WEB TECHNOLOGIES
UNIT-I:
HTML Common tags- List, Tables, images, forms, Frames; Cascading Style sheets;
UNIT-II:
Introduction to Java Scripts, Objects in Java Script, Dynamic HTML with Java Script
UNIT-III:
XML: Document type definition, XML Schemas, Document Object model, Presenting XML, Using XML Processors: DOM and SAX
UNIT-IV:
Java Beans: Introduction to Java Beans, Advantages of Java Beans, BDK Introspection, Using Bound properties, Bean Info Interface, Constrained properties, Persistence, Customizes, Java Beans API, Introduction to EJB’s
UNIT-V:
Web Servers and Servlets: Tomcat web server, Introduction to Servelets: Lifecycle of a Serverlet, JSDK, The Servelet API, The javax.servelet Package, Reading Servelet parameters, Reading Initialization	parameters. The javax.servelet HTTP package, Handling Http Request & Responses, Using Cookies-Session Tracking, Security Issues, UNIT-VI:
Introduction to JSP: The Problem with Servelet. The Anatomy of a JSP Page, JSP Processing. JSP Application Design with MVC Setting Up and JSP Environment: Installing the Java Software Development Kit, Tomcat Server & Testing Tomcat
UNIT-VII:
JSP Application Development: Generating Dynamic Content, Using Scripting Elements Implicit JSP Objects, Conditional Processing – Displaying Values Using an Expression to Set an Attribute, Declaring Variables and Methods Error Handling and Debugging Sharing Data Between JSP pages, Requests, and Users Passing Control and Date between Pages – Sharing Session and Application Data – Memory Usage Considerations
UNIT VIII:
Database Access : Database Programming using JDBC, Studying Javax.sql.* package,Accessing a Database from a JSP Page, Application – Specific Database Actions,Deploying JAVA Beans in a JSP Page, Introduction to struts framework..
TEXT BOOKS:
1. Web Programming, building internet applications, Chris Bates 2nd edition,WILEY Dreamtech (UNIT s 1,2 ,3)
2. The complete Reference Java 2 Fifth Edition by Patrick Naughton and Herbert	Schildt. TMH (Chapters: 25) (UNIT 4)
3. Java Server Pages –Hans Bergsten, SPD O’Reilly (UNITs 5,6,7,8)
REFERENCE BOOKS:
1. Programming world wide web-Sebesta,Pearson
2. Core SERVLETS ANDJAVASERVER PAGES VOLUME 1: CORE TECHNOLOGIES By Marty Hall and Larry Brown Pearson
3. Internet and World Wide Web – How to program by Dietel and Nieto PHI/Pearson Education Asia.
4. Jakarta Struts Cookbook , Bill Siggelkow, S P D O’Reilly for chap 8.
 (
52
)

UNIT – 1 OVER VIEW:
Unit-1 demonstrates how to create static web pages using basic HTML tags and presentation of
content using CSS. This unit focuses on how to create tables, forms, and lists to display the content in web pages.

CONTENTS:
1. Basic HTML Tags
a. List
b. Tables
c. Images
d. Forms
e. frames
2. Cascading Style Sheets
a. Three mechanisms by which we can apply styles
b. Forms of CSS

HTML stands for Hypertext Markup Language. It is used to display the document in the web browsers.	HTML pages can be developed to be simple text or to be complex multimedia program containing sound, moving images and
java applets. HTML is considered to be the global publishing format for Internet. It is not a programming language. HTML was developed by Tim Berners-Lee.
HTML standards are created by a group of interested organizations called W3C (world wide web consortium). In HTML formatting is specified by using tags. A tag is a format name surrounded by angle brackets. End tags which switch a format off also contain a forward slash.

Basic HTML tags

1. Body tag :
Body tag contain some attributes such as bgcolor, background etc. bgcolor is
used for background color, which takes background color name or hexadecimal
number and #FFFFFF and background attribute will take the path of the image
which you can place as the background image in the browser.
<body bgcolor=”#F2F3F4” background= “c:\amer\imag1.gif”>

2. Paragraph tag:
Most text is part of a paragraph of information. Each paragraph is aligned to the
left, right or center of the page by using an attribute called as align.
<p align=”left” | “right” | “center”>

3. Heading tag:
HTML is having six levels of heading that are commonly used. The largest heading tag is <h1> . The different levels of heading tag besides <h1> are
<h2>,
<h3>, <h4>, <h5> and <h6>. These heading tags also contain attribute called as
align.
<h1 align=”left” | “right” | “center”>	<h2>

4. hr tag:
This tag places a horizontal line across the system. These lines are used to break
the page. This tag also contains attribute i.e., width which draws the horizontal
line with the screen size of the browser. This tag does not require an end tag.
<hr width=”50%”>.

5. base font:
This specify format for the basic text but not the headings.
<basefont size=”10”>

6. font tag:
This sets font size, color and relative values for a particular text.

7. bold tag:
This tag is used for implement bold effect on the text
	

8. Italic tag:
This implements italic effects on the text.
<i>…….</i>

9. strong tag:
This tag is used to always emphasized the text
	

10. tt tag:
This tag is used to give typewriting effect on the text
<tt>	</tt>

11. sub and sup tag:
These tags are used for subscript and superscript effects on the text.

[…]

12. Break tag:
This tag is used to the break the line and start from the next line.

13. & <	>	 	"
These are character escape sequence which are required if you want to display
characters that HTML uses as control sequences. Example:	< can be represented as <.

14. Anchor tag:
This tag is used to link two HTML pages, this is represented by <a>
 some text
href is an attribute which is used for giving the path of a file which you want to
link.

Lists:

One of the most effective ways of structuring a web site is to use lists. Lists provides
straight forward index in the web site. HTML provides three types of list i.e.,
1. unordered list,
2. ordered list and
3. definition list.

Lists can be easily embedded easily in another list to provide a complex but

readable structures.	The different tags used in lists are explained below.

 …..
The ordered(numbered) and unordered(bulleted) lists are each made up of sets of list items. This tag is used to write list items
1. unordered list,

<ul type=”disc” | “square” | ”circle” > …..
This tag is used for basic unordered list which uses a bullet in front of each tag, every
thing between the tag is encapsulated within tags.
2. ordered list,

<ol type=”1” | ”a” | “I” start=”n”>…..
This tag is used for unordered list which uses a number in front of each list item or it uses any element which is mentioned in the type attribute of the tag, start attribute is used for indicating the starting number of the list.
3. definition list.

<dl>….. </dl>
This tag is used for the third category i.e., definition list, where numbers or bullet is not used in front of the list item, instead it uses definition for the items.

<dt>…..</dt>
This is a sub tag of the <dl> tag called as definition term, which is used for marking the items whose definition is provided in the next data definition.

<dd> ….</dd>
This is a sub tag of the <dd> tag, definition of the terms are enclosed within these tags. The definition may include any text or block.
Tables:

Table is one of the most useful HTML constructs. Tables are find all over the web application.	The main use of table is that they are used to structure the pieces of
information and to structure the whole web page. Below are some of the tags used in
table.
Links

The HTML code for a link is simple. It looks like this:

Link text

Frames:

Frames provide a pleasing interface which makes your web site easy to navigate. The frameset contains a set of references to HTML files, each of which is displayed inside a separate frame.

With frames, you can display more than one HTML document in the same browser window. Each HTML document is called a frame, and each frame is independent of the others.

The frameset element holds two or more frame elements. Each frame element holds a separate document.

Forms:

Forms are the best way of adding interactivity of element in a web page. They are usually used to let the user to send information back to the server but can also be used to simplify navigation on complex web sites. The tags that use to implement forms are as follows.

<form action=”URL” method = “post” | “get”>…….</form>

Cascading Style sheets:

One of the most important aspects of HTML is the capability to separate presentation and content. A style is simply a set of formatting instructions that can be applied to a piece of text.
There are three mechanisms by which we can apply styles to our HTML documents.
· Inline Style Sheet:
Style can be defined within the basic HTML tag.
· Internal Style Sheet:
Style can be defined in the <head> tag
· External Style Sheet:
Styles can be defined in external files called stylesheets which can then be used
in
any document by including the stylesheet via a URL.

UNIT – II

Overview :
Unit-II demonstrates on client side validations using JavaScript. It focuses on how to handle events, exceptions, etc. This unit also focuses on DHTML concepts.

CONTENTS:
1) JavaScript concepts
2) Objects in java scripts
3) DHTML with JavaScript

JavaScript (also called JScript) is a scripting language with the primary aim of giving life to our web pages.It is very powerful, flexible, and easy to learn.
Features
· Imperative and structured
· Dynamic
· dynamic typing
· object based
· run-time evaluation

· Functional
· first-class functions
· nested functions
· closures
· Prototype-based
· Miscellaneous
· Vendor-specific extensions

There are three ways by which we can place Javascript for use in a web page.

1. Inside the head section.

2. Within the body section.

3. In an external file.
The HTML <script> tag is used to insert a Java Script into an HTML page.

	Events

	By using JavaScript, we have the ability to create dynamic web pages. Events are actions that can be detected by Java Script.

Every element on a dynamic or static web page has certain events which can trigger Java Script functions. For example, we can use the onClick event of a button element to indicate that a function will run when a user clicks on that button. We define the events in the HTML tags.

Examples of events:

A mouse click

A web page or an image loading Mousing over a hot spot on the web page Selecting an input box in an HTML form Submitting an HTML form
A keystroke

The following table lists the events recognized by JavaScript:

Events are normally used in combination with functions, and the function can not be executed before the event occurs.

JavaScript - Catching Errors
There are two ways of catching errors in a Webpage
Try...Catch Statement
The try...catch statement allows you to test a block of code for errors. The try block contains the code to be run, and the catch block contains the code to be executed if an error occurs.
try
{
//Run some code here
}
catch(err)
{
//Handle errors here
}

	The onerror Event

	The onerror event can be explained soon, but first you will learn how to use the throw statements to create an exception. The throw statements can be used together with the try...catch statement.

The Date object
The Date class is used to store and retrieve dates in JavaScript.
Array

The Array object is used to holding a set of data or values in a single variable name. var urArray=new Array()
DOM (document object model)

A DOM (document object model) is an application programming interface (API) for representing a document (such as an HTML document) and accessing and manipulating the various elements (such as HTML tags and strings of text) that make up that document. Java Script-enabled web browsers have always defined a document object model; a web-browser DOM may specify, for example: that the forms in an HTML document are accessible through the forms[] array of the Document object.

form validation

Form validation is the process of checking that a form has been filled in correctly or not before it is processed.

There are two methods for the form validation. 1: Client-Side validation
In Java Script Client-side form validation is an important part of a web site where data needs to be collected from the user. Users are innately ignorant, and will mess up data entry in a web form if given the chance. It is the job of the web programmer, then, to make sure his pages which use forms include client-side form validation using JavaScript.

2: Server-side validation
In Java Script the server also benefits from client-side validation since it saves a number of round-trips between the visitor and the server owing to typos and easily spotted mistakes. This advantage does not alleviate the neccessity of doing server-side validation.

UNIT - III

Overview :

This unit focuses on creating XML documents that are designed to carry data. XML is all about describing information. XML was designed to transport and store data. We can create web documents from XML using XSLT to transform our documents into HTML. We can then send
our XML to an XSLT processor on the web server and serve that result to the web browser. This makes our documentation available in whatever format we need it to be in.

Contents :

Introduction to XML DTD
XML Schema XSLT
DOM SAX

Introduction to XML

XML describes and focuses on the data while HTML only displays and focuses on how data looks. HTML is all about displaying information but XML is all about describing information. The tags used to mark up HTML documents and the structure of HTML documents are predefined. The author of HTML documents can only use tags that are defined in the HTML standard.
In HTML some elements can be improperly nested within each other like this:
<i>This text is bold and italic</i>
In XML all elements must be properly nested within each other like this:

An XML document is composed of
1. Declarations (prolog, dtd reference)
2. Elements
3. Comments
4. Entities (predefined, custom defined, character entities)

The XML declaration: Always the first line in the xml document:
The XML declaration should always be included. It defines the XML version and the character encoding used in the document. In this case the document conforms to the 1.0 specification of XML and uses the ISO-8859-1 (Latin-1/West European) character set.
<?xml version="1.0" encoding="ISO-8859-1"?>
Root Element: The next line defines the first element of the document . It is called as the root element
<E-mail>
Child Elements: The next 4 lines describe the four child elements of the root (To, From, Subject and Body).

And finally the last line defines the end of the root element .
</E-mail>
</E-mail>
syntax-rules

· All XML elements must have a closing tag
· XML tags are case sensitive
· XML Elements Must be Properly Nested
· XML Documents Must Have a Root Element
· Always Quote the XML Attribute Values
· With XML, White Space is Preserved
· Comments in XML	<!-- This is a comment -->
· XML Elements have Relationships
o Elements in a xml document are related as parents and children.

XML elements must follow these naming conventions:
Names must not start with a number or punctuation character but it can contain letters, numbers, and other characters without spaces. Names must not start with the letters xml (or XML, or Xml, etc)

XML Attributes

· XML elements can have attributes in the start tag, just like HTML.
· Attributes are used to provide additional information about elements.
· Attribute values must always be enclosed in quotes. Use either single or double quotes eg. <color="red"> or <color='red'>
· If the attribute value itself contains double quotes it is necessary to use single quotes, like in this example: <name='Rose "India" Net'>
· : If the attribute value itself contains single quotes it is necessary to use double quotes, like in this example: <name="Rose 'India' Net">

DTD(Document Type Definition)
A Document Type Definition (DTD) defines the legal building blocks of an XML document.It defines the document structure with a list of legal	elements and attributes. A DTD can be defined inside a XML document, or a external reference can be declared .

Internal DTD

If the DTD is defined inside the XML document, it should be wrapped in a DOCTYPE definition with the following syntax:
<!DOCTYPE root-element [element-declarations]>
External DTD
If the DTD is defined in an external file, it should be wrapped in a DOCTYPE definition with the following syntax:
<!DOCTYPE root-element SYSTEM "filename">
Importance of a DTD
· With a DTD, a XML file carries a description of its own format.
· With a DTD, independent groups of people can agree to use a standard DTD for interchanging data.
· User application can use a standard DTD to verify that the data he receives from the outside world is valid.
· User can also use a DTD to verify his own data.

Building blocks of XML DTD Documents:

· Elements
· Attributes
· Entities
· PCDATA
· CDATA PCDATA
· PCDATA means parsed character data. It can be thought as the character data (text) found between the start tag and the end tag of a XML element.
· PCDATA is a text to be parsed by a parser. The text is checked by the parser for entities and markup.
· Tags inside the text will be treated as markup and entities will be expanded. However, parsed character data should not contain any &, <, or > characters. These should be represented by the & , <, and > entities, respectively.
CDATA:
· CDATA is character data that will NOT be parsed by a parser. Tags inside the text will NOT be treated as markup and entities will not be expanded.

DTD-Elements: Elements are the main constituent components of both XML documents. Elements can contain text, other elements, or be empty.
Syntax:
<!ELEMENT element-name category>

or
<!ELEMENT element-name (element-content)> EX: Elements with Parsed Character Data
<!ELEMENT To (#PCDATA)>
<!ELEMENT From (#PCDATA)>

Elements with Children (sequences)
Elements with one or more children are declared with the name of the children elements inside the parentheses as :
<!ELEMENT element-name (child1)> or
<!ELEMENT element-name (child1,child2,...)> EX:
<!ELEMENT E-mail (To,From,Subject,Body)>

When children are declared in a sequence separated by commas, the children must appear in the same sequence in the document.
In a full declaration, the children must also be declared. Children can have children.

Tag qualifiers
* Indicates zero or more occurrence.
<!ELEMENT color (Fill-Red*)>
? Indicates Zero or one time occurrence.
<!ELEMENT color (Fill-Red?)>
+ Indicates one or more occurrence
<!ELEMENT color (Fill-Red+)>
() Indicates a group of expressions to be matched together.
EX:<!ELEMENT E-mail(#PCDATA|To|From|Subject|Body)*>
| Indicates an option.
<!ELEMENT E-mail (To,From,Subject,(Message|Body))>

Special tag Values in DTD

· Tag definition can have following instead of sub-tags:
· ANY
· Indicates that the tag can contain any other defined element or PCDATA.
· Usually used for the root element.
· Elements can occur in any order in such a document.
· Not recommended to be used.
· EMPTY
· It says that the element contains no contents (and consequently no corresponding end-tag)

· Ex: to allow a tag flag used as <flag/> in a xml file the DTD entry should be
<!ELEMENT flag EMPTY>

DTD-Attributes:
Attributes provide extra information about elements.
In a DTD, attributes are declared with an ATTLIST declaration. Declaring Attributes
The ATTLIST declaration defines the element having a attribute with attribute name , attribute type , and attribute default value. An attribute declaration has the following syntax:
<!ATTLIST element-name attribute-name attribute-type default-value>
DTD example:
<!ATTLIST reciept type CDATA "check">
XML example:
<reciept type="check" />

DTD-Entities
Entities are variables used to define shortcuts to standard text or special characters. Entity references are references to entities Entities can be declared internally or externally.

Internal Entity Declaration

Syntax:
<!ENTITY entity-name "entity-value">

XML Schema

XML Schemas are more powerful than DTDs.
XML Schema is a W3C Standard. It is an XML-based alternative to DTDs. It describes the structure of an XML document.
The XML Schema language is also referred to as XML Schema Definition (XSD).
We think that very soon XML Schemas will be used in most Web applications as a replacement for DTDs. Here are some reasons:

· XML Schemas are extensible to future additions
· XML Schemas are richer and more powerful than DTDs
· XML Schemas are written in XML, supports data types and namespaces.

What is an XML Schema?
· XML Schema is used to define the legal building blocks of an XML document, just like a DTD.

· An XML Schema defines user-defined integrants like elements, sub-elements and attributes needed in a xml document.
· It defines the data types for elements and attributes along with the occurrence order .
· It defines whether an element is empty or can include text.
· It also defines default and fixed values for elements and attributes
Features of XML Schemas : XML Schemas Support Data Types
One of the greatest strengths of XML Schemas is its support for data types. With support for data types:

· It is easier to describe allowable document content
· It is easier to validate the correctness of data
· It is easier to work with data from a database
· It is easier to define data facets (restrictions on data)
· It is easier to define data patterns (data formats)
· It is easier to convert data between different data types

XML Schemas use XML Syntax
Another great strength about XML Schemas is that they are written in XML. Simple XML editors are used to edit the Schema files. Even the same XML parsers can be used to parse the Schema files.
XML Schemas are Extensible
XML Schemas are extensible, because they are written in XML.So a user can reuse a Schema in other Schemas and can also refer multiple schemas in the same document. He can also create his own data types derived from the standard types
XML Schemas Secure Reliable Data Communication
When sending data from a sender to a receiver, it is essential that both parts have the same "expectations" about the content. With XML Schemas, the sender can describe the data in a way that the receiver will understand. A date like: "03-11-2004" will, in some countries, be interpreted as 3.November and in other countries as 11.March.However, an XML element with a data type like this: <datetype="date">2004-03-11</date> ensures a mutual understanding of the content, because the XML data type "date" requires the format "YYYY-MM-DD".

XSLT

XSLT (Extensible Stylesheet Language Transformations) is a declarative, XML-based language used for the transformation of XML documents. The original document is not changed; rather, a new document is created based on the content of an existing one.[2] The new

document may be serialized (output) by the processor in standard XML syntax or in another format, such as HTML or plain text.[3] XSLT is most often used to convert data between different XML schemas or to convert XML data into web pages or PDF documents.

Simple API for XML (SAX)

SAX is a lexical, event-driven interface in which a document is read serially and its contents are reported as callbacks to various methods on a handler object of the user's design. SAX is fast and efficient to implement, but difficult to use for extracting information at random from the XML, since it tends to burden the application author with keeping track of what part of the document is being processed. It is better suited to situations in which certain types of information are always handled the same way, no matter where they occur in the document.

Document Object Model (DOM)

DOM (Document Object Model) is an interface-oriented Application Programming Interface that allows for navigation of the entire document as if it were a tree of "Node" objects representing the document's contents. A DOM document can be created by a parser, or can be generated manually by users (with limitations). Data types in DOM Nodes are abstract; implementations provide their own programming language-specific bindings. DOM implementations tend to be memory intensive, as they generally require the entire document to be loaded into memory and constructed as a tree of objects before access is allowed.

UNIT – IV

Over View :
This chapter provides an overview of an exciting technology that is at the forefront of Java programming: Java Beans. Beans are important, because they allow you to build complex systems from software components. These components may be provided by you or supplied by one or more different vendors. Java Beans defines an architecture that specifies how these building blocks can operate together.

Contents:
Introduction to Java Beans Advantages of Java Beans BDK
Introspection
Bound properties Bean Info interface
Persistence Customizers Java beans API
Introduction to EJB

Introduction to Java Beans

As software developers, we are constantly being asked to build applications in less time and with less money. And, of course, these applications are expected to be better and faster than ever before. Object-oriented techniques and component software environments are in wide use now, in the hope that they can help us build applications more quickly. The JavaBeans architecture brings the component development model to Java.
A Java Bean is a reusable software component that can be manipulated visually in a builder tool. Beans will range greatly in their features and capabilities. Some will be very simple and others complex; some will have a visual aspect and others won't. Therefore, it isn't easy to put all Beans into a single category. Let's take a look at some of the most important features and issues surrounding Beans. This should set the stage for the rest of the book, where we will examine the JavaBeans technology in depth.

Advantages of Java Beans

· A Bean obtains all the benefits of Java's "write-once, run-anywhere" paradigm.

· The properties, events, and methods of a Bean that are exposed to an application builder tool can be controlled.
· A Bean may be designed to operate correctly in different locales, which makes it useful in global markets.
· Auxiliary software can be provided to help a person configure a Bean. This software is only needed when the design-time parameters for that component are being set. It does not need to be included in the run-time environment.
· The configuration settings of a Bean can be saved in persistent storage and restored at a later time.
· A Bean may register to receive events from other objects and can generate events that are sent to other objects.

The Bean Developer Kit (BDK)

The Bean Developer Kit (BDK), available from the JavaSoft site, is a simple example of a tool that enables you to create, configure, and connect a set of Beans. There is also a set of sample Beans with their source code. This section provides step-by-step instructions for installing and using this tool.

Starting the BDK

To start the BDK, follow these steps:

1. Change to the directory c:\\bdk\\beanbox.

2. Execute the batch file called run.bat. This causes the BDK to display the three windows shown in Figure . ToolBox lists all of the different Beans that have been included with the BDK. BeanBox provides an area to lay out and connect the Beans selected from the ToolBox. Properties provides the ability to configure a selected Bean.

[image:]

Create and Configure an Instance of the Molecule Bean

Follow these steps to create and configure an instance of the Molecule Bean:

1. Position the cursor on the ToolBox entry labeled Molecule and click the left mouse button. You should see the cursor change to a cross.

2. Move the cursor to the BeanBox display area and click the left mouse button in approximately the area where you wish the Bean to be displayed. You should see a rectangular region appear that contains a 3-D display of a molecule. This area is surrounded by a hatched border, indicating that it is currently selected.

3. You can reposition the Molecule Bean by positioning the cursor over one of the hatched borders and dragging the Bean.

4. You can change the molecule that is displayed by changing the selection in the Properties window. Notice that the Bean display changes immediately when you change the selected molecule.

Introspection

Introspection is the process of analyzing a Bean to determine its capabilities. This is an essential feature of the Java Beans API, because it allows an application builder tool to present information about a component to a software designer. Without introspection, the Java Beans technology could not operate.

There are two ways in which the developer of a Bean can indicate which of its properties, events, and methods should be exposed by an application builder tool. With the first method, simple naming conventions are used. These allow the introspection mechanisms to infer information about a Bean. In the second way, an additional class is provided that

explicitly supplies this information. The first approach is examined here. The second method is described later.

Design Patterns for Properties Simple Properties
A simple property has a single value. It can be identified by the following design patterns, where N is the name of the property and T is its type.
public T getN();
public void setN(T arg);

Boolean Properties

A Boolean property has a value of true or false. It can be identified by the following design patterns, where N is the name of the property:
public boolean isN(); public boolean getN();
public void setN(boolean value);

Indexed Properties

An indexed property consists of multiple values. It can be identified by the following design patterns, where N is the name of the property and T is its type:
public T getN(int index);
public void setN(int index, T value); public T[] getN();
public void setN(T values[]);

Design Patterns for Events

Beans use the delegation event model that was discussed earlier in this book. Beans can generate events and send them to other objects.
These can be identified by the following design patterns, where T is the type of the event: public void addTListener(TListener eventListener);
public void addTListener(TListener eventListener) throws TooManyListeners;
public void removeTListener(TListener eventListener);

Customizers

The Properties window of the BDK allows a developer to modify the properties of a Bean. However, this may not be the best user interface for a complex component with many interrelated properties. Therefore, a Bean developer can provide a customizer that helps another developer configure this software. A customizer can provide a step-by-step guide through the process that must be followed to use the component in a specific context. Online documentation can also be provided. A Bean developer has great flexibility

The Java Beans API

The Java Beans functionality is provided by a set of classes and interfaces in the java.beans
package. This section provides a brief overview of its contents. List of interfaces in java.beans.
AppletInitializer

Methods in this interface are used to initialize Beans that are a lso applets. BeanInfo

This interface allows a designer to specify information about the properties, events, and methods of a Bean.
Customizer

This interface allows a designer to provide a graphical user interface through which a Bean may be configured.

DesignMode

Methods in this interface determine if a Bean is executing in design mode. PropertyChangeListener
A method in this interface is invoked when a bound property is changed. PropertyEditor
Objects that implement this interface allow designers to change and display property values.

The Classes Defined in java.beans

BeanDescriptor
This class provides information about a Bean. It also allows you to associate a customizer with a Bean.

Beans
This class is used to obtain information about a Bean.

EventSetDescriptor
Instances of this class describe an event that can be generated by a Bean.

FeatureDescriptor
This is the superclass of the PropertyDescriptor, EventSetDescriptor, and MethodDescriptor classes.

IndexedPropertyDescriptor
Instances of this class describe an indexed property of a Bean.

IntrospectionException
An exception of this type is generated if a problem occurs when analyzing a Bean.

Introspector
This class analyzes a Bean and constructs a BeanInfo object that describes the component.

MethodDescriptor
I nstances of this class describe a method of a Bean.

ParameterDescriptor
I nstances of this class describe a method parameter.

PropertyChangeEvent
This event is generated when bound or constrained properties are changed. It is sent to objects that registered an interest in these events and implement either the PropertyChangeListener or VetoableChangeListener interfaces.

PropertyChangeSupport
Beans that support bound properties can use this class to notify PropertyChangeListener objects.

PropertyDescriptor
I nstances of this class describe a property of a Bean.

PropertyEditorManager
This class locates a PropertyEditor object for a given type.

PropertyEditorSupport
This class provides functionality that can be used when writing property editors.

Prope rtyVetoException
An exception of this type is generated if a change to a constrained property is vetoed.

SimpleBeanInfo
This class provides functionality that can be used when writing BeanInfo classes.

VetoableChangeSupport
Beans that support constrained properties can use this class to notify VetoableChangeListener objects.

EJB(Enterprise Java Beans)

· EJB’s are simply Java classes coded as per EJB specification and deployed in a J2EE- compliant EJB container.
· It is a standard used for developing server-side business components.
· The intention behind this standard is to enable developing component-based, distributed enterprise applications.
· It is used to encapsulate the business logic or data logic of an application.
· EJB adopts a divide-and-conquer approach to server-side computing.
· Each component has a well-known but limited duty to be self-consistent.
· EJBs are not complete applications, but are deployable components that can be assembled into complete solutions.
· EJBs allow developers to concentrate on implementing business logic rather than low- level issues, since they are handled via container services.

EJB Architecture

· EJBs are J2EE components that run in EJB container within an Application Server.
· Although transparent to application developers, EJB containers provide services (security, transactions) to its EJB’s.
· These services enables quick development and deployment of enterprise.
· According to EJB specification, the EJB container, the enterprise beans and the client programs each have certain roles and responsibilities within the overall system, which is spelled in terms of contracts.
· These services enables quick development and deployment of enterprise.
· According to EJB specification, the EJB container, the enterprise beans and the client programs each have certain roles and responsibilities within the overall system, which is spelled in terms of contracts.

[image:]

EJB Types

· Stateless Session Beans : executes business logic on behalf of any client. They usually perform relatively quick and simple tasks implementing control, process and workflow in an application. Ex: returning current stock price.
· Stateful Session Beans: They execute business logic on behalf of a specific client with whom they are maintaining a conversational state. Ex: online shopping cart, where user’s purchases are tracked until checkout.
· Entity Beans : They manage database storage and retrieval. They are typically used in conjunction with session beans. Ex: Management of customer’s stock portfolio.
· Message Driven Beans: New in EJB 2.0. They work with JMS implementation to provide asynchronous messaging based processing for any client that sends the message.

UNIT - V

Overview :

This unit describes how to generate dynamic content in webpages using servlets and procedure for installing web servers procedure for creating web applications.

Contents :

Introduction to servlets Lifecycle of a servlet JSDK server
Servlet API Session tracking Security issues

Introduction to servlets:
Servlets are java programs that run on web or application servers, acting as middle layer between request coming from the web browsers or other HTTP clients and database servers. Servlets process user request, produce the results and sends the results as a response to the user

Advantages of Java Servlets

1. Portability
2. Powerful
3. Efficiency
4. Safety
5. Extensibilty
6. Inexpensive

[image:]Life cycle of Servlet

· Loading: The servlet container loads the servlet during startup or when the first request is made. The loading of the servlet depends on the attribute <load-on-startup> of web.xml file. If the attribute <load-on-startup> has a positive value then the servlet is load with loading of the container otherwise it load when the first request comes for service. After loading of the servlet, the container creates the instances of the servlet.
· Initialization: After creating the instances, the servlet container calls the init() method and passes the servlet initialization parameters to the init() method. The init() must be called by the servlet container before the servlet can service any request. The initialization parameters persist untill the servlet is destroyed. The init() method is called only once throughout the life cycle of the servlet.
The servlet will be available for service if it is loaded successfully otherwise the servlet container unloads the servlet.
· Servicing the Request: After successfully completing the initialization process, the servlet will be available for service. Servlet creates seperate threads for each request. The sevlet container calls the service() method for servicing any request. The service() method determines the kind of request and calls the appropriate method (doGet() or doPost()) for handling the request and sends response to the client using the methods of the response object.
· Destroying the Servlet: If the servlet is no longer needed for servicing any request, the servlet container calls the destroy() method . Like the init() method this method is also called only once throughout the life cycle of the servlet. Calling the destroy() method indicates to the servlet container not to sent the any request for service and the servlet

releases all the resources associated with it. Java Virtual Machine claims for the memory associated with the resources for garbage collection.

Servlet API Provides the following two packages

· Javax.servlet
The javax.servlet package contains a number of classes and interfaces that describe and define the contracts between a servlet class and the runtime environment provided for an instance of such a class by a conforming servlet container.

· Javax.servlet.http

The javax.servlet.http package contains a number of classes and interfaces that describe and define the contracts between a servlet class running under the HTTP protocol and the runtime environment provided for an instance of such a class by a conforming servlet container.

1) javax.servlet.Servlet interface

· A servlet is a small Java program that runs within a Web server. Servlets receive and respond to requests from Web clients, usually across HTTP, the HyperText Transfer Protocol.
· To implement this interface, you can write a generic servlet that extends javax.servlet.GenericServlet or an HTTP servlet that extends javax.servlet.http.HttpServlet.
· This interface defines methods to initialize a servlet, to service requests, and to remove a servlet from the server.
· In addition to the life-cycle methods(init(),service(),destroy()), this interface provides the getServletConfig method, which the servlet can use to get any startup information, and the getServletInfo method, which allows the servlet to return basic information about itself, such as author, version, and copyright.

Methods:

· init
public void init(ServletConfig config) throws ServletException
Called by the servlet container to indicate to a servlet that the servlet is being placed into service.

The servlet container calls the init method exactly once after instantiating the servlet. The init method must complete successfully before the servlet can receive any requests.

The servlet container cannot place the servlet into service if the init method

1. Throws a ServletException
2. Does not return within a time period defined by the Web server

Parameters:
config - a ServletConfig object containing the servlet's configuration and initialization parameters
Throws:
ServletException - if an exception has occurred that interferes with the servlet's normal operation

getServletConfig

public ServletConfig getServletConfig()
Returns a ServletConfig object, which contains initialization and startup parameters for this servlet. The ServletConfig object returned is the one passed to the init method.

· service
public void service(ServletRequest req,ServletResponse res) throws ServletException, java.io.IOException
Called by the servlet container to allow the servlet to respond to a request.

This method is only called after the servlet's init() method has completed successfully.

Parameters:
req - the ServletRequest object that contains the client's request
res - the ServletResponse object that contains the servlet's response
Throws:
ServletException - if an exception occurs that interferes with the servlet's normal operation
java.io.IOException - if an input or output exception occurs
· getServletInfo
public java.lang.String getServletInfo()
Returns information about the servlet, such as author, version, and copyright.

· destroy
public void destroy()
Called by the servlet container to indicate to a servlet that the servlet is being taken out of service. This method is only called once all threads within the servlet's service method have exited or after a timeout period has passed. After the servlet container calls this method, it will not call the service method again on this servlet.

This method gives the servlet an opportunity to clean up any resources that are being held (for example, memory, file handles, threads) and make sure that any persistent state is synchronized with the servlet's current state in memory.

2) javax.servlet.ServletConfig Interface

A servlet configuration object used by a servlet container to pass information to a servlet during initialization.

Methods:

· getServletName

public java.lang.String getServletName()
Returns the name of this servlet instance. The name may be provided via server administration, assigned in the web application deployment descriptor, or for an unregistered (and thus unnamed) servlet instance it will be the servlet's class name.
· getServletContext
public ServletContext getServletContext()
Returns a reference to the ServletContext in which the caller is executing.
Returns:
a ServletContext object, used by the caller to interact with its servlet container
· getInitParameter
public java.lang.String getInitParameter(java.lang.String name)

Returns a String containing the value of the named initialization parameter, or null if the parameter does not exist.
Parameters:
name - a String specifying the name of the initialization parameter
Returns:
a String containing the value of the initialization parameter
· getInitParameterNames
public java.util.Enumeration getInitParameterNames()
Returns the names of the servlet's initialization parameters as an Enumeration of String objects, or an empty Enumeration if the servlet has no initialization parameters.
Returns: an Enumeration of String objects containing the names of the servlet's initialization parameters

3) javax.servlet.ServletContext Interface

Defines a set of methods that a servlet uses to communicate with its servlet container, for example, to get the MIME type of a file, dispatch requests, or write to a log file
There is one context per "web application" per Java Virtual Machine The ServletContext object is contained within the ServletConfig object. Mehods:
java.lang.String getInitParameter(java.lang.String name)
Returns a String containing the value of the named context-wide initialization parameter, or null if the parameter does not exist.
java.util.Enumeration getInitParameterNames()
Returns the names of the context's initialization parameters as an Enumeration of String objects, or an empty Enumeration if the context has no initialization parameters. java.lang.String getMimeType(java.lang.String file)
Returns the MIME type of the specified file, or null if the MIME type is not known.
RequestDispatcher getNamedDispatcher(java.lang.String name)
Returns a RequestDispatcher object that acts as a wrapper for the named servlet.
RequestDispatcher getRequestDispatcher(java.lang.String path)
Returns a RequestDispatcher object that acts as a wrapper for the resource located at the given path
java.lang.String getServerInfo()
Returns the name and version of the servlet container on which the servlet is running.

java.lang.String getServletContextName()
Returns the name of this web application corresponding to this ServletContext as specified in the deployment descriptor for this web application by the display-name element.

Void setAttribute(java.lang.String name, java.lang.Object object) Binds an object to a given attribute name in this servlet context.
java.lang.Object getAttribute(java.lang.String name)
Returns the servlet container attribute with the given name, or null if there is no attribute by that name.
4) javax.servlet. RequestDispatcher Interface
Defines an object that receives requests from the client and sends them to any resource (such as a servlet, HTML file, or JSP file) on the server
This interface is intended to wrap servlets, but a servlet container can create RequestDispatcher objects to wrap any type of resource
Methods:

· forward
public void forward(ServletRequest request, ServletResponse response)
throws ServletException, java.io.IOException
Forwards a request from a servlet to another resource (servlet, JSP file, or HTML file) on the server

· include
public void include(ServletRequest request, ServletResponse response)
throws ServletException, java.io.IOException
Includes the content of a resource (servlet, JSP page, HTML file) in the response. In essence, this method enables programmatic server-side includes.
5) javax.servlet.ServletRequest Interface
Defines an object to provide client request information to a servlet. The servlet container creates a ServletRequest object and passes it as an argument to the servlet's service method
A ServletRequest object provides data including parameter name and values, attributes, and an input stream.

1) javax.servlet.ServletResponse Interface

Defines an object to assist a servlet in sending a response to the client. The servlet container creates a ServletResponse object and passes it as an argument to the servlet's service method.

To send binary data in a MIME body response, use the ServletOutputStream returned by getOutputStream().
To send character data, use the PrintWriter object returned by getWriter().
1) javax.servlet.GenericServlet class
Defines a generic, protocol-independent servlet.

GenericServlet implements the Servlet and ServletConfig interfaces.

GenericServlet may be directly extended by a servlet, although it's more common to extend a protocol-specific subclass such as HttpServlet.

Interfaces and classes of javax.servlet.http package

1. javax.servlet.http. HttpServletRequest Interface

Extends the ServletRequest interface to provide request information for HTTP servlets.

The servlet container creates an HttpServletRequest object and passes it as an argument to the servlet's service methods (doGet, doPost, etc).

Methods

· getCookies
public Cookie[] getCookies()

Returns an array containing all of the Cookie objects the client sent with this request. This method returns null if no cookies were sent.
· getSession

public HttpSession getSession()
Returns the current session associated with this request, or if the request does not have a session, creates one.
public HttpSession getSession(boolean create)
Returns the current HttpSession associated with this request or, if there is no current session and create is true, returns a new session.

If create is false and the request has no valid HttpSession, this method returns null.

· getRequestURI
public java.lang.String getRequestURI()
Returns the part of this request's URL from the protocol name up to the query string in the first line of the HTTP request.
For example POST /some/path.html HTTP/1.1 then it returns /some/path.html

· getRequestURL
public java.lang.StringBuffer getRequestURL()
Reconstructs the URL the client used to make the request. The returned URL contains a protocol, server name, port number, and server path, but it does not include query string parameters.
· getServletPath
public java.lang.String getServletPath()
Returns the part of this request's URL that calls the servlet. This path starts with a "/" character and includes either the servlet name or a path to the servlet, but does not include any extra path information or a query string.
· getContextPath
public java.lang.String getContextPath()
Returns the portion of the request URI that indicates the context of the request. The context path always comes first in a request URI. The path starts with a "/" character but does not end with a "/" character.
· getHeader
public java.lang.String getHeader(java.lang.String name)
Returns the value of the specified request header as a String.

· getHeaders
public java.util.Enumeration getHeaders(java.lang.String name)

Returns all the values of the specified request header as an Enumeration of String objects.
· getHeaderNames
public java.util.Enumeration getHeaderNames()
Returns an enumeration of all the header names this request contains. If the request has no headers, this method returns an empty enumeration.

2) javax.servlet.http. HttpServletResponse Interface

Extends the ServletResponse interface to provide HTTP-specific functionality in sending a response. For example, it has methods to access HTTP headers and cookies.

The servlet container creates an HttpServletResponse object and passes it as an argument to the servlet's service methods
· addCookie
public void addCookie(Cookie cookie)
Adds the specified cookie to the response. This method can be called multiple times to set more than one cookie
· sendError
public void sendError(int sc)
throws java.io.IOException
Sends an error response to the client using the specified status code and clearing the buffer.

If the response has already been committed, this method throws an IllegalStateException

· sendRedirect
public void sendRedirect(java.lang.String location) throws java.io.IOException
Sends a temporary redirect response to the client using the specified redirect location URL. This method can accept relative URLs;
location - the redirect location URL
· setHeader
public void setHeader(java.lang.String name, java.lang.String value)
Sets a response header with the given name and value. If the header had already been set, the new value overwrites the previous one.
· addHeader
public void addHeader(java.lang.String name,

java.lang.String value)
Adds a response header with the given name and value. This method allows response headers to have multiple values.
· addIntHeader
public void addIntHeader(java.lang.String name,
int value)
Adds a response header with the given name and integer value. This method allows response headers to have multiple values.
· setStatus
public void setStatus(int sc)
Sets the status code for this response. This method is used to set the return status code when there is no error
3) javax.servlet.http. HttpSession Interface

HttpSession provides a way to identify a user across more than one page request or visit to a Web site and to store information about that user.
The servlet container uses this interface to create a session between an HTTP client and an HTTP server. The session persists for a specified time period, across more than one connection or page request from the user.
A session usually corresponds to one user, who may visit a site many times. The server can maintain a session in many ways such as using cookies or rewriting URLs.

This interface allows servlets to

· View and manipulate information about a session, such as the session identifier, creation time, and last accessed time
· Bind objects to sessions, allowing user information to persist across multiple user connections

Methods:

· getAttribute

public java.lang.Object getAttribute(java.lang.String name)
Returns the object bound with the specified name in this session, or null if no object is bound under the name.
· setAttribute
public void setAttribute(java.lang.String name,
java.lang.Object value)
Binds an object to this session, using the name specified. If an object of the same name is already bound to the session, the object is replaced.
· getAttributeNames
public java.util.Enumeration getAttributeNames()

Returns an Enumeration of String objects containing the names of all the objects bound to this session.

· removeAttribute
public void removeAttribute(java.lang.String name)
Removes the object bound with the specified name from this session.
· invalidate
public void invalidate()
Invalidates this session then unbinds any objects bound to it.
· isNew
public boolean isNew()

returns true if the server has created a session, but the client has not yet joined
· getMaxInactiveInterval
public int getMaxInactiveInterval()
Returns the maximum time interval, in seconds, that the servlet container will keep this session open between client accesses.
· setMaxInactiveInterval
public void setMaxInactiveInterval(int interval)
Specifies the time, in seconds, between client requests before the servlet container will invalidate this session. A negative time indicates the session should never timeout.
· getLastAccessedTime
public long getLastAccessedTime()
Returns the last time the client sent a request associated with this session,
· getId
public java.lang.String getId()
Returns a string containing the unique identifier assigned to this session.
· getCreationTime
public long getCreationTime()
Returns the time when this session was created

Session Tracking:

Http is a stateless protocol, means that it can't persist the information. It always treats each request as a new request. In Http client makes a connection to the server, sends the request., gets the response, and closes the connection.
In session management client first make a request for any servlet or any page, the container receives the request and generate a unique session ID and gives it back to the client along with the response. This ID gets stores on

the client machine. Thereafter when the client request again sends a request to the server then it also sends the session Id with the request. There the container sees the Id and sends back the request.
Session Tracking can be done in Four ways:
1. Hidden Form Fields:
2. Cookies
3. HttpSession
4. URL Rewriting

UNIT - VI

Overview :

In this unit we focuses on JSP Technologies. JavaServer Pages (JSP) is a Java technology that helps software developers serve dynamically generated web pages based on HTML, XML, or other document types. JSP pages are loaded in the server and are operated from a structured special installed Java server packet called a Java EE Web Application, often packaged as a .war or .ear file archive. JSP allows Java code and certain pre-defined actions to be interleaved with static web markup content, with the resulting page being compiled and executed on the server to deliver an HTML or XML document. The compiled pages and any dependent Java libraries use Java bytecode rather than a native software format, and must therefore be executed within a Java virtual machine (JVM) that integrates with the host operating system to provide an abstract platform-neutral environment.

Contents

Problems with servlets The Anatomy of JSP Page JSP Processing
MVC JSDK
The Anatomy of a JSP Page

A JSP page is simply a regular web page with JSP elements for generating the parts that differ for each request,

[image:]

Everything in the page that isn't a JSP element is called template text. Template text can be any text: HTML, WML, XML, or even plain text. Since HTML is by far the most common web- page language in use today, most of the descriptions and examples in this book use HTML, but keep in mind that JSP has no dependency on HTML; it can be used with any markup language. Template text is always passed straight through to the browser.

When a JSP page request is processed, the template text and dynamic content generated by the JSP elements are merged, and the result is sent as the response to the browser.

JSP Processing

Just as a web server needs a servlet container to provide an interface to servlets, the server needs a JSP container to process JSP pages.

The JSP container is responsible for intercepting requests for JSP pages. To process all JSP elements in the page, the container first turns the JSP page into a servlet (known as the JSP page implementation class).

The conversion is pretty straightforward; all template text is converted to println() statements and all JSP elements are converted to Java code that implements the corresponding dynamic behavior. The container then compiles the servlet class.

Converting the JSP page to a servlet and compiling the servlet form the translation phase.

The JSP container initiates the translation phase for a page automatically when it receives the first request for the page. Since the translation phase takes a bit of time, the first user to request a JSP page notices a slight delay.

The translation phase can also be initiated explicitly; this is referred to as precompilation of a JSP page. Precompiling a JSP page is a way to avoid hitting the first user with this delay.

The JSP container is also responsible for invoking the JSP page implementation class (the generated servlet) to process each request and generate the response. This is called the request processing phase.

JSP page translation and processing phases

[image:]
As long as the JSP page remains unchanged, any subsequent request goes straight to the request processing phase (i.e., the container simply executes the class file). When the JSP page is modified, it goes through the translation phase again before entering the request processing phase.

The JSP container is often implemented as a servlet configured to handle all requests for JSP pages. In fact, these two containers--a servlet container and a JSP container--are often combined in one package under the name web container. a JSP page is really just another way to write a servlet without having to be a Java programming wiz. Except for the translation phase, a JSP page is handled exactly like a regular servlet: it's loaded once and called repeatedly, until the server is shut down. By virtue of being an automatically generated servlet, a JSP page inherits all the advantages of a servlet: platform and vendor independence, integration, efficiency, scalability, robustness, and security.

JSP Application Design with MVC

. The key point of using MVC is to separate logic into three distinct units: the Model, the View, and the Controller.

In a server application, we commonly classify the parts of the application as business logic, presentation, and request processing.

Business logic is the term used for the manipulation of an application's data, such as customer, product, and order information.

Presentation refers to how the application data is displayed to the user, for example, position, font, and size.

And finally, request processing is what ties the business logic and presentation parts together.

JSP Model 1 Architecture
[image:]

In MVC terms, the Model corresponds to business logic and data, the View to the presentation, and the Controller to the request processing.

Why use this design with JSP? The answer lies primarily in the first two elements. Remember that an application data structure and logic (the Model) is typically the most stable part of an application, while the presentation of that data (the View) changes fairly often. Just look at all the face-lifts many web sites go through to keep up with the latest fashion in web design. Yet, the data they present remains the same.

Another common example of why presentation should be separated from the business logic is that you may want to present the data in different languages or present different subsets of the data to internal and external users.

Access to the data through new types of devices, such as cell phones and personal digital assistants (PDAs), is the latest trend. Each client type requires its own presentation format. It should come as no surprise, then, that separating business logic from the presentation makes it easier to evolve an application as the requirements change; new presentation interfaces can be developed without touching the business logic.

JSDK

1 Set classpath to <home dir>/jsdk2.0/lib/jsdk.jar;

2. Set path to <home dir>/jsdk2.0/bin;

3. Compile the servlet program (.java file).

4. Copy the .class file to <home dir>/jsdk2.0/examples

5. Execute servletrunner

6. Open web browser

7. Enter the url as follows in the address bar:	http://host:8080/servlet/<servlet name>

UNIT - VII

Overview :

In this unit we focus on how to develop applications using JSP. JSP syntax is a fluid mix of two basic content forms: scriptlet elements and markup. Markup is typically standard HTML or XML, while scriptlet elements are delimited blocks of Java code which may be intermixed with the markup. When the page is requested the Java code is executed and its output is added, in situ, with the surrounding markup to create the final page. JSP pages must be compiled to Java bytecode classes before they can be executed, but such compilation is needed only when a change to the source JSP file has occurred.

Contents JSP elements JSP objects
Sharing data between JSP pages Error Handling and Debugging JSP Elements
There are three types of JSP elements you can use: scripting, action and directive.

Scripting elements

Scripting elements allow you to add small pieces of code (typically Java code) in a JSP page, such as an if statement to generate different HTML depending on a certain condition.

Like actions, they are also executed when the page is requested. You should use scripting elements with extreme care: if you embed too much code in your JSP pages, you will end up with the same kind of maintenance problems as with servlets embedding HTML.

Scripting elements

	Element
	Description

	<% ... %>
	Scriptlet, used to embed scripting code.

	<%= ... %>
	Expression, used to embed scripting code expressions when the result shall be added to the response. Also used as request-time action attribute values.

	<%! ... %>
	Declaration, used to declare instance variables and methods in the JSP page implementation class.

Standard action elements

Action elements typically perform some action based on information that is required at the exact time the JSP page is requested by a browser. An action can, for instance, access parameters sent with the request to do a database lookup. It can also dynamically generate HTML, such as a table filled with information retrieved from an external system.

The JSP specification defines a few standard action elements

	Action element
	Description

	<jsp:useBean>
	Makes a JavaBeans component available in a page

	<jsp:getProperty>
	Gets a property value from a JavaBeans component and adds it to the response

	<jsp:setProperty>
	Sets a JavaBeans component property value

	<jsp:include>
	Includes the response from a servlet or JSP page during the request processing phase

	<jsp:forward>
	Forwards the processing of a request to servlet or JSP page

	<jsp:param>
	Adds a parameter value to a request handed off to another servlet or JSP page using <jsp:include> or <jsp:forward>

	
<jsp:plugin>
	Generates HTML that contains the appropriate browser-dependent elements (OBJECT or EMBED) needed to execute an applet with the Java Plug-in software

Custom action elements and the JSP Standard Tag Library

In addition to the standard actions, the JSP specification includes a Java API a programmer can use to develop custom actions to extend the JSP language. The JSP Standard Tag Library (JSTL) is such an extension, with the special status of being defined by a formal specification from Sun and typically bundled with the JSP container. JSTL contains action elements for processes needed in most JSP applications, such as conditional processing, database access, internationalization, and more.

If JSTL isn't enough, programmers on your team (or a third party) can use the extension API to develop additional custom actions, may be to access application-specific resources or simplify application-specific processing.

JavaBeans components

JSP elements, such as action and scripting elements, are often used to work with JavaBeans. Put succinctly, a JavaBeans component is a Java class that complies with certain coding conventions. JavaBeans components are typically used as containers for information that describes application entities, such as a customer or an order.

Directive elements

The directive elements specify information about the page itself that remains the same between requests--for example, if session tracking is required or not, buffering requirements, and the name of a page that should be used to report errors, if any.

Directive elements

	Element
	Description

	<%@ page ... %>
	Defines page-dependent attributes, such as session tracking, error page, and buffering requirements

	<%@ include ... %>
	Includes a file during the translation phase

	<%@ taglib ... %>
	Declares a tag library, containing custom actions, that is used in the page

 (
JSP

object
Servlet

API

Object
Description
application
javax.servlet.ServletContext
Context

(Execution

environment)

of

the

Servlet.
)JSP objects

 (
config
javax.servlet.ServletConfig
The

ServletConfig

for

the

JSP.
exception
java.lang.Throwable
The

exception

that

resulted

when

an error

occurred.
out
javax.servlet.jsp.JspWriter
An

object

that

writes

into

a

JSP's

output

stream.
)

 (
pageContext
javax.servlet.jsp.PageContext
Page context

for

the

JSP.
request
javax.servlet.HttpServletRequest
The

client

request.
response
javax.servlet.HttpServletResponse
The

response to

the

client.
session
javax.servlet.http.HttpSession
Session

object

created

for

requesting

client.
page
javax.servlet.Servlet
Refers

to

current

servlet object.
)Error Handling and Debugging
When you develop any application that's more than a trivial example, errors are inevitable. A JSP-based application is no exception. There are many types of errors you will deal with. Simple syntax errors in the JSP pages are almost a given during the development phase. And even after you have fixed all the syntax errors, you may still have to figure out why the application doesn't work as you intended because of design mistakes. The application must also be designed to deal with problems that can occur when it's deployed for production use. Users can enter invalid values and try to use the application in ways you never imagined. External systems, such as databases, can fail or become unavailable due to network problems.
Since a web application is the face of the company, making sure it behaves well, even when the users misbehave and the world around it falls apart, is extremely important for a positive customer perception. Proper design and testing is the only way to accomplish this goal.

Sharing Data Between JSP Pages, Requests, and Users

· Passing Control and Data Between Pages
one of the most fundamental features of JSP technology is that it allows for separation of request processing, business logic and presentation, using what's known as the Model-View-

Controller (MVC) model. As you may recall, the roles of Model, View, and Controller can be assigned to different types of server-side components. In this part of the book, JSP pages are used for both the Controller and View roles, and the Model role is played by either a bean or a JSP page.
· Sharing Session and Application Data
The request scope makes data available to multiple pages processing the same request. But in many cases, data must be shared over multiple requests.
Imagine a travel agency application. It's important to remember the dates and destination entered to book the flight so that the customer doesn't have to reenter the information when it's time to make hotel and rental car reservations. This type of information, available only to requests from the same user, can be shared through the session scope.

Memory Usage Considerations

You should be aware that all objects you save in the application and session scopes take up memory in the server process. It's easy to calculate how much memory is used for the application scope because you have full control over the number of objects you place there. But the total number of objects in the session scope depends on the number of concurrent sessions, so in addition to the size of each object, you also need to know how many concurrent users you have and how long a session lasts. Let's look at an example.
The CartBean used in this chapter is small. It stores only references to ProductBean instances, not copies of the beans. An object reference in Java is 8 bytes, so with three products in the cart we need 24 bytes. The java.util.Vector object used to hold the references adds some overhead, say 32 bytes. All in all, we need 56 bytes per shopping cart bean with three products.

UNIT - VIII

Overview :

In this unit we focus on database access in simple java programs, servlets ,and JSPs. We ca access the database by using JDBC. JDBC stands for "Java DataBase Connectivity". It is an API which consists of a set of Java classes, interfaces and exceptions and a specification to which both JDBC driver vendors and JDBC developers adhere when developing applications.

Contents

JDBC drivers

Javax.sql API

Database from JSP Page Struts frame work

JDBC is a very popular data access standard. RDBMS (Relational Database Management Systems) or third-party vendors develop drivers which adhere to the JDBC specification. Other developers use these drivers to develop applications which access those databases e.g. you'll use ConnectorJ JDBC driver to access MySQL database. Since the drivers adhered to JDBC specification, the JDBC application developers can replace one driver for their application with another better one without having to rewrite their application. If they had used some proprietary API provided by some RDBMS vendor, they will not have been able to change the driver and/or database without having to rewrite the complete application.

JDBC Driver Types

JDBC drivers are divided into four types or levels. The different types of jdbc drivers are:

Type 1: JDBC-ODBC Bridge driver (Bridge) Type 2: Native-API/partly Java driver (Native) Type 3: AllJava/Net-protocol driver (Middleware) Type 4: All Java/Native-protocol driver (Pure)

Type 1 JDBC Driver

JDBC-ODBC Bridge driver

The Type 1 driver translates all JDBC calls into ODBC calls and sends them to the ODBC driver. ODBC is a generic API. The JDBC-ODBC Bridge driver is recommended only for experimental use or when no other alternative is available.

[image:]

Type 1: JDBC-ODBC Bridge Advantage
The JDBC-ODBC Bridge allows access to almost any database, since the database's ODBC drivers are already available.

Disadvantages

1. Since the Bridge driver is not written fully in Java, Type 1 drivers are not portable.
2. A performance issue is seen as a JDBC call goes through the bridge to the ODBC driver, then to the database, and this applies even in the reverse process. They are the slowest of all driver types.
3. The client system requires the ODBC Installation to use the driver.
4. Not good for the Web.

Type 2 JDBC Driver

Native-API/partly Java driver

The distinctive characteristic of type 2 jdbc drivers are that Type 2 drivers convert JDBC calls into database-specific calls i.e. this driver is specific to a particular database. Some distinctive characteristic of type 2 jdbc drivers are shown below. Example: Oracle will have oracle native api.

[image:]

Type 2: Native api/ Partly Java Driver Advantage
The distinctive characteristic of type 2 jdbc drivers are that they are typically offer better performance than the JDBC-ODBC Bridge as the layers of communication (tiers) are less than that of Type
1 and also it uses Native api which is Database specific.

Disadvantage

1. Native API must be installed in the Client System and hence type 2 drivers cannot be used for the Internet.
2. Like Type 1 drivers, it’s not written in Java Language which forms a portability issue.
3. If we change the Database we have to change the native api as it is specific to a database
4. Mostly obsolete now
5. Usually not thread safe.

Type 3 JDBC Driver

All Java/Net-protocol driver

Type 3 database requests are passed through the network to the middle-tier server. The middle- tier then translates the request to the database. If the middle-tier server can in turn use Type1, Type 2 or Type 4 drivers.

[image:]

Type 3: All Java/ Net-Protocol Driver Advantage
1. This driver is server-based, so there is no need for any vendor database library to be present on client machines.
2. This driver is fully written in Java and hence Portable. It is suitable for the web.
3. There are many opportunities to optimize portability, performance, and scalability.
4. The net protocol can be designed to make the client JDBC driver very small and fast to load.
5. The type 3 driver typically provides support for features such as caching (connections, query results, and so on), load balancing, and advanced
system administration such as logging and auditing.
6. This driver is very flexible allows access to multiple databases using one driver.
7. They are the most efficient amongst all driver types.

Disadvantage

It requires another server application to install and maintain. Traversing the recordset may take longer, since the data comes through the backend server.

Type 4 JDBC Driver

Native-protocol/all-Java driver

The Type 4 uses java networking libraries to communicate directly with the database server.
[image:]

Type 4: Native-protocol/all-Java driver Advantage
1. The major benefit of using a type 4 jdbc drivers are that they are completely written in Java to achieve platform independence and eliminate deployment administration issues. It is most suitable for the web.
2. Number of translation layers is very less i.e. type 4 JDBC drivers don't have to translate database requests to ODBC or a native connectivity interface or to pass the request on to another server, performance is typically quite good.
3. You don’t need to install special software on the client or server. Further, these drivers can be downloaded dynamically.

Disadvantage

With type 4 drivers, the user needs a different driver for each database.

List of Drivers
· Bridge driver

· sun.jdbc.odbc.JdbcOdbcDriver

· jdbc:odbc:<dsn>

· Cloudscape

· COM.cloudscape.core.JDBCDriver

· jdbc:cloudscape:[database name and location]

· PostGRESQL

· org.postgresql.Driver

· jdbc:postgresql://[host]:[port]/[database name]

· MySQL

· Oracle

· com.mysql.jdbc.Driver

· jdbc:mysql://[host]:3306/[databasename]

· oracle.jdbc.driver.OracleDriver jdbc:oracle:thin:@[host]:1521:[sid]

Steps to using Bridge driver
1. Create a data source name using ODBC
2. Load the database driver
3. Establish a Connection to the database
4. Create a Statement object
5. Execute SQL Query statement(s)
6. Retrieve the ResultSet Object
7. Retrieve record/field data from ResultSet
8. object for processing
9. Close ResultSet Object
10. Close Statement Object
11. Close Connection Object

javax.sql.RowSet

The interface that adds support to the JDBC API for the JavaBeansTM component model. A rowset, which can be used as a JavaBeans component in a visual Bean development environment, can be created and configured at design time and executed at run time.

The RowSet interface provides a set of JavaBeans properties that allow a RowSet instance to be configured to connect to a JDBC data source and read some data from the data source. A group of setter methods (setInt, setBytes, setString, and so on) provide a way to pass input parameters to a rowset's command property. This command is the SQL query the rowset uses when it gets its data from a relational database, which is generally the case.

The RowSet interface supports JavaBeans events, allowing other components in an application to be notified when an event occurs on a rowset, such as a change in its value.

javax.sql.DataSource

A factory for connections to the physical data source that this DataSource object represents. An alternative to the DriverManager facility, a DataSource object is the preferred means of getting a connection. An object that implements the DataSource interface will typically be registered with a naming service based on the JavaTM Naming and Directory (JNDI) API.

The DataSource interface is implemented by a driver vendor. There are three types of implementations:

1. Basic implementation -- produces a standard Connection object
2. Connection pooling implementation -- produces a Connection object that will automatically participate in connection pooling. This implementation works with a middle-tier connection pooling manager.
3. Distributed transaction implementation -- produces a Connection object that may be used for distributed transactions and almost always participates in connection pooling. This implementation works with a middle-tier transaction manager and almost always with a connection pooling manager.

A DataSource object has properties that can be modified when necessary. For example, if the data source is moved to a different server, the property for the server can be changed. The benefit is that because the data source's properties can be changed, any code accessing that data source does not need to be changed.

A driver that is accessed via a DataSource object does not register itself with the DriverManager. Rather, a DataSource object is retrieved though a lookup operation and then used to create a Connection object. With a basic implementation, the connection obtained through a DataSource object is identical to a connection obtained through the DriverManager facility.

Specific database actions

<sql: transaction>

<sql: update>
UPDATE Account SET Balance = Balance - 1000 WHERE AccountNumber = 1234
</sql: update>
<sql: update>
UPDATE Account SET Balance = Balance + 1000 WHERE AccountNumber = 5678
</sql: update>

</sql: transaction>
All SQL actions that make up a transaction are placed in the body of a <sql:transaction> action element. This action tells the nested elements which database to use, so if you need to specify the database with the dataSource attribute, you must specify it for the <sql:transaction> action. The isolation attribute can specify special transaction features. When the Data Source is made available to the application through JNDI or by another application component, it's typically already configured with an appropriate isolation level. This attribute is therefore rarely used. The details of the different isolation levels are beyond the scope of this book. If you believe you need to specify this value, you can read up on the differences in the JDBC API documents or in the documentation for your database. You should also be aware that some databases and JDBC drivers don't support all transaction isolation levels.

Struts framework

Apache Struts is a free open-source framework for creating Java web applications. Web applications differ from conventional websites in that web applications can create a dynamic response. Many websites deliver only static pages. A web application can interact with databases and business logic engines to customize a response. Web applications based on JavaServer Pages sometimes commingle database code, page design code, and control flow code. In practice, we find that unless these concerns are separated, larger applications become difficult to maintain.

One way to separate concerns in a software application is to use a Model-View-Controller (MVC) architecture. The Model represents the business or database code, the View represents the page design code, and the Controller represents the navigational code. The Struts framework is designed to help developers create web applications that utilize a MVC architecture.

The framework provides three key components:

· A "request" handler provided by the application developer that is mapped to a standard URI.

· A "response" handler that transfers control to another resource which completes the response.
· A tag library that helps developers create interactive form-based applications with server pages.

The framework's architecture and tags are buzzword compliant. Struts works well with conventional REST applications and with nouveau technologies like SOAP and AJAX.

Configuring for Struts

1. Download the Struts binary release from http://jakarta.apache.org.
2. Extract the zip file.
3. Copy the .jar files to lib directory of the Web application.
4. Copy the .tld files to WEB-INF directory.
5. Store web.xml and struts-config.xml files in WEB-INF directory. (struts-config.xml is the DD for all Struts applications. It links all MVC components).

image1.png

image2.png
J2EE Server

5P Page

weblContaifer)

Database

image3.png
Available for

create — Initialize — “YZLSNE

N —

N

S—

A

Sarvich
= requests

(Unavailable
exception

Unavailable for thrown)

sel

ice

—

Y

Destroy

Unload

image4.png
K] spdement

- enple e

chtal>
<hody bgcolor-"uhite"s

<jspuseBean
1de"userInfo"
class="can.ora. jsp-beans.user nfo.UsexTnfogean*s et
<spisetproperty name="userInfo" property=""/>
</yspiuseseans

The follosing information was save
al> - enpte e
CLisuser Nane:

<spigetProperty nane-"userlnfo" | souement
ClisEnail Address: Tempierae
<jspigetProperty nane-"userInfo" e
property-"emailiddz"/> |- speeent

<> 3

<body> [

o/htaly

image5.jpeg
dient

O e

il

Serverwith
5P onainer

ey

o

&
O e

ekset

gl

Tnion

pase

hequest
pcesng
e

image6.png
Enterprise Servers/

Application Server

Data Sources

image7.jpeg
Java Application

IDBC Api

|

Bridge Driver

™

=

image8.jpeg
Java Application

IDBC Api

!

Native API Driver

|

Native API

image9.jpeg
Java Application

IDBC Api

|

Type 3 Driver

[Middleware component|— o Server

image10.jpeg
Java Application

IDBC Api

|

Thin/Type 4 Driver

Hative Protocol

