
FDBMS

MALLA REDDY ENGINEERING COLLEGE

(AUTONOMOUS)

Lecture Notes

On

Prepared by,

E.SUNIL,

ASSISTANT PROFESSOR-CSE

MREC .

DBMS: Basic Concepts

1. Introduction

2. Disadvantages of file oriented approach

3. Database

4. Why Database

5. Database Management System(DBMS)

6. Function of DBMS

7. Advantages of DBMS and disadvantage of DBMS

8. Database Basics

9. Three level architecture of DBMS

10. Database users

11. Database language

12. Database structure

Introduction:

In computerized information system data is the basic resource of the organization.

So, proper organization and management for data is required fro organization to run

smoothly. Database management system deals the knowledge of how data stored and

managed on a computerized information system. In any organization, it requires accurate

and reliable data for better decision making, ensuring privacy of data and controlling data

efficiently.

The examples include deposit and/or withdrawal from a bank,hotel,airline or railway

reservation, purchase items from supermarkets in all cases, a database is accessed.

What is data:

Data is the known facts or figures that have implicit meaning. It can also be defined as it

is the representation of facts ,concepts or instruction in a formal manner, which is suitable

for understanding and processing. Data can be represented in alphabets(A-Z, a-z),in

digits(0-9) and using special characters(+,-.#,$, etc)

 : 25, “ajit” etc.

Information:

Information is the processed data on which decisions and actions are based. Information

can be defined as the organized and classified data to provide meaningful values.

Eg: “The age of Ravi is 25”

File:

File is a collection of related data stored in secondary memory.

File Oriented approach:

The traditional file oriented approach to information processing has for each application a

separate master file and its own set of personal file. In file oriented approach the program

dependent on the files and files become dependent on the files and files become

dependents upon the programs

Disadvantages of file oriented approach:

1) Data redundancy and inconsistency:

The same information may be written in several files. This redundancy leads to

higher storage and access cost. It may lead data inconsistency that is the various

copies of the same data may longer agree for example a changed customer address

may be reflected in single file but not else where in the system.

2) Difficulty in accessing data :

The conventional file processing system do not allow data to retrieved in a

convenient and efficient manner according to user choice.

3) Data isolation :

Because data are scattered in various file and files may be in different formats

with new application programs to retrieve the appropriate data is difficult.

4) Integrity Problems:

Developers enforce data validation in the system by adding appropriate code in

the various application program. How ever when new constraints are added, it is

difficult to change the programs to enforce them.

5) Atomicity:

It is difficult to ensure atomicity in a file processing system when transaction

failure occurs due to power failure, networking problems etc.

(atomicity: either all operations of the transaction are reflected properly in the

database or non are)

6) Concurrent access:

In the file processing system it is not possible to access a same file for

transaction at same time

7) Security problems:

There is no security provided in file processing system to secure the data from

unauthorized user access.

Database:

A database is organized collection of related data of an organization stored in

formatted way which is shared by multiple users.

The main feature of data in a database are:

1. It must be well organized

2. it is related

3. It is accessible in a logical order without any difficulty

4. It is stored only once

for example:

consider the roll no, name, address of a student stored in a student file. It is collection of

related data with an implicit meaning.

Data in the database may be persistent, integrated and shared.

Persistent:

If data is removed from database due to some explicit request from user to remove.

Integrated:

A database can be a collection of data from different files and when any redundancy

among those files are removed from database is said to be integrated data.

Sharing Data:

The data stored in the database can be shared by multiple users simultaneously with out

affecting the correctness of data.

Why Database:

In order to overcome the limitation of a file system, a new approach was required.

Hence a database approach emerged. A database is a persistent collection of logically

related data. The initial attempts were to provide a centralized collection of data. A

database has a self describing nature. It contains not only the data sharing and integration

of data of an organization in a single database.

A small database can be handled manually but for a large database and having

multiple users it is difficult to maintain it, In that case a computerized database is useful.

The advantages of database system over traditional, paper based methods of record

keeping are:

⚫ compactness:

No need for large amount of paper files

⚫ speed:

The machine can retrieve and modify the data more faster way then human being

⚫ Less drudgery: Much of the maintenance of files by hand is eliminated

⚫ Accuracy: Accurate,up-to-date information is fetched as per requirement of the

user at any time.

Database Management System (DBMS):

A database management system consists of collection of related data and refers to a set of

programs for defining, creation, maintenance and manipulation of a database.

Function of DBMS:

1. Defining database schema: it must give facility for defining the database

structure also specifies access rights to authorized users.

2. Manipulation of the database: The dbms must have functions like insertion of

record into database updation of data, deletion of data, retrieval of data

3. Sharing of database: The DBMS must share data items for multiple users by

maintaining consistency of data.

4. Protection of database: It must protect the database against unauthorized users.

5. Database recovery: If for any reason the system fails DBMS must facilitate data

base recovery.

Advantages of dbms:

Reduction of redundancies:

Centralized control of data by the DBA avoids unnecessary duplication of data and

effectively reduces the total amount of data storage required avoiding duplication in the

elimination of the inconsistencies that tend to be present in redundant data files.

Sharing of data:

A database allows the sharing of data under its control by any number of application

programs or users.

Data Integrity:

Data integrity means that the data contained in the database is both accurate and

consistent. Therefore data values being entered for storage could be checked to ensure

that they fall with in a specified range and are of the correct format.

Data Security:

The DBA who has the ultimate responsibility for the data in the dbms can ensure that

proper access procedures are followed including proper authentication schemas for access

to the DBS and additional check before permitting access to sensitive data.

Conflict resolution:

DBA resolve the conflict on requirements of various user and applications. The DBA

chooses the best file structure and access method to get optional performance for the

application.

Data Independence:

Data independence is usually considered from two points of views; physically data

independence and logical data independence.

Physical data Independence allows changes in the physical storage devices or

organization of the files to be made without requiring changes in the conceptual view or

any of the external views and hence in the application programs using the data base.

Logical data independence indicates that the conceptual schema can be changed without

affecting the existing external schema or any application program.

Disadvantage of DBMS:

1. DBMS software and hardware (networking installation) cost is high

2. The processing overhead by the dbms for implementation of security, integrity

and sharing of the data.

3. centralized database control

4. Setup of the database system requires more knowledge, money, skills, and time.

5. The complexity of the database may result in poor performance.

Database Basics:

Data item:

The data item is also called as field in data processing and is the smallest unit of data

that has meaning to its users.

Eg: “e101”,”sumit”

Entities and attributes:

An entity is a thing or object in the real world that is distinguishable from all other

objects

Eg:

Bank,employee,student

Attributes are properties are properties of an entity.

Eg:

Empcode,ename,rolno,name

Logical data and physical data :

Logical data are the data for the table created by user in primary memory.

Physical data refers to the data stored in the secondary memory.

Schema and sub-schema :

View

User n

Internal level

A schema is a logical data base description and is drawn as a chart of

the types of data that are used . It gives the names of the entities and attributes and

specify the relationships between them.

A database schema includes such information as :

➢ Characteristics of data items such as entities and attributes .

➢ Logical structures and relationships among these data items .

➢ Format for storage representation.

➢ Integrity parameters such as physical authorization and back up policies.

A subschema is derived schema derived from existing schema as per the user

requirement. There may be more then one subschema create for a single conceptual

schema.

Three level architecture of DBMS :

External level

Conceptual

level

Mapping supplied by DBMS

Mapping supplied by DBMS/OS

A database management system that provides three level of data is said to follow three-

level architecture .

External level :

⚫ External level

⚫ Conceptual level

⚫ Internal level

Conceptual view

View

user1

View

User2

The external level is at the highest level of database abstraction . At this level, there will

be many views define for different users requirement. A view will describe only a subset

of the database. Any number of user views may exist for a given global or subschema.

for example , each student has different view of the time table. the view of a student of

Btech (CSE) is different from the view of the student of Btech(ECE).Thus this level of

abstraction is concerned with different categories of users.

Each external view is described by means of a schema called schema or

schema.

Conceptual level :

At this level of database abstraction all the database entities and the

relationships among them are included . One conceptual view represents the entire

database . This conceptual view is defined by the conceptual schema.

The conceptual schema hides the details of physical storage structures and concentrate on

describing entities , data types, relationships, user operations and constraints.

It describes all the records and relationships included in the conceptual view

. There is only one conceptual schema per database . It includes feature that specify the

checks to relation data consistency and integrity.

Internal level :

It is the lowest level of abstraction closest to the physical storage method used .

It indicates how the data will be stored and describes the data structures and access

methods to be used by the database . The internal view is expressed by internal schema.

The following aspects are considered at this level:

1. Storage allocation e.g: B-tree,hashing

2. access paths eg. specification of primary and secondary keys,indexes etc

3. Miscellaneous eg. Data compression and encryption techniques,optimization of

the internal structures.

Database users :

Naive users :

Users who need not be aware of the presence of the database system or any other

system supporting their usage are considered naïve users . A user of an automatic teller

machine falls on this category.

Online users :

These are users who may communicate with the database directly via an online

terminal or indirectly via a user interface and application program. These users are

aware of the database system and also know the data manipulation language system.

Application programmers :

Professional programmers who are responsible for developing application programs

or user interfaces utilized by the naïve and online user falls into this category.

Database Administration :

A person who has central control over the system is called database administrator .

The function of DBA are :

Database language :

1. creation and modification of conceptual Schema

definition

2. Implementation of storage structure and access method.

3. schema and physical organization modifications .

4. granting of authorization for data access.

5. Integrity constraints specification.

6. Execute immediate recovery procedure in case of failures

7. ensure physical security to database

1) Data definition language(DDL) :

DDL is used to define database objects .The conceptual schema is

specified by a set of definitions expressed by this language. It also give some

details about how to implement this schema in the physical devices used to store

the data. This definition includes all the entity sets and their associated attributes

and their relation ships. The result of DDL statements will be a set of tables that

are stored in special file called data dictionary.

2) Data manipulation language(DML) :

A DML is a language that enables users to access or manipulate data stored in

the database. Data manipulation involves retrieval of data from the database,

insertion of new data into the database and deletion of data or modification of

existing data.

There are basically two types of DML:

⚫ procedural: Which requires a user to specify what data is needed and

how to get it.

⚫ non-rocedural: which requires a user to specify what data is needed

with out specifying how to get it.

3) Data control language(DCL):

This language enables user to grant authorization and canceling

authorization of database objects.

Elements of DBMS:

DML pre-compiler:

It converts DML statement embedded in an application program to normal procedure

calls in the host language. The pre-complier must interact with the query processor in

order to generate the appropriate code.

DDL compiler:

The DDL compiler converts the data definition statements into a set of tables. These

tables contains information concerning the database and are in a form that can be used by

other components of the dbms.

File manager:

File manager manages the allocation of space on disk storage and the data structure used

to represent information stored on disk.

Database manager:

A database manager is a program module which provides the interface between the low

level data stored in the database and the application programs and queries submitted to

the system.

The responsibilities of database manager are:

1. Interaction with file manager: The data is stored on the disk using the file

system which is provided by operating system. The database manager translate

the the different DML statements into low-level file system commands. so The

database manager is responsible for the actual storing,retrieving and updating

of data in the database.

2. Integrity enforcement:The data values stored in the database must satisfy

certain constraints(eg: the age of a person can't be less then zero).These

constraints are specified by DBA. Data manager checks the constraints and if

it satisfies then it stores the data in the database.

3. Security enforcement:Data manager checks the security measures for

database from unauthorized users.

4. Backup and recovery:Database manager detects the failures occurs due to

different causes (like disk failure, power failure,deadlock,s/w error) and

restores the database to original state of the database.

5. Concurrency control:When several users access the same database file

simultaneously, there may be possibilities of data inconsistency. It is

Database manager

DBMS

Ddl compiler System calls Application

programs

On line user

Query processor

DBA Application

programers

Data dictionary

Data file

File manager

Ddl compiler Dml precomplier Application prog

obj code

responsible of database manager to control the problems occurs for concurrent

transactions.

query processor:

The query processor used to interpret to online user’s query and convert it into an

efficient series of operations in a form capable of being sent to the data manager for

execution. The query processor uses the data dictionary to find the details of data file

and using this information it create query plan/access plan to execute the query.

Data Dictionary:

Data dictionary is the table which contains the information about database objects. It

contains information like

1. external, conceptual and internal database description

2. description of entities , attributes as well as meaning of data elements

3. synonyms, authorization and security codes

4. database authorization

The data stored in the data dictionary is called meta data.

DBMS STRUCTURE:

Q. List four significant differences between a file-processing system and a DBMS.

Answer: Some main differences between a database management system and a file-

processing system are:

• Both systems contain a collection of data and a set of programs which access that

data. A database management system coordinates both the physical and the logical

Naïve user

access to the data, whereas a file-processing system coordinates only the physical

access.

• A database management system reduces the amount of data duplication by

ensuring that a physical piece of data is available to all programs authorized to

have access to it, where as data written by one program in a file-processing system

may not be readable by another program.

• A database management system is designed to allow flexible access to data (i.e.,

queries), whereas a file-processing system is designed to allow predetermined

access to data (i.e., compiled programs).

• A database management system is designed to coordinate multiple users accessing

the same data at the same time. A file-processing system is usually designed to

allow one or more programs to access different data files at the same time. In a

file-processing system, a file can be accessed by two programs concurrently only

if both programs have read-only access to the file.

Q.Explain the difference between physical and logical data independence.

Answer:

• Physical data independence is the ability to modify the physical scheme without

making it necessary to rewrite application programs. Such modifications include

changing from unblocked to blocked record storage, or from sequential to random

access files.

• Logical data independence is the ability to modify the conceptual scheme without

making it necessary to rewrite application programs. Such a modification might

be adding a field to a record; an application program’s view hides this change

from the program.

Q. List five responsibilities of a database management system. For each

responsibility, explain the problems that would arise if the responsibility were not

discharged.

Answer: A general purpose database manager (DBM) has five responsibilities:

a. interaction with the file manager.

b. integrity enforcement.

c. security enforcement.

d. backup and recovery.

e. concurrency control.

If these responsibilities were not met by a given DBM (and the text points out that

sometimes a responsibility is omitted by design, such as concurrency control on a

single-user DBM for a micro computer) the following problems can occur,

respectively:

a. No DBM can do without this, if there is no file manager interaction then

nothing stored in the files can be retrieved.

b. Consistency constraints may not be satisfied, account balances could go

below the minimum allowed, employees could earn too much overtime

(e.g.,hours > 80) or, airline pilots may fly more hours than allowed by law.

c. Unauthorized users may access the database, or users authorized to access

part of the database may be able to access parts of the database for which

they lack authority. For example, a high school student could get access to

national defense secret codes, or employees could find out what their

supervisors earn.

d. Data could be lost permanently, rather than at least being available in a

consistent state that existed prior to a failure.

e. Consistency constraints may be violated despite proper integrity

enforcement in each transaction. For example, incorrect bank balances

might be reflected due to simultaneous withdrawals and deposits, and so

on.

Q. What are five main functions of a database administrator?

Answer: Five main functions of a database administrator are:

• To create the scheme definition

• To define the storage structure and access methods

• To modify the scheme and/or physical organization when necessary

• To grant authorization for data access

• To specify integrity constraints

Q. List six major steps that you would take in setting up a database for a particular

enterprise.

Answer: Six major steps in setting up a database for a particular enterprise are:

• Define the high level requirements of the enterprise (this step generates a

document known as the system requirements specification.)

• Define a model containing all appropriate types of data and data

relationships.

• Define the integrity constraints on the data.

• Define the physical level.

• For each known problem to be solved on a regular basis (e.g., tasks to be

carried out by clerks or Web users) define a user interface to carry out the

task, and write the necessary application programs to implement the user

interface.

• Create/initialize the database.

EXERCISES:

1. What is database management system

2. What are the disadvantage of file processing system

3. State advantage and disadvantage of database management system

4. What ate different types of database users

5. What is data dictionary and what are its contents

6. What are the function of DBA

7. What are the different database languages explain with example.

8. Explain the three layer architecture of DBMS.

9. Differentiate between physical data independence and logical data independence

10. Explain the function of data base manager

11. Explain meta data

CHAPTER-2

ER-MODEL

Data model:

The data model describes the structure of a database. It is a collection of conceptual tools

for describing data, data relationships and consistency constraints and various types of

data model such as

1. Object based logical model

2. Record based logical model

3. Physical model

Types of data model:

1. Object based logical model

a. ER-model

b. Functional model

c. Object oriented model

d. Semantic model

2. Record based logical model

a. Hierarchical database model

b. Network model

c. Relational model

3. Physical model

Entity Relationship Model

The entity-relationship data model perceives the real world as consisting of basic objects,

called entities and relationships among these objects. It was developed to facilitate data

base design by allowing specification of an enterprise schema which represents the

overall logical structure of a data base.

Main features of ER-MODEL:

• Entity relationship model is a high level conceptual model

• It allows us to describe the data involved in a real world enterprise in terms of

objects and their relationships.

• It is widely used to develop an initial design of a database

• It provides a set of useful concepts that make it convenient for a developer to

move from a baseid set of information to a detailed and description of information

that can be easily implemented in a database system

• It describes data as a collection of entities, relationships and attributes.

Basic concepts:

The E-R data model employs three basic notions : entity sets, relationship sets and

attributes.

Entity sets:

An entity is a “thing” or “object” in the real world that is distinguishable from all other

objects. For example, each person in an enterprise is an entity. An entity has a set

properties and the values for some set of properties may uniquely identify an entity.

BOOK is entity and its properties(calles as attributes) bookcode, booktitle, price etc .

An entity set is a set of entities of the same type that share the same properties, or

attributes. The set of all persons who are customers at a given bank, for example, can be

defined as the entity set customer.

Attributes:

An entity is represented by a set of attributes. Attributes are descriptive properties

possessed by each member of an entity set.

Customer is an entity and its attributes are customerid, custmername, custaddress etc.

An attribute as used in the E-R model , can be characterized by the following attribute

types.

a) Simple and composite attribute:

simple attributes are the attributes which can’t be divided into sub parts

eg: customerid,empno

composite attributes are the attributes which can be divided into subparts.

eg: name consisting of first name, middle name, last name

address consisting of city,pincode,state

b) single-valued and multi-valued attribute:

The attribute having unique value is single –valued attribute

eg: empno,customerid,regdno etc.

The attribute having more than one value is multi-valued attribute

eg: phone-no, dependent name, vehicle

c) Derived Attribute:

The values for this type of attribute can be derived from the values of existing

attributes

eg: age which can be derived from (currentdate-birthdate)

experience_in_year can be calculated as (currentdate-joindate)

d) NULL valued attribute:

The attribute value which is unknown to user is called NULL valued attribute.

Relationship sets:

A relationship is an association among several entities.

A relationship set is a set of relationships of the same type. Formally, it is a mathematical

relation on n>=2 entity sets. If E1,E2…En are entity sets, then a relation ship set R is a

subset of

{(e1,e2,…en)|e1Є E1,e2 Є E2..,en Є En}

where (e1,e2,…en) is a relation ship.

Consider the two entity sets customer and loan. We define the relationship set borrow to

denote the association between customers and the bank loans that the customers have.

Mapping Cardinalities:

Mapping cardinalities or cardinality ratios, express the number of entities to which

another entity can be associated via a relationship set.

Mapping cardinalities are most useful in describing binary relationship sets, although they

can contribute to the description of relationship sets that involve more than two entity

sets.

For a binary relationship set R between entity sets A and B, the mapping cardinalities

must be one of the following:

one to one:

An entity in A is associated with at most one entity in B, and an entity in B is associated

with at most one entity in A.

Eg: relationship between college and principal

One to many:

An entity in A is associated with any number of entities in B. An entity in B is associated

with at the most one entity in A.

Eg: Relationship between department and faculty

1 1 1 1

has college principal

borro customer

1 1 M 1

Works

in

Department Faculty

loan

1□

Teach

es

M□

 Course Faculty

1□ M□

Depos Customer Account

Many to one:

An entity in A is associated with at most one entity in B. An entity in B is associated with

any number in A.

Many –to-many:

Entities in A and B are associated with any number of entities from each other.

More about entities and Relationship:

Recursive relationships:

When the same entity type participates more than once in a relationship type in different

roles, the relationship types are called recursive relationships.

Participation constraints:

The participation constraints specify whether the existence of any entity depends on its

being related to another entity via the relationship. There are two types of participation

constraints

Total :

.When all the entities from an entity set participate in a relationship type , is called total

participation. For example, the participation of the entity set student on the relationship

set must ‘opts’ is said to be total because every student enrolled must opt for a course.

Partial:

When it is not necessary for all the entities from an entity set to particapte ion a

relationship type, it is called participation. For example, the participation of the entity set

student in ‘represents’ is partial, since not every student in a class is a class

representative.

Weak Entity:

Entity types that do not contain any key attribute, and hence can not be identified

independently are called weak entity types. A weak entity can be identified by uniquely

only by considering some of its attributes in conjunction with the primary key attribute of

another entity, which is called the identifying owner entity.

Generally a partial key is attached to a weak entity type that is used for unique

identification of weak entities related to a particular owner type. The following

restrictions must hold:

• The owner entity set and the weak entity set must participate in one to may

relationship set. This relationship set is called the identifying relationship set of

the weak entity set.

• The weak entity set must have total participation in the identifying relationship.

Example:

Consider the entity type dependent related to employee entity, which is used to keep

track of the dependents of each employee. The attributes of dependents are : name

,birthrate, sex and relationship. Each employee entity set is said to its own the

dependent entities that are related to it. How ever, not that the ‘dependent’ entity does

not exist of its own., it is dependent on the employee entity. In other words we can say

that in case an employee leaves the organization all dependents related to without the

entity ‘employee’. Thus it is a weak entity.

Keys:

Super key:

A super key is a set of one or more attributes that taken collectively, allow us to

identify uniquely an entity in the entity set.

For example , customer-id,(cname,customer-id),(cname,telno)

Candidate key:

In a relation R, a candidate key for R is a subset of the set of attributes of R, which

have the following properties:

• Uniqueness: no two distinct tuples in R have the same values for

the candidate key

• Irreducible: No proper subset of the candidate key has the

uniqueness property that is the candidate key.

Eg: (cname,telno)

Primary key:

The primary key is the candidate key that is chosen by the database designer as the

principal means of identifying entities with in an entity set. The remaining candidate

keys if any, are called alternate key.

ER-DIAGRAM:

The overall logical structure of a database using ER-model graphically with the help

of an ER-diagram.

Symbols use ER- diagram:

entity

Weak entity

attribute

composite attribute

Relationship

Multi valued attribute

Derived attribute

Key attribute

Identifying

Relationship

1 m
 1 1

One-to -one One-to -many

m 1
 m n

many-to -one many-to -many

Total participation Partial participation

Advanced ER-diagram:

Abstraction is the simplification mechanism used to hide superfluous details of a set of

objects. It allows one to concentrate on the properties that are of interest to the

application.

There are two main abstraction mechanism used to model information:

Generalization and specialization:

. Generalization is the abstracting process of viewing set of objects as a single

general class by concentrating on the general characteristics of the constituent sets while

suppressing or ignoring their differences. It is the union of a number of lower-level entity

types for the purpose of producing a higher-level entity type. For instance, student is a

generalization of graduate or undergraduate, full-time or part-time students. Similarly,

employee is generalization of the classes of objects cook, waiter, and cashier.

Generalization is an IS_A relationship; therefore, manager IS_AN employee, cook IS_AN

employee, waiter IS_AN employee, and so forth.

Specialization is the abstracting process of introducing new characteristics to an

existing class of objects to create one or more new classes of objects. This involves taking

a higher-level, and using additional characteristics, generating lower-level entities. The

lower-level entities also inherits the, characteristics of the higher-level entity. In applying

the characteristics size to car we can create a full-size, mid-size, compact or subcompact

car. Specialization may be seen as the reverse process of generalization addition specific

properties are introduced at a lower level in a hierarchy of objects.

name

employee

degree

Full time

employee

Is

Part-time

employee

Generalization Specialization

EMPLOYEE(empno,name,dob)

FULL_TIME_EMPLOYEE(empno,sala

ry)
PART_TIME_EMPLOYEE(empno,type)

Faculty(empno,degree,intrest)

Staff(empno,hour-rate)

Teaching (empno,stipend)

dob
empno

Is Is

degree

Is Is Is

casual

degree

faculty

Intrest

Intrest

teaching staff

Classificatio hourrat

Aggregation:

Aggregation is the process of compiling information on an object, there by abstracting a

higher level object. In this manner, the entity person is derived by aggregating the

characteristics of name, address, ssn. Another form of the aggregation is abstracting a

relationship objects and viewing the relationship as an object.

Works

on

Manag

Manager

Employe
Branch

Job

rollno

Student

name addres
coursei cname duratio

opts
N 1

1
M

has enroll

ed
Taug

1 N
N 1 Work N fid

dno addre

Head
name

addres

dnam 1
1

name sal

relationship

Date

Faculty Department gaurdian

Course

ER- Diagram For College Database

Conversion of ER-diagram to relational database

Conversion of entity sets:

1. For each strong entity type E in the ER diagram, we create a relation R containing

all the single attributes of E. The primary key of the relation R will be one of the

key attribute of R.

STUDENT(rollno (primary key),name, address)

FACULTY(id(primary key),name ,address, salary)

COURSE(course-id,(primary key),course_name,duration)

DEPARTMENT(dno(primary key),dname)

2. for each weak entity type W in the ER diagram, we create another relation R that

contains all simple attributes of W. If E is an owner entity of W then key attribute

of E is also include In R. This key attribute of R is set as a foreign key attribute of

R. Now the combination of primary key attribute of owner entity type and partial

key of the weak entity type will form the key of the weak entity type

GUARDIAN((rollno,name) (primary key),address,relationship)

Conversion of relationship sets:

Binary Relationships:

• One-to-one relationship:

For each 1:1 relationship type R in the ER-diagram involving two entities E1 and

E2 we choose one of entities(say E1) preferably with total participation and add

primary key attribute of another E as a foreign key attribute in the table of

entity(E1). We will also include all the simple attributes of relationship type R in

E1 if any, For example, the department relationship has been extended tp include

head-id and attribute of the relationship.

DEPARTMENT(D_NO,D_NAME,HEAD_ID,DATE_FROM)

• One-to-many relationship:

For each 1:n relationship type R involving two entities E1 and E2, we identify the

entity type (say E1) at the n-side of the relationship type R and include primary

key of the entity on the other side of the relation (say E2) as a foreign key attribute

in the table of E1. We include all simple attribute(or simple components of a

composite attribute of R(if any) in he table E1)

For example:

The works in relationship between the DEPARTMENT and FACULTY. For this

relationship choose the entity at N side, i.e, FACULTY and add primary key

attribute of another entity DEPARTMENT, ie, DNO as a foreign key attribute in

FACULTY.

FACULTY(CONSTAINS WORKS_IN RELATIOSHIP)

(ID,NAME,ADDRESS,BASIC_SAL,DNO)

• Many-to-many relationship:

For each m:n relationship type R, we create a new table (say S) to represent R, We

also include the primary key attributes of both the participating entity types as a

foreign key attribute in s. Any simple attributes of the m:n relationship type(or

simple components as a composite attribute) is also included as attributes of S.

For example:

The M:n relationship taught-by between entities COURSE; and FACULTY shod

be represented as a new table. The structure of the table will include primary key

of COURSE and primary key of FACULTY entities.

,loanno,empno

Customer Loan

TAUGHT-BY(ID (primary key of FACULTY table),course-id (primary key of

COURSE table)

• N-ary relationship:

For each n-anry relationship type R where n>2, we create a new table S to

represent R, We include as foreign key attributes in s the primary keys of the

relations that represent the participating entity types. We also include any simple

attributes of the n-ary relationship type(or simple components of complete

attribute) as attributes of S. The primary key of S is usually a combination of all

the foreign keys that reference the relations representing the participating entity

types.

Loan -

sanctio

LOAN-SANCTION(cusomet-id

• Multi-valued attributes:

,sancdate,loan_amount)

For each multivalued attribute ‘A’, we create a new relation R that includes an

attribute corresponding to plus the primary key attributes k of the relation that

represents the entity type or relationship that has as an attribute. The primary key

of R is then combination of A and k.

For example, if a STUDENT entity has rollno,name and phone number where

phone numer is a multivalued attribute the we will create table

PHONE(rollno,phoneno) where primary key is the combination,In the STUDENT

table we need not have phone number, instead if can be simply (rollno,name)

only.

PHONE(rollno,phoneno)

Employee

name

 branch

specialisation

intrest

Saving

charges

Current

generalisation

• Converting Generalisation /specification hierarchy to tables:

A simple rule for conversion may be to decompose all the specialized entities into

table in case they are disjoint, for example, for the figure we can create the two

table as:

Account(account_no,name,branch,balance)

Saving account(account-no,intrest)

Current_account(account-no,charges)

Account_n

Account

Is-a

Record Based Logical Model

Hierarchical Model:

• A hierarchical database consists of a collection of records which are connected to

one another through links.

• a record is a collection of fields, each of which contains only one data value.

• A link is an association between precisely two records.

• The hierarchical model differs from the network model in that the records are

organized as collections of trees rather than as arbitrary graphs.

Tree-Structure Diagrams:

• The schema for a hierarchical database consists of

o boxes, which correspond to record types

o lines, which correspond to links

• Record types are organized in the form of a rooted tree.

o No cycles in the underlying graph.

o Relationships formed in the graph must be such that only

one-to-many or one-to-one relationships exist between a parent and a

child.

Database schema is represented as a collection of tree-structure diagrams.

▪ single instance of a database tree

▪ The root of this tree is a dummy node

▪ The children of that node are actual instances of the

appropriate record type

When transforming E-R diagrams to corresponding tree-structure diagrams, we must

ensure that the resulting diagrams are in the form of rooted trees.

Single Relationships:

▪ Example E-R diagram with two entity sets, customer and account, related through

a binary, one-to-many relationship depositor.

▪ Corresponding tree-structure diagram has

o the record type customer with three fields: customer-name, customer-
street, and customer-city.

o the record type account with two fields: account-number and balance

o the link depositor, with an arrow pointing to customer

▪ If the relationship depositor is one to one, then the link depositor has two arrows.

▪ Only one-to-many and one-to-one relationships can be directly represented in the

hierarchical mode.

Transforming Many-To-Many Relationships:

▪ Must consider the type of queries expected and the degree to which the database

schema fits the given E-R diagram.

▪ In all versions of this transformation, the underlying database tree (or trees) will

have replicated records.

▪ Create two tree-structure diagrams, T1, with the root customer, and T2, with

the root account.

▪ In T1, create depositor, a many-to-one link from account to customer.

▪ In T2, create account-customer, a many-to-one link from customer to account.

Virtual Records:

▪ For many-to-many relationships, record replication is necessary to preserve the

tree-structure organization of the database.

o Data inconsistency may result when updating takes place

o Waste of space is unavoidable

▪ Virtual record — contains no data value, only a logical pointer to a particular

physical record.

▪ When a record is to be replicated in several database trees, a single copy of that

record is kept in one of the trees and all other records are replaced with a virtual

record.

▪ Let R be a record type that is replicated in T1, T2, . . ., Tn. Create a new virtual

record type virtual-R and replace R in each of the n – 1 trees with a record of type

virtual-R.

▪ Eliminate data replication in the diagram shown on page B.11; create virtual-

customer and virtual-account.

▪ Replace account with virtual-account in the first tree, and replace customer with

virtual-customer in the second tree.

▪ Add a dashed line from virtual-customer to customer, and from virtual-account to

account, to specify the association between a virtual record and its corresponding

physical record.

Network Model:

▪ Data are represented by collections of records.

o similar to an entity in the E-R model

o Records and their fields are represented as record type

▪ type customer = record type account = record type

customer-name: string; account-number: integer;

customer-street: string; balance: integer;

customer-city: string;

▪ end end

▪ Relationships among data are represented by links

o similar to a restricted (binary) form of an E-R relationship

o restrictions on links depend on whether the relationship is many-many,
many-to-one, or one-to-one.

Data-Structure Diagrams:

▪ Schema representing the design of a network database.

▪ A data-structure diagram consists of two basic components:

o Boxes, which correspond to record types.

o Lines, which correspond to links.

▪ Specifies the overall logical structure of the database.

For every E-R diagram, there is a corresponding data-structure diagram.

Since a link cannot contain any data value, represent an E-R relationship with

attributes with a new record type and links.

To represent an E-R relationship of degree 3 or higher, connect the participating

record types through a new record type that is linked directly to each of the original

record types.

1. Replace entity sets account, customer, and branch with record types account,

customer, and branch, respectively.

2. Create a new record type Rlink (referred to as a dummy record type).

3. Create the following many-to-one links:

o CustRlink from Rlink record type to customer record type

o AcctRlnk from Rlink record type to account record type

o BrncRlnk from Rlink record type to branch record type

The DBTG CODASYL Model:

o All links are treated as many-to-one relationships.

o To model many-to-many relationships, a record type is defined to represent the
relationship and two links are used.

DBTG Sets:

o The structure consisting of two record types that are linked together is referred

to in the DBTG model as a DBTG set

o In each DBTG set, one record type is designated as the owner, and the other is
designated as the member, of the set.

o Each DBTG set can have any number of set occurrences (actual instances of
linked records).

o Since many-to-many links are disallowed, each set occurrence has precisely
one owner, and has zero or more member records.

o No member record of a set can participate in more than one occurrence of the
set at any point.

o A member record can participate simultaneously in several set occurrences of

different DBTG sets.

RELATIONAL MODEL

Relational model is simple model is simple model in which database is represented as a

collection of “relations” where each relation is represented by two-dimensional table.

The relational model was founded by E.F.Codd of the IBM in 1972.The basic concept in

the relational model is that of a relation.

Properties:

o It is column homogeneous. In other words, in any given column of a table, all
items are of the same kind.

o Each item is a simple number or a character string. That is a table must be in first
normal form.

o All rows of a table are distinct.

o The ordering of rows with in a table is immaterial.

o The column of a table are assigned distinct names and the ordering of these
columns in immaterial.

Domain, attributes tuples and relational:

Tuple:

Each row in a table represents a record and is called a tuple .A table containing ‘n’

attributes in a record is called is called n-tuple.

Attributes:

The name of each column in a table is used to interpret its meaning and is called an

attribute.Each table is called a relation.

In the above table, account_number, branch name, balance are the attributes.

Domain:

A domain is a set of values that can be given to an attributes. So every attribute in a

table has a specific domain. Values to these attributes can not be assigned outside

their domains.

Relation:

A relation consist of

o Relational schema

o Relation instance

Relational schema:

A relational schema specifies the relation’ name, its attributes and the domain of each

attribute. If R is the name of a relation and A1,A2,… and is a list of attributes

representing R then R(A1,A2,…,an) is called a relational schema. Each attribute in

this relational schema takes a value from some specific domain called domain(Ai).

Example:

PERSON(PERSON_IDinteger,NAME: STRING,AGE:INTEGER,ADDRESS:string)

Total number of attributes in a relation denotes the degree of a relation.since the

PERSON relation schemea contains four attributes ,so this relation is of degree 4.

Relation Instance:

A relational instance denoted as r is a collection of tuples for a given relational

schema at a specific point of time.

A relation state r to the relations schema R(A1,A2…,An) also denoted by r® is a set

of n-tuples

R{t1,t2,…tm}

Where each n-tuple is an ordered list of n values

T=<v1,v2,….vn>

Where each vi belongs to domain (Ai) or contains null values.

The relation schema is also called ‘intension’ and the relation state is also called

‘extension’.

Eg:

Relation schema for student:

STUDENT(rollno:strinhg,name:string,city:string,age:integer)

Relation instance:

Student:

Rollno Name City Age

101 Sujit Bam 23

102 kunal bbsr 22

Keys:

Super key:

A super key is an attribute or a set of attributes used to identify the records uniquely in

a relation.

For example , customer-id,(cname,customer-id),(cname,telno)

Candidate key:

Super keys of a relation can contain extra attributes . candidate keys are minimal

super keys. i.e, such a key contains no extraneous attribute. An attribute is called

extraneous if even after removing it from the key, makes the remaining attributes still

has the properties of a key.

In a relation R, a candidate key for R is a subset of the set of attributes of R, which

have the following properties:

• Uniqueness: no two distinct tuples in R have the same values for

the candidate key

• Irreducible: No proper subset of the candidate key has the

uniqueness property that is the candidate key.

• A candidate key’s values must exist. It can’t be null.

• The values of a candidate key must be stable. Its value can not change outside

the control of the system.

Eg: (cname,telno)

Primary key:

The primary key is the candidate key that is chosen by the database designer as the

principal means of identifying entities with in an entity set. The remaining candidate

keys if any are called alternate key.

RELATIONAL CONSTRAINTS:

There are three types of constraints on relational database that include

o DOMAIN CONSTRAINTS

o KEY CONSTRAINTS

o INTEGRITY CONSTRAINTS

DOMAIN CONSTRAINTS:

It specifies that each attribute in a relation an atomic value from the corresponding

domains. The data types associated with commercial RDBMS domains include:

o Standard numeric data types for integer

o Real numbers

o Characters

o Fixed length strings and variable length strings

Thus, domain constraints specifies the condition that we to put on each instance of the

relation. So the values that appear in each column must be drawn from the domain

associated with that column.

Rollno Name City Age

101 Sujit Bam 23

102 kunal Bbsr 22

Key constraints:

This constraints states that the key attribute value in each tuple msut be unique .i.e, no

two tuples contain the same value for the key attribute.(null values can allowed)

Emp(empcode,name,address) . here empcode can be unique

Integrity constraints:

There are two types of integrity constraints:

o Entity integrity constraints

o Referential integrity constraints

Entity integrity constraints:

It states that no primary key value can be null and unique. This is because the primary key

is used to identify individual tuple in the relation. So we will not be able to identify the

records uniquely containing null values for the primary key attributes. This constraint is

specified on one individual relation.

Referential integrity constraints:

It states that the tuple in one relation that refers to another relation must refer to an

existing tuple in that relation. This constraints is specified on two relations .

If a column is declared as foreign key that must be primary key of another table.

Department(deptcode,dname)

Here the deptcode is the primary key.

Emp(empcode,name,city,deptcode).

Here the deptcode is foreign key.

CODD'S RULES

Rule 1 : The information Rule.

"All information in a relational data base is represented explicitly at the logical level and

in exactly one way - by values in tables."

Everything within the database exists in tables and is accessed via table access routines.

Rule 2 : Guaranteed access Rule.

"Each and every datum (atomic value) in a relational data base is guaranteed to be

logically accessible by resorting to a combination of table name, primary key value and

column name."

To access any data-item you specify which column within which table it exists, there is

no reading of characters 10 to 20 of a 255 byte string.

Rule 3 : Systematic treatment of null values.

"Null values (distinct from the empty character string or a string of blank characters and

distinct from zero or any other number) are supported in fully relational DBMS for

representing missing information and inapplicable information in a systematic way,

independent of data type."

If data does not exist or does not apply then a value of NULL is applied, this is

understood by the RDBMS as meaning non-applicable data.

Rule 4 : Dynamic on-line catalog based on the relational model.

"The data base description is represented at the logical level in the same way as-ordinary

data, so that authorized users can apply the same relational language to its interrogation as

they apply to the regular data."

The Data Dictionary is held within the RDBMS, thus there is no-need for off-line

volumes to tell you the structure of the database.

Rule 5 : Comprehensive data sub-language Rule.

"A relational system may support several languages and various modes of terminal use

(for example, the fill-in-the-blanks mode). However, there must be at least one language

whose statements are expressible, per some well-defined syntax, as character strings and

that is comprehensive in supporting all the following items

• Data Definition

• View Definition

• Data Manipulation (Interactive and by program).

• Integrity Constraints

• Authorization.

Every RDBMS should provide a language to allow the user to query the contents of the

RDBMS and also manipulate the contents of the RDBMS.

Rule 6 : .View updating Rule

"All views that are theoretically updateable are also updateable by the system."

Not only can the user modify data, but so can the RDBMS when the user is not logged-in.

Rule 7 : High-level insert, update and delete.

"The capability of handling a base relation or a derived relation as a single operand

applies not only to the retrieval of data but also to the insertion, update and deletion of

data."

The user should be able to modify several tables by modifying the view to which they act

as base tables.

Rule 8 : Physical data independence.

"Application programs and terminal activities remain logically unimpaired whenever any

changes are made in either storage representations or access methods."

The user should not be aware of where or upon which media data-files are stored

Rule 9 : Logical data independence.

"Application programs and terminal activities remain logically unimpaired when

information-preserving changes of any kind that theoretically permit un-impairment are

made to the base tables."

User programs and the user should not be aware of any changes to the structure of the

tables (such as the addition of extra columns).

Rule 10 : Integrity independence.

"Integrity constraints specific to a particular relational data base must be definable in the

relational data sub-language and storable in the catalog, not in the application programs."

If a column only accepts certain values, then it is the RDBMS which enforces these

constraints and not the user program, this means that an invalid value can never be

entered into this column, whilst if the constraints were enforced via programs there is

always a chance that a buggy program might allow incorrect values into the system.

Rule 11 : Distribution independence.

"A relational DBMS has distribution independence."

The RDBMS may spread across more than one system and across several networks,

however to the end-user the tables should appear no different to those that are local.

Rule 12 : Non-subversion Rule.

"If a relational system has a low-level (single-record-at-a-time) language, that low level

cannot be used to subvert or bypass the integrity Rules and constraints expressed in the

higher level relational language (multiple-records-at-a-time)."

RELATION ALGEBRA:

Relational algebra is a set of basic operations used to manipulate the data in relational

model. These operations enable the user to specify basic retrieval request. The result of

retrieval is anew relation, formed from one or more relation. These operation can be

classified in two categories.

❖ Basic Set Operation

➢ Union

➢ Intersection

➢ Set difference

➢ Cartesian product

❖ Relational operations

➢ Select

➢ Project

➢ Join

➢ Division

Basic set operation:

These are the binary operations; i.e, each is applied to two sets or relations. These two

relations should be union compatible except in case of Cartesian product.

Two relations R(A1,A2…,AN) and S(B1,B2…BN) are said to be union compatible if

they have the same degree n and domains of the corresponding attributes are also the

same; domain(Ai)=Domain(bI) for 1<=i<=n.

A B

Union Operation – Example

Relations r, s:

r s:

1
2
1
3

r s

UNION OPERATION:

Notation: r s

Defined as:

r s = {t | t r or t s}

For r s to be valid.

r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (e.g., 2nd column of r deals

with the same type of values as does the 2nd column of s)

E.g. to find all customers with either an account or a loan customer-name

(depositor) customer-name (borrower)

OOppeerraattiioonn –– EExxaammppllee

RReellaattiioonnss rr,, ss::

SSeett DDiiffffeerreennccee

rr –– ss::

A B

2
3

1
2
1

B A B A

1
1

s

r

SSeett DDiiffffeerreennccee OOppeerraattiioonn

➢ NNoottaattiioonn rr –– ss

 DDeeffiinneedd aass::

▪▪ rr –– ss == {{tt || tt rr aanndd tt ss}}

 SSeett ddiiffffeerreenncceess mmuusstt bbee ttaakkeenn bbeettwweeeenn ccoommppaattiibbllee rreellaattiioonnss..

oo rr aanndd ss mmuusstt hhaavvee tthhee ssaammee aarriittyy

oo aattttrriibbuuttee ddoommaaiinnss ooff rr aanndd ss mmuusstt bbee ccoommppaattiibbllee

2
3

B A B A

1
2
1

trib

r(R)

utes

and

) an

re n

d s(

t d

1
1
1
1

xx2aa
2
2
2

B

A

Notation: r xA,sC = {t q | t r and q s}

A B C D E A

CCaarrtteessiiaann pprroodduucctt –– EExxaammppllee

r

PPrroojjeeccttsOOppeerraattiioonn –– EE

Relation r:

Notation r x s

Define

(r
d
)

as: C

r x s:

Assume that at 1 of r(R S) are disjoint. (That is, R S =

). (r)
 1

=
I
A
f

1
a
,
tt
A
r
2
ib
, …
ut

,
e
A
s

k
of 1 s(S) a isjoint, then renaming must be

where A1, A2 are attribu2te name is a relation name.

used.

The result is defined as the relation of k columns obtained by erasing the

columns that are not listed

Duplicate rows removed from result, since relations are sets

E.g. To eliminate the branch-name attribute of account

account-number, balance (account)

C A

C B A

1
2

C D E

10 a

 10 a
 20 b
 10 b

mmppll

ee10
10
20
10

a
a
b
b

10 a
10 a
20 b

10 b

 10 1

 20 1

30
40

1
2

 1

s

an

1

d
o2

r

A B C D

1

5

12

23

7

7

3

10

A B C D

1

23

7

10

SSeelleecctt OOppeerraattiioonn –– EExxaammppllee

• Relation r

 1 7

 5 7

 12 3

 23 10

• A=B ^ D > 5 (r)

 1 7

 23 10

Notation: p(r)
p is called the selection predicate

Defined as:

p(r) = {t | t r and p(t)}

Where p is a formula in propositional calculus consisting of

terms connected by : (and), (or), (not) Each term is one of:

<attribute> op <attribute> or <constant>

where op is one of: =, , >, . <.

Example of selection:

Q: Display the account details belonging to the branch “perryridge”. branch-

name=“Perryridge”(account)

A B C D

A B C D

RReennaammee OOppeerraattiioonn

Allows us to name, and therefore to refer to, the results of relational-

algebra expressions.

Allows us to refer to a relation by more than one name.

Example:

 x (E)

returns the expression E under the name X

If a relational-algebra expression E has arity n, then

x (A1, A2, …, An) (E)

returns the result of expression E under the name X, and with the

attributes renamed to A1, A2, …., An.

SSeett--IInntteerrsseeccttiioonn OOppeerraattiioonn

 Notation: r s

 Defined as:

 r s ={ t | t r and t s }

 Assume:

 r, s have the same arity
 attributes of r and s are compatible

 Note: r s = r - (r - s)

SSeett--IInntteerrsseeccttiioonn OOppeerraattiioonn -- EExxaammppllee

n Relation r, s:

r s

n r s

A B

 1

 2

 1

A B

 2

 3

A B

 2

NNaattuurraall--JJooiinn OOppeerraattiioonn

 NLoettartiaonnd: srbe relations on schemas R and S respectively.

s Then, r s is a relation on schema R S obtained as follows:

 Consider each pair of tuples tr from r and ts from s.

 If tr and ts have the same value on each of the attributes in R S,

add a tuple t to the result, where

 t has the same value as tr on r

 t has the same value as ts on s

 Example:
R = (A, B, C, D)
S = (E, B, D)

 Result schema = (A, B, C, D, E)

 r s is defined as:

r.A, r.B, r.C, r.D, s.E (r.B = s.B r.D = s.D (r x s))

NNaattuurraall JJooiinn OOppeerraattiioonn –– EExxaammppllee

 Relations r, s:

A B C D

1

a

2 a

4 b
1 a

2 b

r s

r s

B

1

3
1

2
3

D

a

a

a

b

b

E

A B C D E

1
1
1

1
2

a

a
a

a
b

A

1
2

DDiivviissiioonn OOppeerraattiioonn

r s

Suited to queries that include the phrase “for all”.

Let r and s be relations on schemas R and S

respectively where

R = (A1, …, Am, B1, …, Bn)

S = (B1, …, Bn)

The result of r s is a relation on schema

R – S = (A1, …, Am)

r s = { t | t R-S(r) u s (tu r) }

DDiivviissiioonn OOppeerraattiioonn –– EExxaammppllee

Relations r, s:

s

r s: r

1
2
3
1
1
1
3
4
6
1
2

B
B A

EExxaammppllee QQuueerriieess

n Find all customers who have an account from at least the

“Downtown” and the Uptown” branches.

Query 1

CN(BN=“Downtown”(depositor account))

CN(BN=“Uptown”(depositor account))

where CN denotes customer-name and BN denotes

branch-name.

Query 2

customer-name, branch-name (depositor account)

 temp(branch-name) ({(“Downtown”), (“Uptown”)})

EExxaammppllee QQuueerriieess

n Find all customers who have an account at all branches located

in Brooklyn city.

customer-name, branch-name (depositor account)

 branch-name (branch-city = “Brooklyn” (branch))

BBaannkkiinngg EExxaammppllee

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

EExxaammppllee QQuueerriieess

n Find all loans of over $1200

amount > 1200 (loan)

n Find the loan number for each loan of an amount greater than

$1200

loan-number (amount > 1200 (loan))

EExxaammppllee QQuueerriieess

n Find the names of all customers who have a loan, an account, or

both, from the bank

customer-name (borrower) customer-name (depositor)

n Find the names of all customers who have a loan and an

account at bank.

customer-name (borrower) customer-name (depositor)

EExxaammppllee QQuueerriieess

Find the names of all customers who have a loan at the Perryridge
branch.

customer-name (branch-name=“Perryridge”

(borrower.loan-number = loan.loan-number(borrower x loan)))

Find the names of all customers who have a loan at the Perryridge
branch but do not have an account at any branch of the bank.

customer-name (branch-name = “Perryridge”

(borrower.loan-number = loan.loan-number(borrower x loan))) –

customer-name(depositor)

EExxaammppllee QQuueerriieess

n Find the names of all customers who have a loan at the Perryridge
branch.

−Query 1

customer-name(branch-name = “Perryridge” (
borrower.loan-number = loan.loan-number(borrower x loan)))

− Query 2

customer-name(loan.loan-number = borrower.loan-number(

(branch-name = “Perryridge”(loan)) x borrower))

EExxaammppllee QQuueerriieess

Find the largest account balance

n Rename account relation as d

n The query is:

balance(account) - account.balance

(account.balance < d.balance (account x d (account)))

Aggregate functions:

Aggregation function takes a collection of values and returns a single value as
a result.

avg: average value
min: minimum value

max: maximum value

sum: sum of values
count: number of values

Aggregate operation in relational algebra

G1, G2, …, Gn g F1(A1), F2(A2),…,

Fn(An) (E)

E is any relational-algebra expression
G1, G2 …, Gn is a list of attributes on which to group (can be empty)

Each Fi is an aggregate function.
Each Ai is an attribute name

Find sum of sal fo all emp records

Gsum(sal) (emp)

Find maximum salalry from emp table

Gmax(salary) (emp)

Find branch name and maximum salalry from emp table

Branch_name G,max(salary) (emp)

AAggggrreeggaattee OOppeerraattiioonn –– EExxaammppllee

n Relation r:

A B C

 7

 7

 3

 10

g sum(c) (r)
27

sum-C

OUTER JOIN:

The outer join operation is an extension of the join operation to deal with missing

information.

There are three forms of outer join

➢ left outer join

➢ right outer join

➢ full outer join

employee:

Empname Street City

Coyote Toon Hollywood

Rabbit Tunnel carrot

Smith Revolver Death valley

William Seaview Seattle

Ft_works:

Empname Branch name Salary

Coyote Mesa 1500

Rabbit Mesa 1300

Gates Redmond 5300

William Redmond 1500

Employee ft_works

Empname Street City Branch

name

Salary

Coyote Toon Hollywood Mesa 1500

Rabbit Tunnel Carrot Mesa 1300

William Seaview Seattle Redmond 1500

Left outer join:

It takes all tuples in the left relation that did not match with any tuple in the right

relation, pads the tuples with null values for all other attributes. The right relation

and adds them to the result of the natural join. In tuple (smith, Revolcer, Death

valley, null, null) is such a tuple. All information from the left relation is present

in the result of the left outer join.

Empname Street City Branch

name

Salary

Coyote Toon Hollywood Mesa 1500

Rabbit Tunnel Carrot Mesa 1300

William Seaview Seattle Redmond 1500

Smith Revolver Death valley Null null

Result of Employee ft_works

Right outer join:

It is symmetric with the left outer join. It pads tuples from the right relation that

did not match any from the left relation with nulls and adds them to the result of

the natural join. tuple(Gates,null,null,Redmond,5300) is such a tuple. Thus, all

information from the right relation is present in the result of the right outer join.

Empname Street City Branch

name

Salary

Coyote Toon Hollywood Mesa 1500

Rabbit Tunnel Carrot Mesa 1300

William Seaview Seattle Redmond 1500

gates Null Null Redmond 5300

Full outer join:

It does both of those operations, padding tuples from the left relation that did not

match any from the right relation, as well as tuples from the right relation that did

not match any from the left relation, and adding them to the result of the join.

Figure 3.35 shows the result of a full outer join.

Since outer join operations may generate results containing null values, we need

to specify how the different relation-algebra operations deal with null values. It is

interesting to note that the outer join operations can be expressed by the basic

relational algebra operations. For instance the left outer join operation

Employee ft_works

Empname Street City Branch

name

Salary

Coyote Toon Hollywood Mesa 1500

Rabbit Tunnel Carrot Mesa 1300

William Seaview Seattle Redmond 1500

gates Null Null Redmond 5300

BBaannkkiinngg EExxaammppllee
{t | P (t) }

branch (branch-name, branch-city, assets)

cusn tomIt iserthe(csusettomof alerl t-upnamleset, scuuschtomthaterpr-sedtreeticat,ecPusistomtrueerf-orcitty)
ac

n
co

tuntis a(taupccleountvari-abnumle,bt[erA], debrnotancesh-tnamhe veal,uebalofanctupe)le t on
attribute A
loan (loan-number, branch-name, amount)

customer-name, account-number) depo
n t

s

ito

r
r
denot

(

PPrreseetddhatiicctupaalteteet isCCin aarelllatcciouunllruuss FFoorrmmuullaa
borrower (customer-name, loan-number)

1. Set of attributes and constants

2. n SPet isof acomparformulisona opersimatilarorst:o(e.thg.a,tof, ,the=, ,pr,edi) cate
calculus
3. Set of connectives: and (), or (v)‚ not ()

4. Implication (): x y, if x if true, then y is true

x y x v y

5. Set of quantifiers:

 t r (Q(t)) ”there exists” a tuple in t in relation r

such that predicate Q(t) is true

 t r (Q(t)) Q is true “for all” tuples t in relation r

or both at the bank
{t | s borrower(t[customer-name] = s[customer-name]) u

TTuuppllee RReellaattiioonnaall CCaallccuulluuss

The tuple relational calculus is a non procedural query language. It describes the

desired information with out giving a specific procedure for obtaining that

information.

A query in the tuple relational calculus is expressed as:

{t|P(t)}

where P is a formula. Several tuple variables may appear in a formula. A tuple

variable is said to be a free variable unless it is quantified by a or .

n A nonprocedural query language, where each query is of the form

EExxaammppllee QQuueerriieess

n Find the loan-number, branch-name, and amount for loans of

over $1200

{t | t loan t [amount] 1200}

n Find the loan number for each loan of an amount greater than $1200

{t | s loan (t[loan-number] = s[loan-number] s [amount] 1200)}

Notice that a relation on schema [loan-number] is implicitly defined

by the query

EExxaammppllee QQuueerriieess

Find the names oEEEf axxxll aacummmstopppmlleeers hQQQavuuineeg rariiloeeeasssn, an account, or both
at the bank

FFiinndd tthhee nnaammeess ooffaallllccuusstotommeersrshhaavivnigngaalolaona,naantathcceount,
Perryridge branch

depositor(t[customer-name] = u[customer-name])

{t{t| |ssbboorrrroowweerr((t[tc[cuusstotommeerr--nnaammee]] == ss[[ccuussttoommeerr--nnaammee]])

Find
t
u
hue

n
lo
ad
a
me
npe
(os
us[o

bitfo
ra
ar(
n
llt
c
c[c
h
uu
-
s
nsto
atom
mme

eer
]rs-
=nwa“h

Pmo
eerh]

r
a
y=v
ri
eu
d[gac

eul
”
osatonmaenrd-naanmaec])cou

nt

at theub[alonakn-number] = s[loan-number]))}

SSaaffeettyy ooff EExxpprreessssiioonnss
Find{tth|ensambeosrroofwaellrc(ut[sctuosmtoemrsewr-hnoamhaev] e= as[lcouasntoamndera-nname])

accoun

t
u a

d
t
e
th
p
e
os

b
it
a
o
n
r(
k

t[customer-name] = u[customer-name])
It is possible to write tuple calculus expressions that generate

in{ftin| ites relbaotiorrnosw.er(t[customer-name] = s[customer-

{ x1, x2, …, xn | P(x1, x2, …, xn)}

x1, x2, …{, xl,n br,epra es|ent l,domb, aain varloiablanes a > 1200}
P represents a formula similar to that of the predicate calculus

Find the names of all customers who have a loan of over $1200

{ c | l, b, a (c, l borrower l, b, a loan a > 1200)}

Find the names of all customers who have a loan from the

Perryridge branch and the loan amount:

{ c, a | l (c, l borrower b(l, b, a loan

b = “Perryridge”))}

or { c, a | l (c, l borrower l, “Perryridge”, a loan)}

over $e1200 m B

DDoommaaiinn RReellaattiioonnaall CCaallccuulluuss

A nonprocedural queEEryxxlaaaangmmuapppgelleeeqQuQivuualeeeenrrrt iiineepssower to the tuple
relational calculus

Each query is an expression of the form:

FinQQQd thuuue leoan

rr
-nyyyum---bbbber,

yy
bra---nEEEch-

xx
namaaaem, and

pp
amllloeeeunt

((
foQQQr loBans

EE
of

))

QQBBEE —— BBaassiicc SSttrruuccttuurree

n A graphical query language which is based (roughly) on the

domain relational calculus

n Two dimensional syntax – system creates templates of relations

that are requested by users

n Queries are expressed “by example”

TThhee RReessuulltt RReellaattiioonn

n Find the customer-name, account-number, and balance for alll

customers who have an account at the Perryridge branch.

H We need to:

4 Join depositor and account.

4 Project customer-name, account-number and balance.

H To accomplish this we:

4 Create a skeleton table, called result, with attributes customer-

name, account-number, and balance.

4 Write the query.

AAggggrreeggaattee OOppeerraattiioonnss ((CCoonntt..))

n UNQ is used to specify that we want to eliminate duplicates

n Find the total number of customers having an account at the bank.

MMooddiiffiiccaattiioonn ooff tthhee DDaattaabbaassee –– DDeelleettiioonn

n Deletion of tuples from a relation is expressed by use of a D.

command. In the case where we delete information in only some

of the columns, null values, specified by –, are inserted.

n Delete customer Smith

n Delete the branch-city value of the branch whose name is

“Perryridge”.

MMooddiiffiiccaattiioonn ooff tthhee DDaattaabbaassee –– IInnsseerrttiioonn

n Insertion is done by placing the I. operator in the query

expression.

n Insert the fact that account A-9732 at the Perryridge

branch has a balance of $700.

DDeelleettiioonn QQuueerryy EExxaammpplleess

n Delete all loans with a loan amount between $1300 and $1500.

H For consistency, we have to delete information from loan and

borrower tables

Increase all balances by 5 percent.

MMooddiiffiiccaattiioonn ooff tthhee DDaattaabbaassee –– UUppddaatteess

Use the U. operator to change a value in a tuple without changing all
values in the tuple. QBE does not allow users to update the
primary key fields.

Update the asset value of the Perryridge branch to $10,000,000.

RELATIONAL DATABASE DEGIN

Data base design is a process in which you create a logical data model for a database,

which store data of a company. It is performed after initial database study phase in the

database life cycle. You use normalization technique to create the logical data model for a

database and eliminate data redundancy. Normalization also allows you to organize data

efficiently in a data base and reduce anomalies during data operation. Various normal

forms, such as first, second and third can be applied to create a logical data model for a

database. The second and third normal forms are based on partial dependency and

transitivity dependency. Partial dependency occurs when a row of table is uniquely

identified by one column that is a part of a primary key. A transitivity dependency ours

when a non key column is uniquely identified by values in another non-key column of a

table.

Data base design process:

We can identify six main phases of the database design process:

1. Requirement collection and analysis

2. Conceptual data base design

3. Choice of a DBMS

4. Data model mapping(logical database design)

5. physical data base design

6. database system implementation and tuning

1. Requirement collection and analysis

Before we can effectively design a data base we must know and analyze the

expectation of the users and the intended uses of the database in as much as detail.

2. Conceptual data base design

The goal for this phase I s to produce a conceptual schema for the database that is

independent of a specific DBMS.

➢ We often use a high level data model such er-model during this

phase

➢ We specify as many of known database application on

transactions as possible using a notation the is independent of

any specific dbms.

➢ Often the dbms choice is already made for the organization the

intent of conceptual design still to keep , it as free as possible

from implementation consideration.

3. Choice of a DBMS

The choice of dbms is governed by a no. of factors some technical other economic

and still other concerned with the politics of the organization.

The economics and organizational factors that offer the choice of the dbms are:

Software cost, maintenance cost, hardware cost, database creation and conversion

cost, personnel cost, training cost, operating cost.

4. Data model mapping (logical database design)

During this phase, we map the conceptual schema from the high level data model

used on phase 2 into a data model of the choice dbms.

5. Physical databse design

During this phase we design the specification for the database in terms of physical

storage structure ,record placement and indexes.

6. Database system implementation and tuning

During this phase, the database and application programs are implemented, tested

and eventually deployed for service.

DATA BASE MANAGEMENT SYSTEMS

1

UNIT-3
SCHEMA REFINEMENT AND NORMALISATION

Unit 3 contents at a glance:
1. Introduction to schema refinement,
2. functional dependencies,
3. reasoning about FDs.
4. Normal forms: 1NF, 2NF, 3NF, BCNF,
5. properties of decompositions,
6. normalization,
7. schema refinement in database design(Refer Text Book),
8. other kinds of dependencies: 4NF, 5NF, DKNF
9. Case Studies(Refer text book)

.
1. Schema Refinement:

The Schema Refinement refers to refine the schema by using some technique. The best

technique of schema refinement is decomposition.

Normalisation or Schema Refinement is a technique of organizing the data in the database.

It is a systematic approach of decomposing tables to eliminate data redundancy and

undesirable characteristics like Insertion, Update and Deletion Anomalies.

Redundancy refers to repetition of same data or duplicate copies of same data stored in

different locations.

Anomalies: Anomalies refers to the problems occurred after poorly planned and normalised

databases where all the data is stored in one table which is sometimes called a flat file database.

DATA BASE MANAGEMENT SYSTEMS

2

Anomalies or problems facing without normalization(problems due to redundancy) :

Anomalies refers to the problems occurred after poorly planned and unnormalised databases
where all the data is stored in one table which is sometimes called a flat file database. Let us
consider such type of schema –

Here all the data is stored in a single table which causes redundancy of data or say anomalies as

SID and Sname are repeated once for same CID . Let us discuss anomalies one by one.

Due to redundancy of data we may get the following problems, those are-

 1.insertion anomalies : It may not be possible to store some information unless some other

information is stored as well.

 2.redundant storage: some information is stored repeatedly

 3.update anomalies: If one copy of redundant data is updated, then inconsistency is created

unless all redundant copies of data are updated.

 4.deletion anomalies: It may not be possible to delete some information without losing some

other information as well.

Problem in updation / updation anomaly – If there is updation in the fee from 5000 to 7000,

then we have to update FEE column in all the rows, else data will become inconsistent.

Insertion Anomaly and Deletion Anomaly- These anomalies exist only due to redundancy,
otherwise they do not exist.

DATA BASE MANAGEMENT SYSTEMS

3

InsertionAnomalies: New course is introduced C4, But no student is there who is having C4
subject.

Because of insertion of some data, It is forced to insert some other dummy data.
Deletion Anomaly :

Deletion of S3 student cause the deletion of course.

Because of deletion of some data forced to delete some other useful data.

Solutions To Anomalies : Decomposition of Tables – Schema Refinement

http://www.edugrabs.com/wp-content/uploads/2015/06/Deletion-Anamoly.png
http://www.edugrabs.com/wp-content/uploads/2015/06/Deletion-Anamoly.png
http://www.edugrabs.com/wp-content/uploads/2015/06/Deletion-Anamoly.png
http://www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png
http://www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png
http://www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png

DATA BASE MANAGEMENT SYSTEMS

4

There are some Anomalies in this again –

What is the Solution ??

Solution : decomposing into relations as shown below

TO AVOID REDUNDANCY and problems due to redundancy, we use refinement technique

called DECOMPOSITION.

Decomposition:- Process of decomposing a larger relation into smaller relations.

Each of smaller relations contain subset of attributes of original relation.

Functional dependencies:

Functional dependency is a relationship that exist when one attribute uniquely determines

another attribute.

Functional dependency is a form of integrity constraint that can identify schema with

redundant storage problems and to suggest refinement.

A functional dependency AB in a relation holds true if two tuples having the same value of

attribute A also have the same value of attribute B

 IF t1.X=t2.X then t1.Y=t2.Y where t1,t2 are tuples and X,Y are attributes.

http://www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png
http://www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png

DATA BASE MANAGEMENT SYSTEMS

5

Reasoning about functional dependencies:

Armstrong Axioms :

 Armstrong axioms defines the set of rules for reasoning about functional dependencies and

also to infer all the functional dependencies on a relational database.

Various axioms rules or inference rules:

Primary axioms:

secondary or derived axioms:

Attribute closure: Attribute closure of an attribute set can be defined as set of attributes which

can be functionally determined from it.

NOTE:

 To find attribute closure of an attribute set-

 1)add elements of attribute set to the result set.

 2)recursively add elements to the result set which can be functionally determined from the

elements of result set.

DATA BASE MANAGEMENT SYSTEMS

6

Types of functional dependencies:

1)Trivial functional dependency:-If XY is a functional dependency where Y subset X, these

type of FD’s called as trivial functional dependency.

2)Non-trivial functional dependency:-If XY and Y is not subset of X then it is called non-trivial

functional dependency.

3)Completely non-trivial functional dependency:-If XY and X∩Y=Ф(null) then it is called

completely non-trivial functional dependency.

Prime and non-prime attributes

 Attributes which are parts of any candidate key of relation are called as prime attribute, others

are non-prime attributes.

Candidate Key:
Candidate Key is minimal set of attributes of a relation which can be used to identify a tuple
uniquely.
Consider student table: student(sno, sname,sphone,age)
we can take sno as candidate key. we can have more than 1 candidate key in a table.
types of candidate keys:
1. simple(having only one attribute)
2. composite(having multiple attributes as candidate key)
Super Key:
Super Key is set of attributes of a relation which can be used to identify a tuple uniquely.

 Adding zero or more attributes to candidate key generates super key.

 A candidate key is a super key but vice versa is not true.

Consider student table: student(sno, sname,sphone,age)
we can take sno, (sno, sname) as super key

DATA BASE MANAGEMENT SYSTEMS

7

Finding candidate keys problems:

DATA BASE MANAGEMENT SYSTEMS

8

DATA BASE MANAGEMENT SYSTEMS

9

Normalization:

 Normalization is a process of designing a consistent database with minimum redundancy

which support data integrity by grating or decomposing given relation into smaller relations

preserving constraints on the relation.

Normalisation removes data redundancy and it will helps in designing a good data base which

involves a set of normal forms as follows -

1)First normal form(1NF)

2)Second normal form(2NF)

3)Third normal form(3NF)

4)Boyce coded normal form(BCNF)

5)Forth normal form(4NF)

6)Fifth normal form(5NF)

7)Sixth normal form(6NF)

8)Domain key normal form.

DATA BASE MANAGEMENT SYSTEMS

10

1)First normal form: A relation is said to be in first normal form if it contains all atomic values or

single values.

Example:

Domain Courses

Programming C , java

Web designing HTML , PHP

 The above table consist of multiple values in single columns which can be reduced into

atomic values by using first normal form as follows-

Domain Courses

Programming C

Programming Java

Web designing HTML

Web designing PHP

2)Second normal form: A relation is said to be in second normal form if it is in first normal form

without any partial dependencies.

In second normal form non-prime attributes should not depend on proper subset of key

attributes.

Example:

Student id Student name

Project Id Project name

Here (student id, project id) are key attributes and (student name, project name) are non-prime

attributes. It is decomposed as-

Student id Student name Project id

Project id Project name

DATA BASE MANAGEMENT SYSTEMS

11

3)Third normal form: A relation is said to be in third normal form , if it is already in second

normal form and no transitive dependencies exists.

Transitive dependency – If A->B and B->C are two FDs then A->C is called transitive dependency.

A relation is in 3NF if at least one of the following condition holds in every non-trivial function
dependency X –> Y

1. X is a super key.
2. Y is a prime attribute (each element of Y is part of some candidate key).

Student id Student
name

City country ZIP

It is decomposed as:

Student id Student name ZIP

ZIP city country

4)Boyce normal form: It is an extension of third normal form where in a functional

dependency X A , X must be a super key.

A relation is in BCNF if in every non-trivial functional dependency X –> Y, X is a super key.

5)fourth normal form: A relation is said to be in fourth normal form if it is in third normal form

and no multi value dependencies should exist between attributes.

Note: In some cases multi value dependencies may exist not more than one time in a given

relation.

DATA BASE MANAGEMENT SYSTEMS

12

6)fifth normal form: fifth normal form is related to join dependencies.

A relation R is said to be in fifth normal form if for every join dependency JD join {R1 , R2 ,…….RN

} that holds over relation R one of the following statements must be true-

 1)Ri =R for some i

 2)the join dependency is implied by the set of those functional dependency over relation R in

which the left side is key attribute for R.

NOTE: if the relation schema is a third normal form and each of its keys consist of single

attribute, we can say that it can also be in fifth normal form.

A join dependency JD join {R1, R2, ……RN} is said to hold for a relation R if R1,R2…..RN this

decomposition is a loss less join decomposition of R.

When a relation is in forth normal form and decompose further to eliminate redundancy and

anomalies due to insert or update or delete operation, there should not be any loss of data or

should not create a new record when the decompose tables are rejoin.

7)Domain key normal form: A domain key normal form keeps a constraint that every constraint

on the relation is a logical sequence of definition of keys and domains.

8)Sixth normal form: A relation is said to be in sixth normal form such that the relation R should

not contain any non-trivial join dependencies.

 Also sixth normal form considers temporal dimensions(time) to the relational model.

Key Points related to normal forms –

1. BCNF is free from redundancy.
2. If a relation is in BCNF, then 3NF is also also satisfied.
3. If all attributes of relation are prime attribute, then the relation is always in 3NF.
4. A relation in a Relational Database is always and at least in 1NF form.
5. Every Binary Relation (a Relation with only 2 attributes) is always in BCNF.
6. If a Relation has only singleton candidate keys(i.e. every candidate key consists of only 1

attribute), then the Relation is always in 2NF(because no Partial functional dependency
possible).

7. Sometimes going for BCNF form may not preserve functional dependency. In that case go
for BCNF only if the lost FD(s) is not required, else normalize till 3NF only.

8. There are many more Normal forms that exist after BCNF, like 4NF and more. But in real
world database systems it’s generally not required to go beyond BCNF.

DATA BASE MANAGEMENT SYSTEMS

13

problems on normal forms:

Problem 1:
Find the highest normal form in R (A, B, C, D, E) under following functional dependencies.
 ABC --> D
 CD --> AE

Solution:
Important Points for solving above type of question.
1) It is always a good idea to start checking from BCNF, then 3 NF and so on.
2) If any functional dependency satisfied a normal form then there is no need to check for lower
normal form. For example, ABC –> D is in BCNF (Note that ABC is a super key), so no need to
check this dependency for lower normal forms.
Candidate keys in given relation are {ABC, BCD}

BCNF: ABC -> D is in BCNF. Let us check CD -> AE, CD is not a super key so this dependency is not
in BCNF. So, R is not in BCNF.

3NF: ABC -> D we don’t need to check for this dependency as it already satisfied BCNF. Let us
consider CD -> AE. Since E is not a prime attribute, so relation is not in 3NF.

2NF: In 2NF, we need to check for partial dependency. CD which is a proper subset of a
candidate key and it determine E, which is non prime attribute. So, given relation is also not in 2
NF. So, the highest normal form is 1 NF.

problem 2:

 Find the highest normal form of a relation R(A,B,C,D,E) with

FD set as

{BC->D,

AC->BE,

B->E}

Step 1:As we can see, (AC)+ ={A,C,B,E,D} but none of its subset can determine all attribute of

relation, So AC will be candidate key. A or C can’t be derived from any other attribute of the

relation, so there will be only 1 candidate key {AC}.

Step 2: Prime attribute are those attribute which are part of candidate key {A,C} in this example

and others will be non-prime {B,D,E} in this example.

Step 3: The relation R is in 1st normal form as a relational DBMS does not allow multi-valued or

composite attribute.

The relation is in 2nd normal form because BC->D is in 2nd normal form (BC is not proper subset

of candidate key AC) and AC->BE is in 2nd normal form (AC is candidate key) and B->E is in 2nd

normal form (B is not a proper subset of candidate key AC).

The relation is not in 3rd normal form because in BC->D (neither BC is a super key nor D is a

prime attribute) and in B->E (neither B is a super key nor E is a prime attribute) but to satisfy 3rd

normal for, either LHS of an FD should be super key or RHS should be prime attribute.

So the highest normal form of relation will be 2nd Normal form.

DATA BASE MANAGEMENT SYSTEMS

14

Decomposition: It is the process of splitting original table into smaller relations such that

attribute sets of two relations will be the subset of attribute set of original table.

Rules of decomposition:

If ‘R’ is a relation splitted into ‘R1’ and ‘R2’ relations, the decomposition done should satisfy

following-

1)Union of two smaller subsets of attributes gives all attributes of ‘R’.

 R1(attributes)UR2(attributes)=R(attributes)

2)Both relations interaction should not give null value.

 R1(attributes)∩R2(attributes)!=null

3) Both relations interaction should give key attribute.

 R1(attribute)∩R2(attribute)=R(key attribute)

Properties of decomposition:

Lossless decomposition: while joining two smaller tables no data should be lost and should

satisfy all the rules of decomposition. No additional data should be generated on natural join of

decomposed tables.

DATA BASE MANAGEMENT SYSTEMS

15

example 2 for loseless decomposition:

Lossy join decomposition: if information is lost after joining and if do not satisfy any one of the

above rules of decomposition.

example 1:

DATA BASE MANAGEMENT SYSTEMS

16

example 2:

In above examples, on joining decomposed tables, extra tuples are generated.

so it is lossy join decomposition.

Dependency preservation: functional dependencies should be satisfied even after splitting

relations and they should be satisfied by any of splitted tables.

Dependency Preservation

A Decomposition D = { R1, R2, R3….Rn } of R is dependency preserving wrt a set F of

Functional dependency if

(F1 ∪ F2 ∪ … ∪ Fm)+ = F+.
Consider a relation R

R ---> F{...with some functional dependency(FD)....}

R is decomposed or divided into R1 with FD { f1 } and R2 with { f2 }, then

there can be three cases:

f1 U f2 = F -----> Decomposition is dependency preserving.

f1 U f2 is a subset of F -----> Not Dependency preserving.

f1 U f2 is a super set of F -----> This case is not possible.

DATA BASE MANAGEMENT SYSTEMS

17

example for dependency preservation:

lack of redundancy: It is also known as repetition of information. The proper decomposition should

not suffer from any data redundancy.

DATABASE MANAGEMENT SYSTEMS

1

UNIT 4

TRANSACTION MANAGEMENT

Unit 4 contents at a glance:
Transaction Management:

 Transaction concept,

 transaction state,

 implementation of atomicity and durability,

 concurrent executions,

 Anomalies due to interleaved execution of transactions,

 serializability,

 recoverability,

 implementation of isolation
Concurrency control and recovery system:

 Concurrency control :
o lock based protocols,
o time stamp based protocols,
o validation based protocols,
o deadlock handling.

 Recovery system :
o failure classification,
o recovery and atomicity,
o log -based recovery, shadow paging,
o recovery with concurrent transactions,
o ARIES algorithm

Transaction:

 It refers to execution of any one user program in dbms.

 (Or)

 It can be defined as group of tasks being executed.

 (Or)

 It also referred to as an event that which occur on a database with read/write operation.

DATABASE MANAGEMENT SYSTEMS

2

PROPERTIES OF TRANSACTION(ACID PROPERTIES):

 To ensure consistency , completeness of the database in scenario of concurrent access, system

failure ,the following ACID properties can be enforced on to database.

1. Atomicity,

2. Consistency,

3. Isolation and

4. Durability

Atomicity:

 This property states that all of the instructions with in a transaction must be executed or none

of them should be executed.

 This property states that all transactions execution must be atomic i.e. all actions should be

carried out or none of the actions should be executed.

 It involves following two operations.
—Abort: If a transaction aborts, changes made to database are not visible.
—Commit: If a transaction commits, changes made are visible.
Atomicity is also known as the ‘All or nothing rule’.
Example:

 Consider the following transaction T consisting of T1 and T2: Transfer of 100 from
account X to account Y.

 If the transaction fails after completion of T1 but before completion of T2.(say, after

write(X) but before write(Y)), then amount has been deducted from X but not added to
Y. This results in an inconsistent database state. Therefore, the transaction must be
executed in entirety in order to ensure correctness of database state.

Consistency:

 The database must remain in consistence state even after performing any kind of

transaction ensuring correctness of the database.

 If we execute a particular transaction in isolation (or) together with other transaction in

multiprogramming environment ,the transaction should give same result in any case.

DATABASE MANAGEMENT SYSTEMS

3

 Each transaction, run by itself with no concurrent execution of other transactions, must
preserve the consistency of the database. This property is called consistency and the
DBMS assumes that it holds for each transaction. Ensuring this property of a transaction
is the responsibility of the user.

example:

 Referring to the example above,
The total amount before and after the transaction must be maintained.
Total before T occurs = 500 + 200 = 700.
Total after T occurs = 400 + 300 = 700.
Therefore, database is consistent. Inconsistency occurs in case T1 completes but T2
fails. As a result T is incomplete.

Isolation:

 When executing multiple transactions concurrently & trying to access shared resources the

system should create an order such that the only one transaction can access the shared

resource at the same time & release it after completion of it’s execution for other transaction.

 This property ensures that multiple transactions can occur concurrently without leading to

inconsistency of database state. Transactions occur independently without interference.

Changes occurring in a particular transaction will not be visible to any other transaction until

that particular change in that transaction is written to memory or has been committed.

 Note: To achieve isolation you should use locking mechanism among shared resources.

example:

Let X= 500, Y = 500.
Consider two transactions T and T”.

Suppose T has been executed till Read (Y)
and then T’’ starts. As a result , interleaving
of operations takes place due to which T’’
reads correct value of X but incorrect value
of Y and sum computed by
T’’: (X+Y = 50, 000+500=50, 500)
is thus not consistent with the sum at end
of transaction:
T: (X+Y = 50, 000 + 450 = 50, 450).
This results in database inconsistency, due
to a loss of 50 units. Hence, transactions
must take place in isolation and changes
should be visible only after a they have
been made to the main memory.

DATABASE MANAGEMENT SYSTEMS

4

Durability:

 This property states that once after the transaction is completed the changes that made should

be permanent & should be recoverable even after system crash/power failure.

 This property ensures that once the transaction has completed execution, the updates and

modifications to the database are stored in and written to disk and they persist even is system

failure occurs. These updates now become permanent and are stored in a non-volatile

memory.

Transaction states:

Every transaction undergoes several states in its execution.

A transaction can be in any one of the following states:

1. start

2. partially committed

3. committed

4. failed

5. aborted or terminate

 Transaction state diagram

DATABASE MANAGEMENT SYSTEMS

5

 Active - This is the first state of transaction and here the transaction is being executed. For

example, updating or inserting or deleting a record is done here. But it is still not

saved to the database. When we say transaction it will have set of small steps, and

those steps will be executed here.

 Partially Committed - This is also an execution phase where last step in the transaction is

executed. But data is still not saved to the database. In example of calculating total

marks, final display the total marks step is executed in this state.

 Committed - In this state, all the transactions are permanently saved to the database. This step

is the last step of a transaction, if it executes without fail.

 Failed - If a transaction cannot proceed to the execution state because of the failure of the

system or database, then the transaction is said to be in failed state. In the total mark

calculation example, if the database is not able fire a query to fetch the marks, i.e.;

very first step of transaction, then the transaction will fail to execute.

 Aborted - If a transaction is failed to execute, then the database recovery system will make sure

that the database is in its previous consistent state. If not, it brings the database to

consistent state by aborting or rolling back the transaction. If the transaction fails in

the middle of the transaction, all the executed transactions are rolled back to it

consistent state before executing the transaction. Once the transaction is aborted it is

either restarted to execute again or fully killed by the DBMS.

Implementation of Durability & Atomicity:

Durability and atomicity can be ensured by using Recovery manager which is available by default in

every DBMS.

 We can implement atomicity by using

1. Shadow copying technique

2. Using recovery manager which available by default in DBMS.

DATABASE MANAGEMENT SYSTEMS

6

1. Shadow copying technique:

1. Maintaining a shadow copy of original database & reflecting all changes to the database

as a result of any transaction after committing the transaction.

2. The scheme also assumes that the database is simply a file on disk.
3. A pointer called db-pointer is maintained on disk; it points to the current copy of the

database.
4. In the shadow-copy scheme, a transaction that wants to update the database first

creates a complete copy of the database. All updates are done on the new database
copy, leaving the original copy, the shadow copy, untouched. If at any point the
transaction has to be aborted, the system merely deletes the new copy. The old copy of
the database has not been affected.

5. If the transaction completes, it is committed as follows.
6. First, the operating system is asked to make sure that all pages of the new copy of the

database have been written out to disk. (Unix systems use the flush command for this
purpose.)

7. After the operating system has written all the pages to disk, the database system
updates the pointer db-pointer to point to the new copy of the database; the new copy
then becomes the current copy of the database. The old copy of the database is then
deleted.

We now consider how the technique handles transaction and system failures.

First, consider transaction failure. If the transaction fails at any time before db-pointer is
updated, the old contents of the database are not affected. We can abort the trans- action by
just deleting the new copy of the database. Once the transaction has been committed, all the
updates that it performed are in the database pointed to by db- pointer. Thus, either all
updates of the transaction are reflected, or none of the effects are reflected, regardless of
transaction failure.

DATABASE MANAGEMENT SYSTEMS

7

Now consider the issue of system failure. Suppose that the system fails at any time before the
updated db-pointer is written to disk. Then, when the system restarts, it will read db-pointer
and will thus see the original contents of the database, and none of the effects of the
transaction will be visible on the database. Next, suppose that the system fails after db-pointer
has been updated on disk. Before the pointer is updated, all updated pages of the new copy of
the database were written to disk. Again, we assume that, once a file is written to disk, its
contents will not be damaged even if there is a system failure. Therefore, when the system
restarts, it will read db-pointer and will thus see the contents of the database after all the
updates performed by the transaction.

**WE CAN IMPLEMENT DURABILITY AMONG DATA BASE USING :

1. Recovery manager.

2. Logs

 Partial transaction should be avoided for ensuring atomicity and durability.

LOGS:

 Logs keep track of actions carried out by transactions which can be used for the

recovery of database in case of failure.

 Logs files should be stored always on stable storage devices.

 When a transaction begins its execution it is recorded in the log as follows

 <Tn, start>

 When a transaction performs an operation it is recorded in log as follows

 <Tn, X, V1, V2>

 When a transaction finishes it’s execution, it is recorded as

 <Tn,commit>

DATABASE MANAGEMENT SYSTEMS

8

CONCURRENT EXECUTION:

 Executing a set of transactions simultaneously in a pre emptive and time shared method.

In DBMS concurrent execution of transaction can be implemented with interleaved

execution.

TRANSACTION SCHEDULES:

Schedule:

 It refers to the list of actions to be executed by transaction.

 A schedule is a process of grouping the transactions into one and executing them in a

predefined order.

 Schedule of actions can be classified into 2 types.

1. Serializable schedule/serial schedule.

2. Concurrent schedule.

1. Serial schedule:

 In the serial schedule the transactions are allowed to execute one after the other ensuring

correctness of data.

A schedule is called serial schedule, if the transactions in the schedule are defined to execute one

after the other.

2. Concurrent schedule:

Concurrent schedule allows the transaction to be executed in interleaved manner of execution.

Complete schedule:

 It is a schedule of transactions where each transaction is committed before terminating. The

example is shown below where transactions T1 and T2 terminates after committing the transactions.

Example:

 T1 T2

A=1000

Read(A)

A=A+100

Write(A) Read(A)

 B=A-100

 Write(B)

 Commit

Read(B)

Write(B)

Commit

DATABASE MANAGEMENT SYSTEMS

9

SERIALIZABILITY:

 A transaction is said to be Serializable if it is equivalent to serial schedule.

Serializability aspects are:

1. Conflict serializability.

2. View serializability.

1. Conflict serializability:

A schedule is conflict serializable if it is conflict equivalent to some serial schedule.

Conflict Equivalent: Two schedules are said to be conflict equivalent when one can be

transformed to another by swapping non-conflicting operations.

Conflict Serializable: A schedule is called conflict serializable if it can be transformed into a serial
schedule by swapping non-conflicting operations.

Conflicting operations: Two operations are said to be conflicting if all below conditions are
satisfied:

 They belong to different transaction
 They operation on same data item
 At Least one of them is a write operation

 it refers to two instructions of two different transactions may want to access same data to

perform read/write operation.

Rules for conflict serializability:

 If two different transactions are both for read operation, then there is no conflict and

can allowed to execute any order.

 If one instruction performing read operation and other instruction performing write

operation there will be conflict hence instruction ordering is important.

 If both transactions performing write operation then there will be in conflict so ordering

the transaction can be done.

DATABASE MANAGEMENT SYSTEMS

10

2. View serializability:

This is another type of serializability that can be derived by creating another schedule out of an

existing Schedule.

A schedule is view serializable if it is view equivalent to some serial schedule. Every
conflict serializable schedule is view serializable, although the converse is not true.

Two schedules S1 and S2 over the same set of transactions --any transaction that appears in
either S1 or S2 must also appear in the other are view equivalent under these conditions:

1. If Ti reads the initial value of object A in S1, it must also read the initial value of A in S2.
2. If Ti reads a value of A written by Tj in S1, it must also read the value of A written by Tj in S2.
3. For each data object A, the transaction (if any) that performs the final write on A in S1 must
also perform the final write on A in S2.

 The above two schedules are view serializable or view equivalence, if the transactions in both

schedules performs the actions in similar manner.

 The above two schedules satisfy result view equivalence if the two schedule produces the same

Result after execution.

Ex:

s1:R1(A),W1(A),R2(A),W2(A),R1(B),W1(B),R2(B),W2(B)

DATABASE MANAGEMENT SYSTEMS

11

Anomalies due to interleave execution of transaction:

 Due to interleaved execution of transaction the following anomalies can occur

1. reading uncommitted values(WR conflicts)

2. un repeatable reading data operation(RW conflicts)

3. Overwriting uncommitted data(WW)

1. reading uncommitted values(WR conflicts):

 If you try to the read the value which is not written on to the data base(not

committed) will leads to write-read conflict which is called dirty read operation.

In above example, T1 write operation on data item A is not committed but it is being read by

T2. So reading an uncommitted data will leads to inconsistency in database which is called dirty

read operation.

2. un repeatable reading data operation(RW conflicts):

Reading the same object twice before committing the transaction might yield an inconsistency

–Read-then-Write (RW) Conflicts (Write-After-Read)

Unrepeatable problem means we get different values in different reads. For example in S1 say

T2 read initially x=5 then T1 updated x=1 so now T2 will read x=1 here T2 has read two

different values during consecutive reads This shouldn't have been allowed as T1 has not

committed

DATABASE MANAGEMENT SYSTEMS

12

3. Overwriting uncommitted data(WW conflicts)

 WW conflicts if one transaction could over write the value of an object A which has

been already modified by other transaction while first transaction still in progress .this kind of

conflict refer to blind write conflict.

Recoverability:

 It refers to the process of undoing the changes made to the database in case of any transaction

failure due to system crash or any other reason.

Recoverability Schedule:

Based on whether recovery of failure transaction schedules are classified as

1. Irrecoverable schedules.

2. Recoverable schedules with cascade rollback.

3. Cascade less recoverability.

1. Irrecoverable schedules: schedules which can't be recovered

 If transaction T2 read the value updated by Transaction T1 followed by write operation commit

then this schedule is called Irrecoverable Schedule. If transaction1 failed before committing

 Example:

T1 T1’s buffer space T2 T2’s buffer
space

database

R(A) A=5000 A=5000

A=A-100 A=4000 A=5000

W(A) A-4000 A=5000

 R(A) A=4000 A=4000

 A=A+500 A=4500 A=4000

 W(A)
Commit;

A=4500 A=4000

Failure
point

 A=4000

Commit A=4500

DATABASE MANAGEMENT SYSTEMS

13

2. Recoverable schedule with cascade rollback: schedules which can be recoverable

Example:

 IF transaction T2 reading a value updated by T1 & commit of T2 is delay till the commit of T1, it

is called recoverable schedule with cascade roll back.

3. Cascade less recoverability:

It refers to if T2 read value updated by T1 only after T1 is committed.

Example:

T1 T1’s buffer space T2 T2’s buffer
space

database

R(A) A=5000 A=5000

A=A-100 A=4000 A=5000

W(A) A-4000 A=5000

commit R(A) A=4000 A=4000

 A=A+500 A=4500 A=4000

 W(A)
Commit;

A=4500 A=4000

Failure
point

 A=4000

 A=4500

T1 T1’s buffer space T2 T2’s buffer
space

database

R(A) A=5000 A=5000

A=A-100 A=4000 A=5000

W(A) A-4000 A=5000

 R(A) A=4000 A=4000

 A=A+500 A=4500 A=4000

 W(A) A=4500 A=4000

Failure
point

 A=4000

Commit A=4500

DATABASE MANAGEMENT SYSTEMS

14

Implementation of Isolation:

 When more than one instruction of several transaction are being executed concurrently

by using some sharable resources , the execution of instruction of one transaction

should not interrupted the execution of instruction of anther transaction.

1. Access to sharable resources should be order by using some locking mechanism:

Where one transaction locks the sharable resource before starting it’s execution &

release the lock to other transaction after completion of it’s execution.

2. Locking protocols:

Locking mechanism can be implemented by using locking protocols which defined

set of standard rule based on which transaction access, sharable resources.

Transaction control commands supported with SQL:

1. Commit.

2. Save point.

3. Roll back.

 explain about usage of above 3 commands with syntaxes.

Precedence graph in serializability:

Precedence graph or serializability graph is used commonly to test conflict serializability of a

schedule.

 It is a directed graph which consist of nodes G(V,E) where nodes(v) represents set of

transaction &E represents set of edges {E1,E2,….En}.

 The graph contains one node for each transaction Ti. Each edge Ei is of the form

TjTk Where Tj is starting node of edge j&Tk is ending node of edge k.

 An edge is constructed between nodes if one of the operation in transaction Tj

appear in the schedule before some conflicting operation in transaction Tk.

Algorithm:
1. Create a node T n the graph for each participating transaction in the schedule.
2. Draw edges from one transaction to anther transaction when satisfy anyone of the following

condition.
 Condition 1:

 If T1 execute write operation i.e. write(x) followed by T2 execute read operation i.e.
read(x).
Condition 2:

 When T1 executes read(x) followed by T2 execute write(x).
Condition 3:

 When T1 execute write(x) followed by T2 execute write(x).
3. The given schedule is serializable if there are no cycles in the precedence graph.

DATABASE MANAGEMENT SYSTEMS

15

Example for precedence graph:

draw precedence graph for below transaction schedule.

T1 T2 T3 T4

Read(x)

 Read(x)

Write(x)

 Read(y)

 Read(y)

 Write(x)

 Read(w)

 Write(y)

 Read(w)

 Read(z)

 Write(w)

Read(z)

Write(z)

 As precedence graph is having cycles or closed loops, the given

schedule is not serializable.

T1 T2

T4

T3

DATABASE MANAGEMENT SYSTEMS

16

Example of conflict serializability:

S2:R1(X), R2(X), R2(Y), W2(Y), R1(Y), W1(X)

Sol:

S21:R2(X), R1(X),R2(Y),W2(Y),R1(Y),W1(Y)

S22:R2(X),R2(Y),R1(X),W2(Y),R1(Y),W1(Y)

S23:R2(X),R2(Y),W2(Y),R1(X),R1(Y),W1(Y)

The schedule S2 derives 3 more schedules (s21,s22,s23) which is called conflict equivalence

DATABASE MANAGEMENT SYSTEMS

17

Concurrency Control:

In case of concurrent instruction executions to preserve atomicity, isolation and

serializability, we use ‘lock-based’ protocol like .

Types of Locks:

1. Binary locks

2. Shared /exclusive locks

 Binary Locks − A lock on a data item can be in two states; it is either locked or unlocked.
 Shared(S)/exclusive(X) − This type of locking mechanism differentiates the locks based

on their uses. If a lock is acquired on a data item to perform a write operation, it is an
exclusive lock. Allowing more than one transaction to write on the same data item
would lead the database into an inconsistent state. Read locks are shared because no
data value is being changed.

Lock Compatibility Matrix –

 Lock Compatibility Matrix controls whether multiple transactions can acquire locks on
the same resource at the same time.

Shared Exclusive

Shared True False

Exclusive False False

 If a resource is already locked by another transaction, then a new lock request can be
granted only if the mode of the requested lock is compatible with the mode of the
existing lock.

 Any number of transactions can hold shared locks on an item, but if any transaction
holds an exclusive lock on item, no other transaction may hold any lock on the item.

 compatible locks held by other transactions have been released. Then the lock is
granted.

DATABASE MANAGEMENT SYSTEMS

18

Lock Granularity :

A database is basically represented as a collection of named data items. The size of the data

item chosen as the unit of protection by a concurrency control program is called GRANULARITY.

 Locking can take place at the following level :

 Database level.
 Table level.
 Page level.
 Row (Tuple) level.
 Attributes (fields) level.

i. Database level Locking :

At database level locking, the entire database is locked. Thus, it prevents the use of any tables

in the database by transaction T2 while transaction T1 is being executed. Database level of

locking is suitable for batch processes. Being very slow, it is unsuitable for on-line multi-user

DBMSs.

ii. Table level Locking :

At table level locking, the entire table is locked. Thus, it prevents the access to any row (tuple)

by transaction T2 while transaction T1 is using the table. if a transaction requires access to

several tables, each table may be locked. However, two transactions can access the same

database as long as they access different tables. Table level locking is less restrictive than

database level. Table level locks are not suitable for multi-user DBMS

iii. Page level Locking :

At page level locking, the entire disk-page (or disk-block) is locked. A page has a fixed size such

as 4 K, 8 K, 16 K, 32 K and so on. A table can span several pages, and a page can contain several

rows (tuples) of one or more tables. Page level of locking is most suitable for multi-user

DBMSs.

iv. Row (Tuple) level Locking :

At row level locking, particular row (or tuple) is locked. A lock exists for each row in each table

of the database. The DBMS allows concurrent transactions to access different rows of the same

table, even if the rows are located on the same page. The row level lock is much less restrictive

than database level, table level, or page level locks. The row level locking improves the

availability of data. However, the management of row level locking requires high overhead

cost.

DATABASE MANAGEMENT SYSTEMS

19

v. Attributes (fields) level Locking :

At attribute level locking, particular attribute (or field) is locked. Attribute level locking allows

concurrent transactions to access the same row, as long as they require the use of different

attributes within the row. The attribute level lock yields the most flexible multi-user data

access. It requires a high level of computer overhead.

Locking protocols:

 1. Simple lock based protocol

 2. Conservative (or) pre-claim locking protocol.

 3.2-phase locking protocol

 4. Strict 2 phase locking protocol

 5. Rigorous 2 phase locking protocol

Simple lock based protocol:

Simplistic lock-based protocols allow transactions to obtain a lock on every object before a

'write' operation is performed. Transactions may unlock the data item after completing the

‘write’ operation.

problems with simple locking are:

1. deadlocks

2. starvation

Conservative (or) pre-claim locking protocol:

Pre-claiming protocols evaluate their operations and create a list of data items on which they
need locks. Before initiating an execution, the transaction requests the system for all the locks
it needs beforehand.

If all the locks are granted, the transaction executes and releases all the locks when all its
operations are over. If all the locks are not granted, the transaction rolls back and waits until all
the locks are granted.

DATABASE MANAGEMENT SYSTEMS

20

2-phase locking protocol:

This locking protocol divides the execution phase of a transaction into three parts.

 In the first part, when the transaction starts executing, it seeks permission for the
locks it requires.

 The second part is where the transaction acquires all the locks. As soon as the
transaction releases its first lock, the third phase starts.

 In third phase, the transaction cannot demand any new locks; it only releases the
acquired locks.

This protocol can be divided into two phases,
1. In Growing Phase, a transaction obtains locks, but may not release any lock.
2. In Shrinking Phase, a transaction may release locks, but may not obtain any lock.

Two-phase locking has two phases, one is growing, where all the locks are being acquired by
the transaction; and the second phase is shrinking, where the locks held by the transaction are
being released.

To claim an exclusive (write) lock, a transaction must first acquire a shared (read) lock and then
upgrade it to an exclusive lock.

Types of Two – Phase Locking Protocol

Following are the types of two – phase locking protocol:

1. Strict Two – Phase Locking Protocol

2. Rigorous Two – Phase Locking Protocol

3. Conservative Two – Phase Locking Protocol

DATABASE MANAGEMENT SYSTEMS

21

Strict Two-Phase Locking:

1. If a transaction want to read any value it can refers to a shared lock

2. If a transaction to write any particular value it can refers to an exclusive locks

3. A shared lock acquire by multiple transaction at same time.

4. An exclusive lock can be requested by only one transaction at a time on any data

item.

5. Strict Two-Phase Locking Protocol avoids cascaded rollbacks.

6. It ensures that if data is being modified by one transaction, then other transaction

cannot read it until first transaction commits.

phases in strict 2 phase locking:

phase 1: The first phase of Strict-2PL is same as 2PL i.e. when the transaction starts executing, it
seeks permission for the locks it requires.

 phase 2:After acquiring all the locks in the first phase, the transaction continues to execute
normally.

phase 3: But in contrast to 2PL, Strict-2PL does not release a lock after using it. Strict-2PL holds
all the locks until the commit point and releases all the locks at a time.

Note: It releases only all exclusive locks but not shared locks after a transaction is committed .

This protocol is not free from deadlocks

Rigorous Two-Phase Locking

 Rigorous Two – Phase Locking Protocol avoids cascading rollbacks.
 This protocol requires that all the share and exclusive locks to be held until the

transaction commits.
 it releases all the locks including shared and exclusive locks after committing the

transactions.
 It considers the order of commit among transaction executions.

Conservative Two-Phase Locking Protocol

 Conservative Two – Phase Locking Protocol is also called as Static Two – Phase Locking
Protocol.

 This protocol is almost free from deadlocks as all required items are listed in advanced.
 It requires locking of all data items to access before the transaction starts.

DATABASE MANAGEMENT SYSTEMS

22

UPGRADING AND DOWNGRADING of Locks:

 If a transaction is holding an exclusive lock over an object .It can simply downgrade from

exclusive lock to shared lock after completion of its updation

 Similarly a shared lock can be upgraded to exclusive lock on particular data item. when

there is no other transaction is holding exclusive lock on same data item

 Strict 2 phase locking protocol can be executed serial/concurrent execution of

transaction

 examples for serial and concurrent execution are shown below:

IMPLEMENTING LOCKS:

 Every DBMS maintains a lock manager which maintain two tables called lock table and

transaction table

 Lock table consist of information regarding locks on data item holding:

1. No. of transaction holding lock

2. Nature of lock(shared or exclusive)

3. Pointer to the no. of locks requested in queue in given object.

 Transaction table:

Transaction table contain list of transactions and their corresponding locks assigned.

T1 T2

S(A)

R(A)

X(A)

W(A)

 COMMIT

 X(A)

 W(A)

 COMMIT

Serial

T1 T2

S(A)

R(A)

 X(A)

 W(A)

 commit

X(A)

W(A)

commit

Concurrent

DATABASE MANAGEMENT SYSTEMS

23

TIME STAMP BASED PROTOCOLS:

 The most commonly used concurrency protocol is the timestamp based protocol. This

protocol uses either system time or logical counter as a timestamp.

 It starts working as soon as a transaction is created.

 Every transaction has a timestamp associated with it, and the ordering is determined by

the age of the transaction.

 every data item is given the latest read and write-timestamp.

 This lets the system know when the last ‘read and write’ operation was performed on

the data item.

 Each transaction is issued a timestamp when it enters into the system.
 Every read and write operations will be marked with a time stamp of their occurrence.
 Timestamp Based Protocol helps DBMS to identify the transactions.
 Time stamp is a unique identifier.
 Timestamp protocol determines the serializability order.
 It is most commonly used concurrency protocol.
 It uses either system time or logical counter as a timestamp.

Timestamp Ordering Protocol

 The TO Protocol ensures serializability among transactions in their conflicting read and
write operations.

 The transaction of timestamp (T) is denoted as TS(T).
 Data item (X) of read timestamp is denoted by R–timestamp(X).
 Data item (X) of write timestamp is denoted by W–timestamp(X).

The below assumptions in Time stamp based ordering protocol are based on THOMAS WRITE

RULE.

 If a transaction Ti issues a read(X) operation

 If TS(Ti)<Write-timestamp(x) , then Operation rejected

If TS(Ti)>=Write-timestamp(x), then Operation executed

All data items time stamps updated

 If a transaction Ti issues write(X) operation

If TS(Ti)<Read-Timestamp(x), then operation rejected

If TS(Ti)<Write-timestamp(x), then operation rejected & Ti rolled back

Otherwise operation executed

DATABASE MANAGEMENT SYSTEMS

24

Thomas' Write Rule

This rule states if TS(Ti) < W-timestamp(X), then the operation is rejected and Ti is rolled back.

Time-stamp ordering rules can be modified to make the schedule view serializable.

Instead of making Ti rolled back, the 'write' operation itself is ignored.

Following are the three basic variants of timestamp-based methods of concurrency control:

 Total timestamp ordering
 Partial timestamp ordering
 Multiversion timestamp ordering

Total timestamp ordering :

The total timestamp ordering algorithm depends on maintaining access to granules in

 timestamp order by aborting one of the transactions involved in any conflicting access.

Partial timestamp ordering :

In a partial timestamp ordering, only non-permutable actions are ordered to improve upon the

total timestamp ordering. In this case, both Read and Write granule timestamps are stored.

The algorithm allows the granule to be read by any transaction younger than the last

 transaction that updated the granule. A transaction is aborted if it tries to update a granule

that has previously been accessed by a younger transaction.

Multiversion Timestamp ordering :

The multiversion timestamp ordering algorithm stores several versions of an updated granule,

allowing transactions to see a consistent set of versions for all granules it accesses. So, it

reduces the conflicts that result in transaction restarts to those where there is a Write-Write

conflict.

DATABASE MANAGEMENT SYSTEMS

25

VALIDATION BASED PROTOCOLS:

These are also called as optimistic concurrency control method.

An optimistic concurrency control method is also known as validation or certification methods.
No checking is done while the transaction is executing. The optimistic method does not require
locking or timestamping techniques. Instead, a transaction is executed without restrictions until
it is committed.

 In validation based protocols every transaction is executed on 3 bases

1. read phase

2. validation phase

3. execute or write phase

1. Read phase:

In this phase transaction is executed and all the result will be stored in temporary variables

local to transactions.

2. validation phase:

 In this phase the transaction operations are validated without violating the serializability.

3. write phase:

 In this phase when a transaction is validated successfully all the values of temporary

variables is updated in the actual data base.

Validation phase:

A transaction is validated based on following time stamp

1. start(ti):

The time at which the transaction ti started it’s execution.

2. validation(ti):

The time at which ti is valid.

3. finish(ti):

The time at which ti finish it’s write operation on the actual data base its execution.

Among two transactions ti&tj, the transactions ti is validated. If it satisfy one of the two

conditions.

If for all ti with ts(ti)<ts(tj)

1. finish(ti)<start(tj)

2. Start(tj)<finish(ti)<validation(tj)

DATABASE MANAGEMENT SYSTEMS

26

 The below example shows the interleaved execution of 3 phases of 2 transactions in which

transaction t14 is validated.

Advantages of Optimistic Methods for Concurrency Control :

i. This technique is very efficient when conflicts are rare. The occasional conflicts result in
the transaction roll back.

ii. The rollback involves only the local copy of data, the database is not involved and thus
there will not be any cascading rollbacks.

Problems of Optimistic Methods for Concurrency Control :

i. Conflicts are expensive to deal with, since the conflicting transaction must be rolled
back.

ii. Longer transactions are more likely to have conflicts and may be repeatedly rolled
back because of conflicts with short transactions.

T14

T15

Read(B)

 Read(B)

 B=B-50

 Read(A)

 A=A+50

Read(A)

Validate

Display(A+B)

 Validate

 Write(B)

 Write(A)

DATABASE MANAGEMENT SYSTEMS

27

DEAD LOCKS:

Consider two transaction t1 and t2.if t1 holds lock on data item x and t2 holds lock on data

item y now t1 refers lock over y & t2 request lock over x then deadlock situation occur when

none of the transaction are ready to release locks on x ,y.

 The following two techniques can be used for deadlock handling(prevention):

1. wait-die

2. wait-wound

1. wait-die:

 In wait die technique the older transaction waited in queue &younger will die.

 The older transaction waits for the younger if the younger has accessed the granule first.

 The younger transaction is aborted (dies) and restarted if it tries to access a granule
 after an older concurrent transaction.

 The wait-die based on time stamp of the transaction request for conflicting resources.

1)Ts(t1)<ts(t2):t1 will wait in a queue&t2 will die/abort.

 2)ts(t1)>ts(t2):t2 will be waiting in queue & t1 will abort/die

For example:

Suppose that transaction T22, T23, T24 have time-stamps 5, 10 and 15 respectively. If T22requests
a data item held by T23 then T22 will wait. If T24 requests a data item held by T23, then T24 will be
rolled back.

2. wait wound technique:

 It based on time stamp of transaction request

 It is a preemptive technique for deadlock prevention. It is a counterpart to the wait-die
scheme. When Transaction Ti requests a data item currently held by Tj, Ti is allowed to
wait only if it has a timestamp larger than that of Tj, otherwise Tj is rolled back (Tj is
wounded by Ti)

For example:

 Suppose that Transactions T22, T23, T24 have time-stamps 5, 10 and 15 respectively . If
T22requests a data item held by T23, then data item will be preempted from T23 and
T23 will be rolled back. If T24 requests a data item held by T23, then T24 will wait.

 Here the younger transactions are made to wait in queue& older transaction going to abort.

1) Ts (t1) <ts (t2): t2 will be in waiting state &t1 in abort.

2) Ts (t1)>ts (t2):t1 will be in waiting & t2 in abort.

DATABASE MANAGEMENT SYSTEMS

28

 DEAD LOCK AVOIDANCE:

Wait for graph:

 We use this technique for dead lock avoidance.

 This is a simple method available to track if any deadlock situation may arise.

 For each transaction entering into the system, a node is created.

 When a transaction Ti requests for a lock on an item, say X, which is held by some other
transaction Tj, a directed edge is created from Ti to Tj. If Tj releases item X, the edge
between them is dropped and Ti locks the data item.

 The system maintains this wait-for graph for every transaction waiting for some data
items held by others. The system keeps checking if there's any cycle in the graph.

Here, we can use any of the two following approaches −

 First, do not allow any request for an item, which is already locked by another
transaction. This is not always feasible and may cause starvation, where a transaction
indefinitely waits for a data item and can never acquire it.

 The second option is to roll back one of the transactions. It is not always feasible to roll
back the younger transaction, as it may be important than the older one. With the help
of some relative algorithm, a transaction is chosen, which is to be aborted. This
transaction is known as the victim and the process is known as victim selection.

DATABASE MANAGEMENT SYSTEMS

29

 CRASH RECOVERY:

 In the case of DBMS, durability is a key property along with atomicity.

 Failure Classification in DBMS:

1. when a transaction is failed

 1) Logical error

 2) System error

2. system crash

3. disk failure

4. storage structure

1) volatile

2) non volatile

Transaction failure

A transaction has to abort when it fails to execute or when it reaches a point from where it
can’t go any further. This is called transaction failure where only a few transactions or
processes are hurt.

Storage Structure:

DATABASE MANAGEMENT SYSTEMS

30

Recovery of data:

When a database is recovered after a failure it should ensure the atomicity property &

following should be done after a crash.

1) we should check the status of all transactions whether they are executed completely

or partially

2) Check for the transaction which are in the middle of execution & should take care of

atomicity property with transaction.

3) We should check whether there are any transactions which can be completed after

recovery.

4) If such transactions are there we should be rollback to previous commit point that

allowed for execution.

5) The recovery of database can be done in 2 ways:

 1. By using logs

 2. by using shadow paging technique.

DATABASE MANAGEMENT SYSTEMS

31

Log based recovery:

 Logs keep track of actions carried out by transactions which can be used for the recovery of

database in case of failure.

 Logs files should be stored always on stable storage devices.

 When a transaction begins its execution it is recorded in the log as follows

 <Tn, start>

 When a transaction performs an operation it is recorded in log as follows

 <Tn, X, V1, V2>

 When a transaction finishes it’s execution, it is recorded as

 <Tn,commit>

 By using logs with in DBMS the updation to the database can occur in 2 ways

1) Differed database updation(database is updated only after committing the

transaction)

2) Immediate database updation(updating database will be done immediately after

execution of instructions without waiting for commit).

 While recovering the data about transaction by using log files each transaction will

be listed in one of the below list.

1. re-do list

2. undo list

DATABASE MANAGEMENT SYSTEMS

32

Shadow Paging:

Concept of Shadow Paging Technique

 Shadow paging is an alternative to transaction-log based recovery techniques.
 Here, the database considered as made up of fixed size disk blocks, called pages. These

pages mapped to physical storage using a table, called page table.
 The page table indexed by a page number of the database. The information about

physical pages, in which database pages are stored, is kept in this page table.
 This technique is similar to paging technique used by Operating Systems to allocate

memory, particularly to manage virtual memory.
 The following figure depicts the concept of shadow paging.

Execution of Transaction

 During the execution of the transaction, two-page tables maintained.
1. Current Page Table: Used to access data items during transaction execution.
2. Shadow Page Table: Original page table, and not get modified during transaction

execution.
 Whenever any page is about to written for the first time

1. A copy of this page made into a free page,
2. The current page table made to point to the copy,
3. The update made in this copy.

DATABASE MANAGEMENT SYSTEMS

33

DATABASE MANAGEMENT SYSTEMS

34

Recovering data of concurrent transactions:

 While recovering concurrent transaction it is difficult to recover by using lock files so along with

lock files check points are considered for the recovery of concurrent transaction.

 Check point:

It is a point at a time where all transaction are committed & the database in consistence state.

While recovering start from the end transaction till it reaches any check point.

During this process categorized each transaction into UNDO/REDO list.

All the transactions in UNDO list should not be saved.

All the transaction in Redo list should saved and rollback then.

<Tn,start>undo list

 <Tn, start>

 : Redo list

 <Tn, commit>

Granularity:

It refers to the size of the database item which can be locked.

Multiple Granularity locking:

It refers to dividing the database into a hierarchy of data items on which locks can be applied as

a whole or individual data item.

We can divide database hierarchy files into pages and each page consists of record.

DATABASE MANAGEMENT SYSTEMS

35

ARIES Recovery Algorithm:

• A steal, no-force approach

• Steal: if a frame is dirty and chosen for replacement, the page it contains is

written to disk even if the modifying transaction is still active.

• No-force: Pages in the buffer pool that are modified by a transaction are not

forced to disk when the transaction commits.

Algorithms for Recovery and Isolation Exploiting Semantics, or ARIES is a recovery algorithm

designed to work with a no-force, steal database approach.

The ARIES recovery procedure consists of three main steps:

1. Analysis

The analysis step identifies the dirty (updated) pages in the buffer, and the set of
transactions active at the time of the crash. The appropriate point in the log where the
REDO operation should start is also determined

2. REDO

The REDO phase actually reapplies updates from the log to the database. Generally, the
REDO operation is applied to only committed transactions. However, in ARIES, this is not
the case. Certain information in the ARIES log will provide the start point for REDO, from
which REDO operations are applied until the end of the log is reached. In addition,
information stored by ARIES and in the data pages will allow ARIES to determine
whether the operation to be redone has actually been applied to the database and
hence need not be reapplied. Thus only the necessary REDO operations are applied
during recovery.

3. UNDO

During the UNDO phase, the log is scanned backwards and the operations of
transactions that were active at the time of the crash are undone in reverse order. The
information needed for ARIES to accomplish its recovery procedure includes the log, the
Transaction Table, and the Dirty Page Table. In addition, check pointing is used. These
two tables are maintained by the transaction manager and written to the log during
check pointing.

DATABASE MANAGEMENT SYSTEMS

36

Data structures used in ARIES algorithm:

1. page table

2. dirty page table

3. pageLSN

4. RedoLSN

5. Transaction Table

6. Checkpoint Log

** LSN stands for Log Sequence Number

For efficient recovery, we need Transaction table and Dirty Page table .

The above 2 tables are maintained by transaction manager

The Transaction Table contains an entry for each active transaction, with information such as

the transaction ID, transaction status, and the LSN of the most recent log record for the

transaction.

Transaction ID Transaction Status LSN of recent log

The Dirty Page Table contains an entry for each dirty page in the buffer, which includes the

page ID and the LSN corresponding to the earliest update to that page.

PageID LSN of earliest update to page

Checkpointing in ARIES consists of the following:

1. writing a begin_checkpoint record to the log,

2. writing an end_checkpoint record to the log, and

3. writing the LSN of the begin_checkpoint record to a special file.

DATABASE MANAGEMENT SYSTEMS

37

 This Checkpoint log file is accessed during recovery to locate the last checkpoint information.

After a crash, the ARIES recovery manager takes over.

Information from the last checkpoint is first accessed through the special file. The analysis

phase starts at the begin_checkpoint record and proceeds to the end of the log. When the

end_checkpoint record is encountered, the Transaction Table and Dirty Page Table are accessed

(recall that these tables were written in the log during checkpointing). During analysis, the log

records being analyzed may cause modifications to these two tables. For instance, if an end log

record was encountered for a transaction T in the Transaction Table, then the entry for T is

deleted from that table. If some other type of log record is encountered for a transaction T ,

then an entry for T is inserted into the Transaction Table, if not already present, and the last

LSN field is modified. If the log record corresponds to a change for page P, then an entry would

be made for page P (if not present in the table) and the associated LSN field would be modified.

When the analysis phase is complete, the necessary information for REDO and UNDO has been

compiled in the tables.

 The REDO phase follows next.

ARIES starts redoing at a point in the log where it knows (for sure) that previous changes to

dirty pages have already been applied to the database on disk. It can determine this by finding

the smallest LSN, M, of all the dirty pages in the Dirty Page Table, which indicates the log

position where ARIES needs to start the REDO phase. Any changes corresponding to an LSN <

M, for redoable transactions, must have already been propagated to disk or already been

overwritten in the buffer; otherwise, those dirty pages with that LSN would be in the buffer

(and the Dirty Page Table). So, REDO starts at the log record with LSN = M and scans forward to

the end of the log. For each change recorded in the log, the REDO algorithm would verify

whether or not the change has to be reapplied. For example, if a change recorded in the log

pertains to page P that is not in the Dirty Page Table, then this change is already on disk and

does not need to be reapplied. Or, if a change recorded in the log (with LSN = N, say) pertains to

page P and the Dirty Page Table contains an entry for P with LSN greater than N, then the

change is already present. If neither of these two conditions hold, page P is read from disk and

DATABASE MANAGEMENT SYSTEMS

38

the LSN stored on that page, LSN(P), is compared with N. If N < LSN(P), then the change has

been applied and the page does not need to be rewritten to disk.

 Once the REDO phase is finished, the database is in the exact state that it was in when the

crash occurred. The set of active transactions—called the undo_set—has been identified in the

Transaction Table during the analysis phase.

Now, the UNDO phase proceeds by scanning backward from the end of the log and undoing the

appropriate actions. A compensating log record is written for each action that is undone. The

UNDO reads backward in the log until every action of the set of trans-actions in the undo_set

has been undone. When this is completed, the recovery process is finished and normal

processing can begin again.

Example:

Consider the recovery example shown in Figure 23.5. There are three transactions: T1, T2, and

T3. T1 updates page C, T2 updates pages B and C, and T3 updates page A.

DATABASE MANAGEMENT SYSTEMS

39

Figure 23.5(a) shows the partial contents of the log, and Figure 23.5(b) shows the contents of

the Transaction Table and Dirty Page Table. Now, suppose that a crash occurs at this point.

Since a checkpoint has occurred, the address of the associated begin_checkpoint record is

retrieved, which is location 4. The analysis phase starts from location 4 until it reaches the

end. The end_checkpoint record would contain the Transaction Table and Dirty Page Table in

Figure 23.5(b), and the analysis phase will further reconstruct these tables. When the analysis

phase encounters log record 6, a new entry for transaction T3 is made in the Transaction Table

and a new entry for page A is made in the Dirty Page Table. After log record 8 is analyzed, the

status of transaction T2 is changed to committed in the Transaction Table. Figure 23.5(c) shows

the two tables after the analysis phase.

For the REDO phase, the smallest LSN in the Dirty Page Table is 1. Hence the REDO will start

at log record 1 and proceed with the REDO of updates. The LSNs {1, 2, 6, 7} corresponding to

the updates for pages C, B, A, and C, respectively, are not less than the LSNs of those pages (as

shown in the Dirty Page Table). So those data pages will be read again and the updates

reapplied from the log (assuming the actual LSNs stored on those data pages are less then the

corresponding log entry). At this point, the REDO phase is finished and the UNDO phase starts.

From the Transaction Table (Figure 23.5(c)), UNDO is applied only to the active transaction T3.

The UNDO phase starts at log entry 6 (the last update for T3) and proceeds backward in the log.

The backward chain of updates for transaction T3 (only log record 6 in this example) is followed

and undone.

DATA BASE MANAGEMENT SYSTEMS UNIT 5

1

UNIT 5

OVERVIEW OF STORAGE AND INDEXING

Unit 5 Contents at a glance:
1. Data on external storage,
2. file organizations
3. indexing,
4. index data structures,
5. comparison of file organizations,
6. RAID
7. Tree structured indexing -intuition for tree indexes,
8. indexed sequential access method (ISAM),
9. B+ Trees -a dynamic tree structure.

1. Data on external storage:

 Data in a DBMS is stored on storage devices such as disks and tapes

 The disk space manager is responsible for keeping track of available disk space.

 The file manager, which provides the abstraction of a file of records to higher levels of
DBMS code, issues requests to the disk space manager to obtain and relinquish space on
disk.

DATA BASE MANAGEMENT SYSTEMS UNIT 5

2

Storage Manager Component :

A Storage Manager is a component or program module that provides the interface between the
low-level data stored in the database and the application programs/queries submitted to
the system. The Storage Manager Components include –

1. File Manager- File manager manages the file space and it takes care of the structure of
the file. It manages the allocation space on disk storage and the data structures used to
represent info stored on other media.

2. Buffer Manager – It transfers blocks between disk (or other devices) and Main Memory.
A DMA (Direct Memory Access) is a form of Input/Output that controls the exchange of
blocks process. When a processor receives a request for a transfer of a block, it sends it
to the DMA Controller which transfers the block uninterrupted.

3. Authorization and Integrity Manager – This Component of storage manager checks for
the authority of the users to access and modify information, as well as integrity
constraints (keys, etc).

4. Disk Manager- The block requested by the file manager is transferred by the Disk
Manager.

Memory Hierarchy:

Figure: Memory Hierarchy

At the top, we have primary storage, which consists of cache and main memory , and provides very

fast access to data. then comes secondary storage, which consists of slower devices such as magnetic

disks. tertiary storage is the slowest class of storage devices; for example, optical disks and tapes.

DATA BASE MANAGEMENT SYSTEMS UNIT 5

3

Primary Storage:

1. all the primary storage level, the memory hierarchy includes at the most expensive end

cache memory, which is a static RAM (Random Access Memory) cache memory is mainly used

by the CPU to speedup execution programs.

2. the next level of primary storage is DRAM (Dynamic Random Access Memory), which provides

the main work area for the CPU for keeping programs and data , which is popularly called as

main memory .

3. the advantages of DRAM is its low cost, which continuous to decrease ; the drawback is its

volatility and lower speed compared with static RAM.

Secondary Storage:

 At the secondary storage level, the hierarchy includes magnetic disks, as well storage in the form

of CD - ROM (Compact Disk - Read Only Memory) devices.

Secondary storage devices are used to store data for future use or as backup. Secondary storage

includes memory devices that are not a part of the CPU chipset or motherboard, for example,

magnetic disks, optical disks (DVD, CD, etc.), hard disks, flash drives, and magnetic tapes.

Tertiary storage:

 At the tertiary storage level, the hierarchy includes optical disks and tapes as the least expensive

end.

 The storage capacity anywhere in the hierarchy is measured in kilobytes (k bytes or bytes),

megabytes (M bytes or 1 million bytes), gigabytes (G byte or billion bytes), and even terabytes

(1000 G bytes).

 Explanation:

DRAM:

 programs reside execute in DRAM . Generally, large permanent database reside on secondary

storage, and portions of the database are read into and written from buffers is main memory as

needed. personal computers and work stations have tens of megabytes of data in DRAM. it is become

possible to load a large fraction of the database into main memory. an example is telephone switching

applications, which store databases that contain routing and line information in main memory.

Flash Memory:

1. Between DRAM and magnetic disk storage, another form of memory resides, flash memory,

which is becoming common, particularly because it is non - volatile.

2. flash memories are high density, high - performance memories using EEPROM (Electrically

Erasable programmable Read -only Memory) technology.

3. the advantage of flash memory is the fast access speed;

4. the disadvantage is that an entire block must be erased and written over at a time.

DATA BASE MANAGEMENT SYSTEMS UNIT 5

4

Magnetic disk storage:

 primary medium for long-term storage.

 Typically the entire database is stored on disk.

 Data must be moved from disk to main memory in order for the data to be operated on.

 After operations are performed, data must be copied back to disk if any changes were
made.

 Disk storage is called direct access storage as it is possible to read data on the disk in
any order (unlike sequential access).

 Disk storage usually survives power failures and system crashes.

Figure: Structure of magnetic disk

Access time: the time it takes from when a read or write request is issued to when data
transfer begins.
Data-transfer rate– the rate at which data can be retrieved from or stored to the disk.
Mean time to failure (MTTF)– the average time the disk is expected to run continuously
without any failure.

CD-ROM:

 CD - ROM disks store data optically and are read by a laser. CD - ROM s contain pre - recorded

data that cannot be overwritten. WORM (Write - Once - Read - Many disks) are a form of optical

storage used for archiving data; they allow data to be written once and read any number of times

without the possibility of erasing. the DVD (Digital Video Disks) is a recent standard for optical disks

allowing fourteen to fifteen gigabytes of storage per disks.

DATA BASE MANAGEMENT SYSTEMS UNIT 5

5

Tapes:

1. Tapes are relatively not expensive and can store very large amount of data. when we

maintain data for a long period but do expect to access it very often.

2. used primarily for backup and archival data.
3. Cheaper, but much slower access, since tape must be read sequentially from the

beginning.
4. Used as protection from disk failures!
5. A Quantum DLT 4000 drive is a typical tape device; it stores 20 GB of data and can store

about twice as much by compressing the data.

Figure: storage device hierarchy

DATA BASE MANAGEMENT SYSTEMS UNIT 5

6

2. File Organizations:

Storing the files in certain order is called file organization. The main objective of file
organization is

 Optimal selection of records i.e.; records should be accessed as fast as possible.
 Any insert, update or delete transaction on records should be easy, quick and should not

harm other records.
 No duplicate records should be induced as a result of insert, update or delete
 Records should be stored efficiently so that cost of storage is minimal.

Some of the file organizations are

1. Sequential File Organization
2. Heap File Organization
3. Hash/Direct File Organization
4. Indexed Sequential Access Method
5. B+ Tree File Organization
6. Cluster File Organization

1. Sequential File Organization:

In sequential file organization, records are placed in the file in some sequential order based on the

unique key field or search key.

The easiest method for file Organization is Sequential method. In this method the the file are stored

one after another in a sequential manner. There are two ways to implement this method:

1. Pile FIle Method

2. Sorted File

1. Pile File Method – This method is quite simple, in which we store the records in a
sequence i.e one after other in the order in which they are inserted into the tables.

DATA BASE MANAGEMENT SYSTEMS UNIT 5

7

Insertion of new record –
Let the R1, R3 and so on upto R5 and R4 be four records in the sequence. Here, records
are nothing but a row in any table. Suppose a new record R2 has to be inserted in the
sequence, then it is simply placed at the end of the file.

2. Sorted File Method –In this method, As the name itself suggest whenever a new record
has to be inserted, it is always inserted in a sorted (ascending or descending) manner.
Sorting of records may be based on any primary key or any other key.

Insertion of new record –
Let us assume that there is a preexisting sorted sequence of four records R1, R3, and so
on upto R7 and R8. Suppose a new record R2 has to be inserted in the sequence, then it
will be inserted at the end of the file and then it will sort the sequence .

DATA BASE MANAGEMENT SYSTEMS UNIT 5

8

Pros and Cons of Sequential File Organization –
Pros –

 Fast and efficient method for huge amount of data.
 Simple design.
 Files can be easily stored in magnetic tapes i.e cheaper storage mechanism.

Cons –

 Time wastage as we cannot jump on a particular record that is required, but we have to
move in a sequential manner which takes our time.

 Sorted file method is inefficient as it takes time and space for sorting records.

2. Heap File Organization:

When a file is created using Heap File Organization, the Operating System allocates memory
area to that file without any further accounting details. File records can be placed anywhere in
that memory area.

Heap File Organization works with data blocks. In this method records are inserted at the end of
the file, into the data blocks. No Sorting or Ordering is required in this method. If a data block is
full, the new record is stored in some other block, Here the other data block need not be the
very next data block, but it can be any block in the memory. It is the responsibility of DBMS to
store and manage the new records.

DATA BASE MANAGEMENT SYSTEMS UNIT 5

9

Insertion of new record –
Suppose we have four records in the heap R1, R5, R6, R4 and R3 and suppose a new record R2
has to be inserted in the heap then, since the last data block i.e data block 3 is full it will be
inserted in any of the database selected by the DBMS, lets say data block 1.

If we want to search, delete or update data in heap file Organization the we will traverse the
data from the beginning of the file till we get the requested record. Thus if the database is very
huge, searching, deleting or updating the record will take a lot of time.

Pros and Cons of Heap File Organization –
Pros –

 Fetching and retrieving records is faster than sequential record but only in case of small
databases.

 When there is a huge number of data needs to be loaded into the database at a time,
then this method of file Organization is best suited.

Cons –

 Problem of unused memory blocks.
 Inefficient for larger databases.

DATA BASE MANAGEMENT SYSTEMS UNIT 5

10

3. Hash File Organization:

Hash File Organization uses Hash function computation on some fields of the records. The output of

the hash function determines the location of disk block where the records are to be placed.

In this method of file organization, hash function is used to calculate the address of the block to
store the records.

The hash function can be any simple or complex mathematical function.

The hash function is applied on some columns/attributes – either key or non-key columns to
get the block address.

Hence each record is stored randomly irrespective of the order they come. Hence this method
is also known as Direct or Random file organization.

If the hash function is generated on key column, then that column is called hash key, and if hash
function is generated on non-key column, then the column is hash column.

When a record has to be retrieved, based on the hash key column, the address is generated and

directly from that address whole record is retrieved. Here no effort to traverse through whole file.

Similarly when a new record has to be inserted, the address is generated by hash key and record is

directly inserted. Same is the case with update and delete.

Advantages of Hash File Organization

 Records need not be sorted after any of the transaction. Hence the effort of sorting is
reduced in this method.

 Since block address is known by hash function, accessing any record is very faster.
Similarly updating or deleting a record is also very quick.

DATA BASE MANAGEMENT SYSTEMS UNIT 5

11

 This method can handle multiple transactions as each record is independent of other.
i.e.; since there is no dependency on storage location for each record, multiple records
can be accessed at the same time.

 It is suitable for online transaction systems like online banking, ticket booking system
etc.

clustered file organization:

Clustered file organization is not considered good for large databases. In this mechanism, related

records from one or more relations are kept in the same disk block, that is, the ordering of records is

not based on primary key or search key.

In this method two or more table which are frequently used to join and get the results are stored in

the same file called clusters. These files will have two or more tables in the same data block and the

key columns which map these tables are stored only once. This method hence reduces the cost of

searching for various records in different files. All the records are found at one place and hence

making search efficient.

DATA BASE MANAGEMENT SYSTEMS UNIT 5

12

REDUNDANT ARRAY OF INDEPENDENT DISKS(RAID)

RAID or Redundant Array of Independent Disks, is a technology to connect multiple secondary
storage devices and use them as a single storage media.

RAID consists of an array of disks in which multiple disks are connected together to achieve
different goals. RAID levels define the use of disk arrays.

RAID 0

In this level, a striped array of disks is implemented. The data is broken down into blocks and
the blocks are distributed among disks. Each disk receives a block of data to write/read in
parallel. It enhances the speed and performance of the storage device. There is no parity and
backup in Level 0.

RAID 1

RAID 1 uses mirroring techniques. When data is sent to a RAID controller, it sends a copy of
data to all the disks in the array. RAID level 1 is also called mirroring and provides 100%
redundancy in case of a failure.

RAID 2

RAID 2 records Error Correction Code using Hamming distance for its data, striped on different
disks. Like level 0, each data bit in a word is recorded on a separate disk and ECC codes of the
data words are stored on a different set disks. Due to its complex structure and high cost, RAID
2 is not commercially available.

DATA BASE MANAGEMENT SYSTEMS UNIT 5

13

RAID 3

RAID 3 stripes the data onto multiple disks. The parity bit generated for data word is stored on
a different disk. This technique makes it to overcome single disk failures.

RAID 4

In this level, an entire block of data is written onto data disks and then the parity is generated
and stored on a different disk. Note that level 3 uses byte-level striping, whereas level 4 uses
block-level striping. Both level 3 and level 4 require at least three disks to implement RAID.

RAID 5

RAID 5 writes whole data blocks onto different disks, but the parity bits generated for data
block stripe are distributed among all the data disks rather than storing them on a different
dedicated disk.

DATA BASE MANAGEMENT SYSTEMS UNIT 5

14

RAID 6

RAID 6 is an extension of level 5. In this level, two independent parities are generated and
stored in distributed fashion among multiple disks. Two parities provide additional fault
tolerance. This level requires at least four disk drives to implement RAID.

DATA BASE MANAGEMENT SYSTEMS UNIT 5

15

Comparison of file organizations:

The operations to be considered for comparisons of file organizations are below:

B - number of data pages

R records per page

D- average time to read or write a disk page

C- average time to process a record

DATA BASE MANAGEMENT SYSTEMS UNIT 5

16

Indexing:

Index:

Dense Index:

Sparse Index:

Primary indexing:

secondary indexing:

cluster indexing:

multi value indexing:

ISAM

B+ trees:

Read from class notes

