Statement 

It is used to alter a table in Hive. 

Syntax 

The statement takes any of the following syntaxes based on what attributes we wish to 

modify in a table. 

Rename To… Statement 

The following query renames the table from employee to emp. 

hive>  ALTER  TABLE  employee  RENAME  TO  emp; 

ALTER  TABLE name  RENAME  TO new_name 
ALTER  TABLE name  ADD  COLUMNS  (col_spec[,  col_spec  ...]) 
ALTER  TABLE name DROP  [COLUMN] column_name 
ALTER TABLE name CHANGE  column_name new_name new_type 

ALTER  TABLE name REPLACE  COLUMNS  (col_spec[, col_spec  ...]) 

OK 
Time taken: 15.905  seconds 
hive> 

LOAD DATA  [LOCAL]  INPATH  'filepath'  [OVERWRITE]  INTO TABLE  tablename 

[PARTITION (partcol1=val1, partcol2=val2 ...)] 

www.Jntufastupdates.com 10



IT Dept 1
2

UNIT-VI HIVE Hadoop & Big Data 

Change Statement 

The following table contains the fields of employee table and it shows the fields to be 

changed (in bold). 

Field Convert from Data Change Field Convert to Data 

Name Type Name Type 

eid int eid int 

name String ename String 

salary Float salary Double 

designation String designation String 

The following queries rename the column name and column data type using the above 

data: 

Add Columns Statement 

The following query adds a column named dept to the employee table. 

Replace Statement 

The following query deletes all the columns from the employee table and replaces it with 

emp and name columns: 

Drop Table Statement 

Hive Metastore, it removes the  table/column data  and their metadata. It can be a normal 

table (stored in Metastore) or an external table (stored in local file system); Hive treats 

both in the same manner, irrespective of their types. 

The syntax is as follows: 

The following query drops a table named employee: 

DROP  TABLE [IF EXISTS] table_name; 

hive>  ALTER  TABLE  employee  REPLACE  COLUMNS  ( 
eid  INT  empid  Int, 

ename STRING name String); 

hive>  ALTER  TABLE  employee  ADD  COLUMNS  ( 

dept STRING COMMENT 'Department name'); 

hive>  ALTER  TABLE  employee  CHANGE  name  ename String; 

hive>  ALTER  TABLE  employee  CHANGE  salary  salary  Double; 

www.Jntufastupdates.com 11



IT Dept 1
3

UNIT-VI HIVE Hadoop & Big Data 

On successful execution of the query, you get 

to response: 

see the following 

hive>  DROP  TABLE IF  EXISTS  employee; 

www.Jntufastupdates.com 12



IT Dept 1
4

UNIT-VI HIVE Hadoop & Big Data 

The following query is used to verify the list of tables: 

Operators in HIVE: 

There are four types of operators in Hive: 

 Relational Operators

 Arithmetic Operators

 Logical Operators

 Complex Operators

Relational Operators: These operators are used to compare two operands.  The following 

table describes the relational operators available in Hive: 

Operator Operand Description 

A = B all primitive types TRUE if expression A is equivalent to 

expression B otherwise FALSE. 

A != B all primitive types TRUE if expression A is not equivalent to 

expression B otherwise FALSE. 

A < B all primitive types TRUE if expression A is less than expression B 

otherwise FALSE. 

A <= B all primitive types TRUE if expression A is less than or equal to 

expression B otherwise FALSE. 

A > B all primitive types TRUE if expression A is greater than 

expression B otherwise FALSE. 

A >= B all primitive types TRUE if expression A is greater than or equal to 

expression B otherwise FALSE. 

hive> SHOW TABLES; 

emp ok 

Time  taken:  2.1  seconds 

hive> 

OK 

Time  taken:  5.3  seconds 

hive> 

www.Jntufastupdates.com 13



IT Dept 1
5

UNIT-VI HIVE Hadoop & Big Data 

A IS NULL all types TRUE if expression A evaluates to NULL 

otherwise FALSE. 

A IS NOT NULL all types FALSE if expression A evaluates to NULL 

otherwise TRUE. 

A LIKE B Strings TRUE if string pattern A matches to B 

otherwise FALSE. 

A RLIKE B Strings NULL if A or B is NULL, TRUE if any 

substring of A matches the Java regular 

expression B , otherwise FALSE. 

A REGEXP B Strings Same as RLIKE. 

Example 

Let us assume the employee table is composed of fields named Id, Name, Salary, 

Designation, and Dept as shown below. Generate a query to retrieve the employee details 

whose Id is 1205. 

The following query is executed to retrieve the employee details using the above table: 

On successful execution of query, you get to see the following response: 

The  following  query  is  executed  to  retrieve  the  employee  details whose salary is 

more than or equal to Rs 40000. 

On successful execution of query, you get to see the following response: 

hive> SELECT *  FROM employee WHERE  Salary>=40000; 

+-----+-----------+-----------+----------------------------------+ 
|  ID |  Name | Salary | Designation |  Dept | 

+-----+---------------+-------+----------------------------------+ 
|1205  |  Kranthi |  30000 |  Op  Admin |  Admin  | 
+-----+-----------+-----------+----------------------------------+ 

hive> SELECT *  FROM  employee WHERE  Id=1205; 

+-----+--------------+--------+---------------------------+------+ 
|  Id |  Name |  Salary  |  Designation |  Dept  | 
+-----+--------------+------------------------------------+------+ 
|1201  |  Gopal 
|1202  |  Manisha 
|1203  | Masthanvali 
|1204  |  Krian 
|1205  |  Kranthi 

|  45000 
|  45000 

|  40000 

| Technical manager 
| Proofreader 

| Technical  writer 

|  40000 |  Hr  Admin 

|  TP | 
|  PR | 
|  TP | 
|  HR | 

|  30000 |  Op  Admin | Admin| 
+-----+--------------+--------+---------------------------+------+ 

www.Jntufastupdates.com 14



IT Dept 1
6

UNIT-VI HIVE Hadoop & Big Data 

Arithmetic Operators 

These operators support various common arithmetic operations on the operands. All of 

them return  number  types. The  following table describes the arithmetic operators 

available in Hive: 

Operators Operand Description 

A + B all number types Gives the result of adding A and B. 

A - B all number types Gives the result of subtracting B from A. 

A * B all number types Gives the result of multiplying A and B. 

A / B all number types Gives the result of dividing B from A. 

A % B all number types Gives the reminder resulting from dividing A by B. 

A & B all number types Gives the result of bitwise AND of A and B. 

A | B all number types Gives the result of bitwise OR of A and B. 

A ^ B all number types Gives the result of bitwise XOR of A and B. 

~A all number types Gives the result of bitwise NOT of A. 

+-----+------------+--------+----------------------------+------+ 
|  ID |  Name | Salary  |  Designation |  Dept  | 
+-----+------------+--------+----------------------------+------+ 
|120  |  Gopal |  45000 | Technical manager 
|120  |  Manisha |  45000 | Proofreader 

|1203  | Masthanvali| 40000 
|1204  |  Krian | 40000 

|  Technical writer 
|  Hr  Admin 

| TP | 
| PR | 

|  TP | 
|  HR | 

+-----+------------+--------+----------------------------+------+ 

www.Jntufastupdates.com 15



IT Dept 1
7

UNIT-VI HIVE Hadoop & Big Data 

Example 

The following query adds two numbers, 20 and 30. 

On successful execution of the query, you get to see the 

following response: 

FALSE. 

Operators Operands Description 

A AND B boolean TRUE if both A and B are TRUE, otherwise FALSE. 

A && B boolean Same as A AND B. 

A OR B boolean TRUE if either A or B or both are TRUE, otherwise FALSE. 

A || B boolean Same as A OR B. 

NOT A boolean TRUE if A is FALSE, otherwise FALSE. 

!A boolean Same as NOT A. 

Example 

The following query is used to retrieve employee details whose Department is TP and 

Salary is more than Rs 40000. 

Logical Operators 

The  operators  are  logical  expressions.  All  of  them  return  either  TRUE 

or 

+--------+ 
| ADD | 
+--------+ 
| 50 | 

+--------+ 

hive> SELECT 20+30 ADD  FROM  temp; 

www.Jntufastupdates.com 16



IT Dept 1
8

UNIT-VI HIVE Hadoop & Big Data 

On successful execution of the query, you get to see the 

following response: 
+------+--------------+-------------+-------------------+--------+ 

|  ID |  Name |  Salary | Designation |  Dept | 
+------+--------------+-------------+-------------------+--------+ 
|1201 |  Gopal |  45000 |  Technical  manager  |  TP | 

+------+--------------+-------------+-------------------+--------+ 

Complex Operators 

These operators provide an expression to access the elements of Complex Types. 

Operator Operand Description 

A[n] A is an Array and n is 

an int 

It returns the nth element in the array A. The first 

element has index 0. 

M[key] M is a Map<K, V> and 

key has type K 

It returns the value corresponding to the key in 

the map. 

S.x S is a struct It returns the x field of S. 

HiveQL - Select-Where 

  The Hive  Query  Language  (HiveQL)  is  a  query  language  for  Hive to process 

and analyze  structured  data  in  a  Metastore.  This chapter explains how to use the 

SELECT statement with WHERE clause. 

Syntax 

SELECT statement is used to  retrieve  the  data  from  a  table. WHERE clause 

works similar to a condition. It filters  the  data using the condition and gives you a 

finite result. The built-in operators and functions generate an expression, which fulfils 

the condition. 

hive> SELECT *  FROM  employee WHERE  Salary>40000 &&  Dept=TP; 

www.Jntufastupdates.com 17



IT Dept 1
9

UNIT-VI HIVE Hadoop & Big Data 

Given below is the syntax of the SELECT query: 

SELECT  [ALL  |  DISTINCT]  select_expr, select_expr, ... 

FROM  table_reference 

[WHERE  where_condition] 

[GROUP  BY  col_list] 

[HAVING  having_condition] 

[CLUSTER  BY  col_list  |  [DISTRIBUTE BY  col_list]  [SORT  BY  col_list]] 

[LIMIT  number]; 

Example 

Let us take an example for SELECT…WHERE clause. Assume we have the employee table 

as given below, with fields named Id, Name, Salary,  Designation,  and  Dept.   Generate 

a   query   to   retrieve the employee details who earn a salary of more than Rs 30000. 

+------+--------------+-------------+-------------------+--------+ 

|  ID |  Name |  Salary | Designation |  Dept | 

+------+--------------+-------------+-------------------+--------+ 

| Gopal | 45000 |  Technical  manager  |  TP |
| Manisha | 45000 | Proofreader |  PR |

|1203  |  Masthanvali  | 40000 | Technical  writer | TP | 

|1204  |  Krian | 40000 | Hr  Admin | HR | 

|1205  |  Kranthi | 30000 | Op | Admin | 

+------+--------------+-------------+-------------------+--------+ 

The  following  query  retrieves  the  employee  details  using  the  above scenario: 

On  successful  execution  of  the  query,  you  get  to  see  the following response: 

HiveQL - Select-Order By 

  This chapter explains how to use the ORDER BY clause in a SELECT statement. 

The ORDER BY clause is used to retrieve  the details based on one  column  and  sort 

the  result  set  by  ascending or descending order. 

+------+--------------+-------------+-------------------+--------+ 
|  ID |  Name |  Salary | Designation |  Dept | 

+------+--------------+-------------+-------------------+--------+ 

|1201  |  Gopal | 45000 

|1202  |  Manisha | 45000 

|1203  |  Masthanvali  | 40000 

|1204  |  Krian | 40000 

| 

| 

| 

| 

Technical  manager | TP 

Proofreader 
Technical writer 

Hr Admin 

| PR 
| TP 

| HR 

| 

| 

| 

| 

+------+--------------+-------------+-------------------+--------+ 

hive> SELECT *  FROM employee WHERE salary>30000; 

www.Jntufastupdates.com 18



IT Dept 2
0

UNIT-VI HIVE Hadoop & Big Data 

Syntax 

Given below is the syntax of the ORDER BY clause: 

www.Jntufastupdates.com 19



UNIT-VI HIVE Hadoop & Big Data 

IT Dept Page 21  

SELECT [ALL  |  DISTINCT] select_expr, select_expr, ... FROM table_reference 

[WHERE where_condition] [GROUP BY col_list] 

[HAVING having_condition] 
[ORDER BY col_list]] [LIMIT 

number]; 

Example 

 Let  us  take  an   example   for   SELECT...ORDER   BY  clause. Assume employee 

table as given below, with the fields named  Id, Name, Salary, Designation, and Dept. 

Generate a query to retrieve the employee details in order by using Department name. 

scenario: 

HiveQL - Select-Group By 

  This chapter  explains  the  details  of  GROUP  BY  clause  in  a SELECT statement. 

The GROUP BY clause is used to group all the records in a result set using a 

particular collection column.  It  is used to query a group of records. 

The syntax of GROUP BY clause is as follows: 

HiveQL - Select-Joins 

JOIN is a clause that is used for combining specific fields from two tables by using values 

common to  each  one.  It  is  used  to  combine  records  from two or more tables in the 

database. It is more or less similar to SQL JOIN. 

SELECT [ALL  |  DISTINCT] select_expr, select_expr, ... 

FROM table_reference 

[WHERE where_condition] 

[GROUP BY  col_list] 

[HAVING having_condition] 

[ORDER BY  col_list]] 

[LIMIT number]; 

hive>  SELECT Id,  Name,  Dept  FROM  employee ORDER  BY  DEPT; 

+------+--------------+-------------+-------------------+--------+ 
|  ID |  Name |  Salary | Designation |  Dept | 
+------+--------------+-------------+-------------------+--------+ 

|1201 |  Gopal 
|1202 | Manisha 
|1203 | Masthanvali 

|1204 |  Krian 

|1205 | Kranthi 

|  45000 
|  45000 

|  40000 

|  40000 

|  30000 

|  Technical  manager 
| Proofreader 

|  TP 

| 
TP 

PR 

| 
| 

| Technical  writer 
|  Hr  Admin 

|  Op  Admin 

| | 
|  HR 

|  Admin 
| 

| 

+------+--------------+-------------+-------------------+--------+ 

The  following  query  retrieves  the  employee  details  using  the  above 

www.Jntufastupdates.com 20



UNIT-VI HIVE Hadoop & Big Data 

IT Dept Page 22  

Syntax 

join_table: 

table_reference JOIN table_factor [join_condition] 

| table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference 

join_condition 

| table_reference LEFT SEMI JOIN table_reference join_condition 

| table_reference CROSS JOIN table_reference [join_condition] 

Example 

We will use the following two tables in this chapter. Consider the following table 

named CUSTOMERS.. 

Consider another table ORDERS as follows: 

+-----+---------------------+-------------+--------+ 

There are different types of joins given as follows: 

JOIN 

JOIN       LEFT OUTER JOIN       RIGHT OUTER JOIN 

FULL OUTER JOIN 

JOIN clause is used to combine and retrieve the  records  from  multiple tables. JOIN is same 

as OUTER JOIN in SQL. A JOIN condition is to be raised using the primary keys and foreign 

keys of the tables. 

+----+----------+-----+-----------+----------+ 
|  ID  |  NAME |  AGE  |  ADDRESS | SALARY | 
+----+----------+-----+-----------+----------+ 

|  1 
|  2 
|  3 
|  4 
|  5 
|  6 
|  7 

|  Ramesh 
|  Khilan 
|  kaushik 

|  32 
|  25 
|  23 

|  Ahmedabad  |  2000.00 | 

|  Delhi 
|  Kota 

|  Chaitali  |  25 

|  Hardik |  27 
|  Komal |  22 
|  Muffy |  24 

|  Mumbai 
|  Bhopal 
|  MP 
|  Indore 

| 1500.00 | 
| 2000.00 | 

| 6500.00 | 
| 8500.00 | 

| 4500.00 | 
| 10000.00  | 

+----+----------+-----+-----------+----------+ 

+-----+---------------------+-------------+--------+ 
|OID |  DATE | CUSTOMER_ID | AMOUNT | 
+-----+---------------------+-------------+--------+ 
|  102  |  2009-10-08  00:00:00  | 3  |  3000  | 
|  100  |  2009-10-08  00:00:00  | 3  |  1500  | 

|  101  |  2009-11-20  00:00:00  | 2  |  1560  | 
|  103  |  2008-05-20  00:00:00  | 4  |  2060  | 

www.Jntufastupdates.com 21



UNIT-VI HIVE Hadoop & Big Data 

IT Dept Page 23  

The following query executes JOIN on the CUSTOMER and ORDER 

tables, and retrieves the records: 

On successful execution of the query, you get to see the 

following response: 

+----+----------+-----+--------+ 
|  ID  |  NAME |  AGE  |   AMOUNT  | 
+----+----------+-----+--------+ 
|   3 |  kaushik |   23 | 
3000 | 

|   3 |  kaushik |   23 | 
1500 | 
|  2 |  Khilan |  25 | 
1560 | 
|  4  |  Chaitali  |  25    |  2060 

LEFT OUTER JOIN 

The HiveQL LEFT OUTER JOIN returns all the rows from the left table, even if there 

are no matches in the right table.  This  means,  if  the  ON clause matches 0 (zero) records 

in the right table, the JOIN still returns a row in the result, but with NULL in each 

column from the right table. A LEFT  JOIN  returns  all  the  values  from  the  left  table, 

plus  the matched values from the right table, or NULL in case of no matching JOIN 

predicate. 

The following  query demonstrates  LEFT OUTER  JOIN  between CUSTOMER and 

ORDER tables: 

On successful execution of the query, you get to see the 

following response: 
+----+----------+--------+---------------------+ 
|   ID |   NAME |   AMOUNT   |   DATE 
| 

+----+----------+--------+---------------------+ 

| 1 | Ramesh |  NULL |  NULL | 
| 2 | Khilan |  1560 |  2009-11-20  00:00:00  | 
| 3 | kaushik |  3000 | 2009-10-08  00:00:00  | 

| 3 | kaushik |  1500 | 2009-10-08  00:00:00  | 

| 4 | Chaitali |  2060 |  2008-05-20  00:00:00  | 

5 |  Hardik |  NULL | NULL 

| 6 | Komal | NULL | NULL 

| 7 | Muffy | NULL | NULL 

| 

hive>  SELECT c.ID, c.NAME, o.AMOUNT, 
o.DATE FROM CUSTOMERS  c
LEFT OUTER  JOIN  ORDERS  o

ON (c.ID =  o.CUSTOMER_ID);

hive>  SELECT c.ID,  c.NAME, c.AGE, 
o.AMOUNT FROM CUSTOMERS  c JOIN
ORDERS o
ON (c.ID =  o.CUSTOMER_ID);

www.Jntufastupdates.com 22



UNIT-VI HIVE Hadoop & Big Data 

IT Dept Page 24  

RIGHT OUTER JOIN 

The HiveQL RIGHT OUTER JOIN returns all the  rows  from  the  right table, even if 

there are no matches in the left table. If the  ON  clause matches 0 (zero) records in the left 

table, the JOIN still returns a row in the result, but with NULL in each column from the left 

table. 

A RIGHT JOIN returns all the values from the right table, plus the matched values from 

the left table, or NULL in case of no matching join predicate. 

The following query demonstrates RIGHT OUTER JOIN between 

the CUSTOMER and ORDER t ables. 

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE FROM CUSTOMERS c RIGHT 

OUTER JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID); 

On successful  execution of the query,  you get  to see the following response: 

+------+----------+--------+---------------------+ 
|  ID |  NAME |  AMOUNT  |  DATE | 
+------+----------+--------+---------------------+ 

| 3 | kaushik | 3000 | 2009-10-08 | 
| 3 | kaushik | 1500 | 2009-10-08 | 
| 2 | Khilan | 1560 | 2009-11-20 | 
| 4 | Chaitali | 2060 | 2008-05-20 | 

+------+----------+--------+---------------------+ 

FULL OUTER JOIN 

The HiveQL FULL OUTER JOIN combines the records of both the left and the right outer 

tables  that  fulfil  the  JOIN  condition.  The  joined  table contains either all the records from 

both the tables, or fills in NULL values for missing matches on either side. 

The following query demonstrates  FULL  OUTER  JOIN  between CUSTOMER 

and ORDER tables: 

On successful execution of the query, you get to see the 

following response: 

hive>  SELECT c.ID, c.NAME, o.AMOUNT, 
o.DATE FROM CUSTOMERS  c
FULL  OUTER  JOIN  ORDERS  o

ON (c.ID =  o.CUSTOMER_ID);

www.Jntufastupdates.com 23



UNIT-VI HIVE Hadoop & Big Data 

IT Dept Page 1  

+------+----------+--------+---------------------+ 
|  ID |  NAME |  AMOUNT  |  DATE | 
+------+----------+--------+---------------------+ 
|  1 | Ramesh | NULL |  NULL | 
|  2 |  Khilan |  1560 |  2009-11-20 00:00:00  | 

|  3 | kaushik | 3000 |  2009-10-08 00:00:00  | 
|  3 | kaushik | 1500 |  2009-10-08 00:00:00  | 
|  4 |  Chaitali  |  2060 | 2008-05-20 00:00:00 | 
|  5 |  Hardik |  NULL |  NULL | 
|  6 |  Komal |  NULL |  NULL | 

|  7 |  Muffy |  NULL |  NULL | 
|  3 | kaushik | 3000 |  2009-10-08 00:00:00  | 
|  3 | kaushik | 1500 |  2009-10-08 00:00:00  | 
|  2 |  Khilan |  1560 |  2009-11-20 00:00:00  | 

|  4 |  Chaitali  |  2060 | 2008-05-20 00:00:00 | 

IMP Questions 

1. Explain Hive architecture in detail with neat diagram?

2. How the WorkFlow will happen Between Hive and Hadoop?

3. What is the difference between Hive and ApachePig?

4. Write the Hive Script for the following?

create database 

select statement for 

each statement order 

by statement 

alter table statement 

Drop table statement 

www.Jntufastupdates.com 24



Unit -V PIG Hadoop & Big Data 

IT Dept 4 

Unit 5: 

Pig: Hadoop Programming Made Easier Admiring the Pig Architecture, Going with 
the Pig Latin Application Flow, Working through the ABCs of Pig Latin, 
Evaluating Local and Distributed Modes of Running Pig Scripts, Checking out 
the Pig Script Interfaces, Scripting with Pig Latin 

Pig: 

Hadoop Programming Made Easier Admiring the Pig Architecture 

Apache Pig is an abstraction over MapReduce. It is a tool/platform which is 
used to analyze larger sets of data representing them as data flows. Pig is 

generally used with Hadoop; we can perform all the data manipulation 

operations in Hadoop using Pig. 

To write data analysis programs, Pig provides a high-level language known as 
Pig Latin. This language provides various operators using which programmers 

can develop their own functions for reading, writing, and processing data. 

To analyze data using Apache Pig, programmers need  to  write  scripts 

using Pig Latin language. All these scripts are internally converted to Map 

and Reduce tasks. Apache Pig has a component known as Pig Engine that 
accepts  the  Pig  Latin  scripts   as   input   and   converts   those   scripts 

into MapReduce jobs. 

Why Do We Need Apache Pig? 

Programmers who are not so good at Java normally used to  struggle 

working with Hadoop, especially while performing any MapReduce tasks. 
Apache Pig is a boon for all such programmers. 

 Using Pig  Latin,  programmers  can  perform  MapReduce  tasks  easily 
without having to type complex codes in Java. 

   Apache Pig uses multi-query approach, thereby reducing the length of codes. 
For  example,  an  operation  that  would  require  you  to  type  200  lines  of  code 

(LoC) in Java can be easily done by typing as less as just 10 LoC in Apache Pig. 
Ultimately Apache Pig reduces the development time by almost 16 times. 

 Pig Latin is SQL-like language and it is easy to learn Apache Pig when you are 
familiar with SQL. 

   Apache  Pig  provides  many   built-in   operators   to   support   data   operations 
like joins, filters, ordering, etc. In addition, it also provides nested data types 
like tuples, bags, and maps that are missing from MapReduce. 

Features of Pig 

www.Jntufastupdates.com 1



Unit -V PIG Hadoop & Big Data 

IT Dept 4 

Apache Pig comes with the following features − 

   Rich set of operators − It provides many operators to perform operations 
like join, sort, filer, etc. 

   Ease of programming − Pig Latin is similar to SQL and it is easy to write a 

Pig script if you are good at SQL. 

   Optimization opportunities − The tasks  in  Apache  Pig  optimize  their 
execution automatically, so the programmers need to focus only on 
semantics of the language. 

 Extensibility − Using the existing operators, users can develop their own 
functions to read, process, and write data. 

 UDF’s − Pig provides the facility to create User-defined Functions in other 

programming languages such as Java and invoke or embed them in Pig Scripts. 

   Handles all kinds of data − Apache Pig analyzes all kinds of data, both 
structured as well as unstructured. It stores the results in HDFS. 

Apache Pig Vs MapReduce 

Listed below are the major differences between Apache Pig and MapReduce. 

Apache Pig MapReduce 

Apache Pig is a data flow language. MapReduce is a data processing 
paradigm. 

It is a high level language. MapReduce is low level and rigid. 

Performing a Join operation in Apache Pig is It is quite difficult in MapReduce 
to perform a Join operation 

between 

pretty simple. datasets. 

Any novice programmer with a basic 
knowledge of SQL can work 

conveniently with Apache Pig. 

Exposure to Java is must to 
work with MapReduce. 

Apache Pig uses multi-query approach, 
thereby reducing the length of the codes to 
a great extent. 

MapReduce will require almost 20 
times more the number of lines to 
perform the same task. 

www.Jntufastupdates.com 2



Unit -V PIG Hadoop & Big Data 

IT Dept 4 

There is no need for compilation. On 
execution, every Apache Pig operator is 

converted internally into a MapReduce 
job. 

MapReduce jobs have a 
long compilation process. 

Apache Pig Vs SQL 

Listed below are the major differences between Apache Pig and SQL. 

Pig SQL 

Pig Latin is a procedural language. SQL is a declarative language. 

In Apache Pig, schema is optional. We can 

store data without designing a schema (values 
are stored as $01, $02 etc.) 

Schema is mandatory in SQL. 

The data model in Apache Pig is nested 
relational. 

The data model used in SQL is 
flat relational. 

Apache Pig provides limited opportunity 

for Query optimization. 

There is more opportunity for 

query optimization in SQL. 

In addition to above differences, Apache Pig Latin − 

 Allows splits in the pipeline. 

      Allows developers to store data anywhere in the pipeline.       Declares 
execution plans. 

Provides operators to perform ETL (Extract, Transform, and Load) functions. 

Apache Pig - Architecture 

The  language  used  to analyze  data  in  Hadoop  using  Pig is  known  as 

Pig Latin. It is a high level data processing language which provides a rich 
set of data types and operators to perform various operations on the data. 

To perform a particular task Programmers using Pig, programmers need to 

write a Pig script using the Pig Latin language, and execute them using any 

of   the   execution   mechanisms   (Grunt   Shell,   UDFs,   Embedded).   After 

execution, these scripts will go through a series of transformations applied 

by the Pig Framework, to produce the desired output. 

www.Jntufastupdates.com 3



Unit -V PIG Hadoop & Big Data 

IT Dept 5 

Internally, Apache  Pig converts these scripts into a series  of  MapReduce jobs, 

and thus, it makes the programmer’s job easy. The architecture of Apache Pig 

is shown below. 

Admiring the pig architecture 

Pig is made up of two components: 

The language itself: As proof that programmers have a sense of humor, the Programming 

language for Pig is known as Pig Latin, a high-level language that allows you to write data 

processing and analysis programs. 

The Pig Latin compiler: The Pig Latin compiler converts the Pig Latin code into executable code. 

The executable code is either in the form of MapReduce jobs or it can spawn a process where a 

virtual Hadoop instance is created to run the Pig node on a single node. 

The sequence of MapReduce programs enables Pig programs to do data processing and 

analysis in parallel, leveraging Hadoop MapReduce and HDFS. Running the Pig job in the 

virtual Hadoop instance is a useful strategy for testing your Pig scripts. 

www.Jntufastupdates.com 4



Unit -V PIG Hadoop & Big Data 

IT Dept 6 

Pig relates to the hadoop ecosystem 

Pig programs can run on MapReduce v1 or MapReduce v2 without any code changes, regardless of what 

mode your cluster is running. However, Pig scripts can also run using the Tez API instead. Apache Tez provides a 

more efficient execution framework than MapReduce. YARN enables application frameworks other than 

MapReduce (like Tez) to run on Hadoop. Hive can also run against the Tez framework. 

Apache Pig Components 

As  shown  in  the  figure,  there  are  various  components  in  the  Apache  Pig 
framework. Let us take a look at the major components. 

Parser 

Initially  the  Pig  Scripts  are handled  by  the  Parser.  It  checks the  syntax  of the 
script, does type checking, and other miscellaneous checks. The output of the 

parser  will  be  a  DAG Latin statements and logical (directed  acyclic  graph), 

which  represents  the Pig operators. 

In the DAG, the logical operators of the script are represented and the data 
flows are represented as edges. 

Optimizer as the nodes 

The logical plan (DAG) is passed to the logical optimizer, which carries out the 

logical optimizations such as projection and pushdown. 

Compiler 

The compiler compiles the optimized logical plan into a series of MapReduce jobs. 

Execution engine 

Finally the MapReduce  jobs  are submitted to  Hadoop in a sorted  order. 

Finally, these MapReduce 

desired results. 

jobs are executed on Hadoop producing the 

www.Jntufastupdates.com 5



IT Dept 7 

Unit -V PIG Hadoop & Big Data 

Going with the Pig Latin Application Flow 
At its core, Pig Latin is a dataflow language, where we define a data stream and a series of 

transformations that are applied to the data as it flows through your application. 

This is in contrast to a control flow language (like C or Java), where we write a series of 

instructions. In control flow languages, we use constructs like loops and conditional logic (like 
an if statement). You won’t find loops and if statements in Pig Latin. 

Sample pig code 

Looking at each line in turn, you can see the basic flow of a Pig program. 

1. Load: we first load (LOAD) the data you want to manipulate. As in a typical MapReduce job,

that data is stored in HDFS. For a Pig program to access the data, you first tell Pig what file or

files to use. For that task, you use the LOAD 'data_file' command.

Here, 'data_file' can specify either an HDFS file or a directory. If a directory is specified, all files in
that directory are loaded into the program.

If the data is stored in a file format that isn’t natively accessible to Pig, you can optionally add

the USING function to the LOAD statement to specify a user-defined function that can read in
(and interpret) the data.

2. Transform: You run the data through a set of transformations that, way under the hood

and far removed from anything you have to concern yourself with, are translated into a set of
Map and Reduce tasks.

The transformation logic is where all the data manipulation happens. Here, you can FILTER

out rows that aren’t of interest, JOIN two sets of data files, GROUP data to build aggregations,
ORDER results, and do much, much more.

3. Dump: Finally, you dump (DUMP) the results to the screen or Store (STORE) the results in a

file somewhere.

Pig Latin Data Model( pig data types ) 

The data model of Pig Latin is fully nested and it allows complex non-atomic data 

types such as map and tuple. Given below is the diagrammatical 

representation of Pig Latin’s data model. 

www.Jntufastupdates.com 6



IT Dept 8 

Unit -V PIG Hadoop & Big Data 

Atom: An atom is any single value, such as a string or a number — ‘Diego’, for 

example. Pig’s atomic values are scalar types that appear in most programming 

languages — int, long, float, double chararray, and bytearray. 

Tuple: A tuple is a record that consists of a sequence of fields. Each field 
can be of any type — ‘Diego’, ‘Gomez’, or 6, for example. Think of a tuple 

as a row in a table. 

Bag: A bag is a collection of non-unique tuples. The schema of the bag is 

flexible — each tuple in the collection can contain an arbitrary number 

of fields, and each field can be of any type. 

Map: A map is a collection of key value pairs. Any type can be stored in 

the value, and the key needs to be unique. The key of a map must be a 

chararray and the value can be of any type. 

Pig latin opearations: 

In a Hadoop context, accessing data means allowing developers to load, store, 
and stream data, whereas transforming data means taking advantage of Pig’s 

ability to group, join, combine, split, filter, and sort data. 

www.Jntufastupdates.com 7



IT Dept 9 

Unit -V PIG Hadoop & Big Data 

Pig latin operators 

Operators for Debugging and Trouble shooting 

Apache Pig Execution Modes 

we can run Apache Pig in two modes, namely, Local Mode and HDFS 

mode. 

Local Mode 

In this mode, all the files  are  installed  and  run  from  your  local  host  and 

local file system. There is no need of Hadoop or HDFS. This mode  is 

generally used for testing purpose. 

www.Jntufastupdates.com 8



IT Dept 10 

Unit -V PIG Hadoop & Big Data 

MapReduce Mode 

MapReduce mode is where we load or process the data that exists in the 

Hadoop File System (HDFS) using Apache Pig. In this mode, whenever we execute 

the Pig Latin statements to process the data, a MapReduce job is invoked in the 
back-end to perform a particular operation on the data that exists in the HDFS. 

Apache Pig Execution Mechanisms 
Apache Pig scripts can be executed in three ways, namely, interactive 

mode, batch mode, and embedded mode. 

   Interactive Mode (Grunt shell) − You can run Apache Pig in interactive mode using 
the Grunt shell. In this shell, you can enter the Pig Latin statements and get the 

output (using Dump operator). 

 Batch Mode (Script) − You can run Apache Pig in Batch mode by writing the Pig 
Latin script in a single file with .pig extension. 

  Embedded  Mode (UDF) − Apache Pig provides the provision of defining our own 
functions  (User Defined Functions)  in  programming  languages  such  as Java, and 

using them in our script. 

Important Questions 

1. Explain Pig architecture in detail with neat diagram?
2. what is the difference between Hive and ApachePig?

3. what is the difference between MapReduce and ApachePig?

4. Apache Pig Scripting Statements and data type...?

www.Jntufastupdates.com 9


	Collection Interface
	Example:
	Example: (1)
	Deserializing an Object:
	Single Master
	Chunk Size
	In-Memory Data Structures
	Consistency Model
	Advantages and disadvantages of large sized chunks in Google File System
	Advantages
	Disadvantages

	2. Hadoop Distributed File System (HDFS) Building blocks of Hadoop :
	HDFS – Hadoop Distributed File System
	MapReduce
	NameNode
	Secondary NameNode
	DataNode
	JobTracker
	TaskTracker

	3. Introducing and Configuring Hadoop cluster
	Pre-installation Setup
	Creating a User
	SSH Setup and Key Generation
	Installing Java
	Downloading Hadoop
	Hadoop Operation Modes
	Installing Hadoop in Standalone Mode
	Installing Hadoop in Pseudo Distributed Mode
	core-site.xml
	hdfs-site.xml
	yarn-site.xml
	mapred-site.xml
	C .Fully Distributed mode Compatibility Requirements
	Installation Requirements
	$ hostname
	$ vi /etc/hosts
	Setting Passwordless SSh login
	hadoop@Host1$ ssh-keygen –t rsa
	hadoop@Host1$ ssh hadoop@Host2 mkdir –p .ssh
	hadoop@Host1$   cat /home/hadoop/.ssh/id_rsa.pub   |   ssh   hadoop@Host2 ‘ cat >>
	hadoop@Host1$ ssh hadoop@Host2 Host2@hadoop$
	Prepare for installation
	$ rpm –qa | grep java
	$ rpm –e softwarename or path-name
	Installing Java (1)
	$ tar –xzvf < hadoop-tar-package>
	$ echo $HADOOP_HOME
	$ export HADOOP_HOME=/home/hadoop/hadoop-version
	$ cd /home/hadoop/
	Press :wq to save and exit the file
	$ cd <hadoop-home-directory>
	$ cd /home/hadoop/ hadoop-0.20.0-cdh3u0/
	CONFIGURING HADOOP IN FULLY DISTRIBUTED MODE
	$ cd /home/hadoop/ (1)
	$ cd /home/hadoop/ (2)
	$ cd /home/hadoop/ (3)
	$ cd /home/hadoop/ (4)
	$ cd /home/hadoop/hadoop-0.20.0-cdh3u0/conf
	Core-Site.xml
	hdfs-site.xml (1)
	Press :wq to save and exit the file mapred-site.xml
	mapred.system.dir
	Press :wq to save and exit the file (1)
	Setting up the masters and slaves
	Formatting the namenode
	$ cd /home/hadoop/hadoop-0.20.0-cdh3u0/
	Starting dfs service
	$ cd /home/hadoop/hadoop-0.20.0-cdh3u0/ (1)
	Starting mapred service
	$ ./bin/start-mapred.sh Checking the DFS service report
	cd /home/hadoop/hadoop-0.20.0-cdh3u0/

	Combiner
	Combiner class
	How Combiner Works?
	MapReduce Combiner Implementation
	Record Reader
	Map Phase
	Combiner Phase
	Partitioner Phase
	The partitioning phase takes place after the map phase and before the reduce phase. The number of partitions is equal to the number of reducers. The data gets partitioned across the reducers according to the partitioning function.
	The difference between a partitioner and a combiner is that the partitioner divides the data according to the number of reducers so that all the data in a single partition gets executed by a single reducer. However, the combiner functions similar to t...
	The default partitioning function is the hash partitioning function where the hashing is done on the key. However it might be useful to partition the data according to some other function of the key or the value.
	Reducer Phase
	Record Writer

	HIVE Introduction
	Hadoop
	What is Hive
	Hive is not
	Features of Hive
	Architecture of Hive
	Working of Hive
	Hive - Data Types
	Complex Types
	Hive - Create Database
	Drop Database Statement
	create Table Statement
	Syntax
	Example
	Syntax (1)
	Operators in HIVE:

	Example (1)
	Complex Operators
	HiveQL - Select-Where

	HiveQL - Select-Order By
	Pig:
	Why Do We Need Apache Pig?
	Features of Pig
	Apache Pig Vs MapReduce
	Apache Pig Vs SQL
	Apache Pig - Architecture
	Admiring the pig architecture
	Pig relates to the hadoop ecosystem
	Apache Pig Components
	Parser
	Optimizer
	Compiler
	Execution engine
	Going with the Pig Latin Application Flow
	Pig Latin Data Model( pig data types )
	Pig latin opearations:
	Pig latin operators
	Apache Pig Execution Modes

	MapReduce Mode

