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Air pollution consists of harmful gases and fine Particulate Matter (PM2.5) which affect the quality of air. This has not only
become the key issues in scientific research but also turned to be an important social issues of the public’s life. Therefore,
many experts and scholars at different R&Ds, universities, and abroad are involved in lot of research on PM2.5 pollutant
predictions. In this scenario, the authors proposed various machine learning models such as linear regression, random forest,
KNN, ridge and lasso, XGBoost, and AdaBoost models to predict PM2.5 pollutants in polluted cities. This experiment is carried
out using Jupyter Notebook in Python 3.7.3. From the results with respect to MAE, MAPE, and RMSE metrics, among the
models, XGBoost, AdaBoost, random forest, and KNN models (8.27, 0.40, and 13.85; 9.23, 0.45, and 10.59; 39.84, 1.94, and
54.59; and 49.13, 2.40, and 69.92, respectively) are observed to be more reliable models. The PM2.5 pollutant concentration
(PClow-PChigh) range observed for these models is 0-18.583μg/m3, 18.583-25.023μg/m3, 25.023-28.234μg/m3, and 28.234-
49.032 μg/m3, respectively, so these models can both predict the PM2.5 pollutant and can forecast the air quality levels in a
better way. On comparison between various existing models and proposed models, it was observed that the proposed models
can predict the PM2.5 pollutant with a better performance with a reduced error rate than the existing models.

1. Introduction

Nowadays, accurate air pollution prediction and forecast
become a challenging and significant task due to increased
air pollution which acts as a fundamental problem in many
parts of the world. Generally, the pollution is divided into
two types: (1) natural pollution because of volcanic erup-
tions and forest fires resulting in emission of SO2, CO2,
CO, NO2, and sulfate as air pollutants and (2) man-made
pollution because of some human activities such as burning

of oils, discharges from industrial production processes, and
transportation emissions that have PM2.5 as its major air
pollutant [1] which has received much attention due to their
destructive effects on human health, other kinds of creatures,
and environment [2]. Various studies testify that air pollu-
tion leads to respiratory and cardiovascular disease leading
to death of animals and plants, acid rain, climate change,
global warming, etc. thus making economic loses and the
human life of a society difficult to survive in the world [3].
Regarding the effects of PM2.5 investigated over the last 25
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years using the comparative analysis of ML techniques,
Ameer et al. [4] have estimated that approximately 4.2 mil-
lion people have died due to long-term exposure of PM2.5
in the atmosphere, while an additional 250,000 deaths have
occurred due to ozone exposure [1]. In worldwide rankings
of mortality risk factors, PM2.5 was ranked as 5th and
accounted for 7.6% of total deaths all over the world. From
1990 to 2015, the number of deaths due to air pollution
has increased, especially in China and India with more than
20% of 1.1 million deaths worldwide attributed to respira-
tory diseases [5]. Hence, worldwide, huge number of
research has been carried out on topics like air pollution
levels and air quality forecasts to control air pollution more
effectively. Extensive research specifies that air pollution
forecasting approaches can be imprecisely divided into three
traditional classes: (1) statistical forecasting methods, (2)
artificial intelligence methods [6], and (3) numerical fore-
casting methods [4].

PM2.5 pollutants are fine particles that are made up of a
combination of gases and particles which are hazardous
when released into the atmosphere [2]. These pollutants
are mainly responsible for causing human respiratory dis-
eases in one way or another, and when severe, it can further
lead to the pandemic COVID-19 [7, 8] resulting in increased
death level. The present models focus on only the PM2.5 pol-
lutant because from the survey, it is obvious that PM2.5
causes high issues in human being compared to other pollut-
ants, and it is the one that creates other pollutants. Statistical
analysis for PM2.5 pollutant prediction is done using histor-
ical meteorological datasets. However, existing models are
constrained to utilize some basic standard classification
techniques; few models are used for forecasting, yet the
results showed poor error rate performance.

In this proposed approach, six different machine learn-
ing models [9] which include regression models such as lin-
ear regression model (LR), random forest model (RF), KNN
model, ridge and lasso model (RL), XGBoost model (Xgb),
and AdaBoost model (Adab) have been implemented to
predict the PM2.5 pollutant using meteorological and
PM2.5 pollutant historical datasets that are downloaded
from 1st Jan 2014 to 1st Dec 2019. These data have been
monitored continuously for 24h with a time period of an
hour using the following meteorological features such as
temperature (T in °C), minimum temperature (Tm in °C),
maximum temperature (TM in °C), total train/snowmelt
(PP in mm), humidity (H in %), wind speed (V in km/h),
visibility (VV in km), and maximum sustained wind speed
(VM in km/h). Also, the proposed machine learning
models have been evaluated using statistical metrics such
as Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), Mean Square Error (MSE), Root Mean
Square Error (RMSE), and R2. Results show the achieve-
ment of better performance with decreased error rate when
compared to traditional prediction models. This paper has
been organized as follows. Section 2 discusses the related
works, Section 3 introduces machine learning models for
predicting PM2.5 and forecasting air quality, Section 4 pre-
sents model results and analysis, and Section 5 concludes
the paper.

2. Related Works

In the recent years, many prediction models were developed
for solving PM2.5 pollutant issues. Zhang et al. [10] used a
light gradient boosting decision tree model to process the
high dimensional data to predict PM2.5 within 24h based
on the historical datasets and predictive datasets and then
compared it with various models using evaluated metrics
such as Symmetric Mean Absolute Percentage Error
(SMAPE), MAE, and RMSE.

[11]) reported a spatial ensemble model to predict PM2.5
for the Beijing railway station, but it is not reliable for other
locations. Kim et al. [12] reported effects of the indoor PM2.5
pollutant, i.e., asthma attacks in children, based on peak
breath flow rates using deep learning methods’ rule for
predicting respiratory disease risk. Caraka et al. [13]
reported prediction of PM2.5 using the Markov chain sto-
chastic process and VAR-NN-PSO. Using the PM2.5 fea-
ture of higher probability to pass through the lower
respiratory tract, its range can be categorized into no risk
(1-30), medium risk (30-48), and moderate risk (>49) in
Chaozhou and Pingtung for the datasets obtained from
Jan 2014 to May 2019.

Beelen et al. [14] established a multicenter cohort study
in Europe to study the positive correlation between PM2.5
concentration and heart disease mortality during a long time
exposure period to PM2.5 [1, 15]. Tiwari et al. [16] consid-
ered an XGBoost model on a building that utilizes atmo-
spheric data of Velachery and database of the central
control room collected from a commercial station in Tamil
Nadu for predicting air quality management. This model
also considers the highly unstable meteorological parameters
such as relative humidity, wind speed pressure, temperature,
and wind direction of the geographic region.

Bing et al. [17] and Pasha et al. [18] reported a new
model for forecasting air quality index in China using
support vector regression, and the results showed a decrease
in MAPE when there is a robust interaction. Lin et al. [19]
proposed a novel system based on a cloud model granulation
algorithm for air quality forecasting through data explora-
tion in three monitoring localities in Wuhan City with high
accuracy.

Xiao et al. [20] identified a novel hybrid model by com-
bining air mass trajectory analysis and wavelet transforma-
tion to improve the artificial neural network for forecasting
the daily average concentrations of PM2.5. Soh et al. [21] rec-
ognized the data-driven model ST-DNN to predict PM2.5
time series data and other pollutants in seven locations for
only 48 h using real-time Taiwan and Beijing datasets. Heni
et al. [22] and Li et al. [23] used multivariate multistep time
series prediction with random forest models to improve the
performance and to reduce the time complexity of the air
pollutant prediction models.

Regarding the effects of PM2.5 over the last 25 years,
Ameer et al. [4] discussed comparison among various
regression techniques such as decision tree, random forest
gradient boosting, and ANN [24] multilayer perceptron
regression with respect to error rate and processing time
for forecasting air quality in smart cities. In [25], a deep
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learning model consisting of a recurrent neural network with
long-short-term memory is used to predict local 8 h aver-
aged surface ozone concentrations for 72 h based on hourly
air quality and also used meteorological data measurements
as a tool to forecast air pollution values with decreased error
rate.

Deters et al. [26] and Sallauddin et al. [27] considered a
machine learning method based on six years of meteorolog-
ical and pollution data analyses in Belisario and Cotocollao
to predict the concentrations of PM2.5 using wind direction,
its speed, and rainfall levels and then compared it to various
ML algorithms such as BT, L-SVM [28], and ANN regres-
sion models. The high correlation between estimated and
real data for a time series analysis during the wet season con-
firms a better prediction of PM2.5 when the climatic condi-
tions are getting more dangerous or there are high-level
conditions of precipitation or strong winds. Zhao et al.
[29] and Ni et al. [30] introduced a multivariate linear
regression model to achieve short period prediction of
PM2.5, and the parameters included are data on aerosol opti-
cal depth obtained through remote sensing and meteorolog-
ical factors from ground monitoring temperature, relative
humidity, and wind velocity.

The present paper investigated different prediction
models related to the PM2.5 pollutant which are statistically
analyzed. All existing approaches have mostly implemented
so many prediction models such as NN [31], L-SVM (Linear
Support Vector Machines), BT (Boosted Trees), CGM, and
NN (neural network) [26]; deep learning consisting of a
recurrent neural network with long-short-term memory
[25]; decision tree, gradient boosting, random forest,
ANN multilayer perceptron regression [4, 15], and multi-
variate linear regression model [29]; AdaBoost, XGBoost,
GBDT, LightGBM, and DNN [10]; and predictive data
feature exploration-based air quality prediction approach.
In the proposed PM2.5 pollutant prediction, six different
machine learning models have been used, and the results
were compared with those of the above-mentioned exist-
ing models.

3. Machine Learning Models for Predicting
PM2.5 and Forecasting Air Quality

In these proposed machine learning models to predict the
PM2.5 pollutant, meteorological datasets were collected for
24 hours of the day from 1st Jan 2014 to 31st Dec 2019.
The main objective of the proposed models is to apply vari-
ous machine learning models to predict the PM2.5 pollutant
range and its level of air quality in any polluted cities.
Though not more than three or four techniques in existing
models have predicted the PM2.5 pollutant [4, 10, 25, 26,
29], here six different machine learning models such as LR,
RF, KNN, RL, Xgb, and Adab models were implemented to
predict the PM2.5 pollutant with different hyperparameter
tuning to increase the accuracy with reduced error rate.
The present models were initially preprocessed with various
meteorological and PM2.5 pollutant datasets. During the
model creation, the datasets were split as training sets of
70% and testing sets of 30%. When compared with existing

models’ performance, machine learning models achieve a
better performance with minimum error rates.

3.1. Architecture for Machine Learning Models. Figure 1 rep-
resents the machine learning model for predicting the PM2.5
pollutant in the affected cities. Figure 1 consists of three
layers: (1) the first layer is an input layer which has the
PM2.5 pollutant and meteorological datasets for preprocess-
ing and feature extraction, (2) the second layer contains six
different machine learning models which are used to predict
the PM2.5 pollutant along with its working principle, and (3)
the output layer consists of certain steps like training models
and testing models and then the final step to predict the
PM2.5 pollutant range and to forecast its air quality level
among the various categories.

3.2. Flowchart Representation. Figure 2 represents the flow-
chart for predicting the PM2.5 pollutant with the assistance
of machine learning models. Here, the prediction process
was started using real-time meteorological and its PM2.5 pol-
lutant historical datasets. Then, the data were preprocessed
and then feature extracted to remove unwanted data to
obtain cleaned datasets for training models. Then, six differ-
ent models were integrated for training and testing with real-
time data. Then, finally check the prediction of the PM2.5
pollutant range and then proceed further to forecast whether
air quality levels are good or satisfied in order to deploy the
models; otherwise, the models and datasets should be
enhanced again.

3.3. Implementation of PM2.5 Pollutant Prediction Models.
For all the models, performances of training and testing
models were evaluated using metrics such as R2 (equation
(1)), Mean Absolute Error (MAE) (equation (2)), Mean
Absolute Percentage Error (MAPE) (equation (3)), Mean
Square Error (MSE) (equation (4)), and Root Mean Square
Error (RMSE) (equation (5)), and similarly the PM2.5 pollut-
ant was also evaluated.
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3.4. Model Deployment for Forecasting Air Quality. To eval-
uate the PM2.5 pollutant concentration for forecasting air
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Figure 2: Flowchart representations for predicting PM2.5 and air quality forecasting.
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Figure 1: Machine learning model for PM2.5 pollutant prediction and air quality forecasting.
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quality level, equation (6) is used [4].

AQR =
AQRhigh−AQRlow
PChigh−PClow

PC − PClowð Þ + AQRlow, ð6Þ

where AQR is the air quality range, PC is the pollutant con-
centration, PClow is the concentration break point ≤ PC,
PChigh is the concentration break point ≥ PC, AQRlow is the
AQR break point corresponding to PClow , and AQRhigh is
the AQR break point corresponding to PChigh.

4. Results and Analysis

4.1. Experiment Setup. This experiment was carried out using
Jupyter Notebook and a computing system which has a pro-
cessor speed of Intel(R) Core(TM) i5-2450M CPU@2.50GHz
and RAM of 12GB. The proposed machine learning models
are exposed to data cleaning and feature extraction for training
and testing models using Python 3.7.3.

4.2. Details about Meteorological and PM2.5 Datasets. Mete-
orological and PM2.5 historical datasets were collected
(anand-vihar, delhi-air-quality) from the Delhi Pollution
Control Committee (http://aqicn.org) for experimental
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Figure 3: (a) Sample study area map for experimental purpose. (b) Variation among meteorological data.
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purpose only as shown in Figures 3(a), 3(b), and 4. These
datasets include various climatic conditions based on T
(°C), Tm (°C), TM (°C), PP (mm), H (%), V (km/h), VV
(km), and VM (km/h) (Figure 3). The PM2.5 pollutant is
shown in Figure 4. The data was obtained for 24 hours with
a time period of an hour from 1st Jan 2014 (1:00 AM) to 31st

Dec 2019 (24:00 PM), and data sources are stored in CSV file
format. Average PM2.5 samples are stored in the file 2044
∗ 24 = 49056. For a year, 8176 samples (approximately)
are observed, and for an hour, a maximum of two samples
(approximately) is appended depending on climatic condi-
tions. The remaining data are considered to be null values
or improper data which are removed by using data prepro-
cessing techniques. Further information about datasets has
been presented in Table 1.

Using datasets in Table 1, variation of PM2.5i
th daily con-

centration was measured in terms of statistical features such
as mean and standard deviation as shown in Figure 5, where

“N” is the number of samples and “i” is a single sample in
the ith PM2.5 range.

4.3. Statistical Information about Datasets. Table 2 repre-
sents the statistical analysis of both meteorological and
PM2.5 datasets that are considered with various features such
as T , TM, Tm, H, PP, VV, V , VM, and PM2.5. Datasets are
evaluated using statistical features such as the count, mean,
SD, MIN, 25%, 50%, 75%, and MAX. The overall PM2.5 var-
ies from 78 to 824 (μg/m2) for 2014, from 61 to 494 (μg/m2)
for 2015, from 70 to 694 (μg/m2) for 2016, from 71 to 612
(μg/m2) for 2017, from 57 to 538 (μg/m2) for 2018, from
38 to 658 (μg/m2) for 2019, and from 38 to 824 (μg/m2)
for 2014-2019. Based on statistics, the maximum PM2.5 pol-
lutant range is exceeding the default air quality forecasting
limit levels, and this is indicated as “severe” in Table 2. So
in this work, six different machine learning models were
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Figure 4: Overall PM2.5 variation with respect to time series.

Table 1: Meteorological and PM2.5 dataset analysis.

Observed
datasets
(years)

Samples obtained
(from and to, months)

Samples not obtained
(from and to, months)

Total samples
obtained 24 h per day

Mean of PM2.5
per year in μg/m3

SD of PM2.5
per year

2014
01-01-2014; 1:00 AM and 01-12-2014;

24:00 PM
Nil 6360 258 119.3437

2015
01-01-2015; 1:00 AM and 01-12-2015;

24:00 PM
Nil 7584 228 90.30255

2016
01-01-2016; 1:00 AM and 01-12-2016;

24:00 PM
Nil 8136 229 107.5823

2017
01-01-2017; 1:00 AM and 01-12-2017;

24:00 PM
Nil 8616 221 94.87083

2018
Data of all months are available except

for the 7th month
01-07-2018; 1:00 AM and

31-07-2018; 24 PM
7536 215 88.63759

2019
01-01-2016; 1:00 AM and 01-12-2016;

24:00 PM
Nil 8664 261 92.81299
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applied to minimize the PM2.5 pollutant range and are
observed to predict air quality levels in a better way.

4.4. Feature Extraction. Figure 6 represents the pair plot of
feature extraction for meteorological and PM2.5 pollutant
datasets which clear the null values using preprocessing
mean and SD. x- and y-axes represent eight different mete-
orological features such as T , TM, Tm, H, PP, VV, V , and
VM and the PM2.5 pollutant. Figure 7 represents the feature
extraction using regression.

4.4.1. Heat Map for Correlating Coefficient between Features.
Figure 8 represents the heat map to find the cross-
correlation between different meteorological and PM2.5 pol-
lutant features; if values come nearby 1, then it shows a
strong positive correlation; if values come nearby -1, then
it shows a negative correlation; and if values come nearby
0 meaning neutral, it is an independent correlation. Thus,
the heat map is used to remove the unwanted features in
PM2.5 pollutant datasets (i.e., strongly correlated).

4.4.2. Normal Distribution Curve Fitting (NDCF) for PM2.5.
Figure 9 represents the curve fitting using normal distribu-
tion for PM2.5 pollutant datasets. Perfect fit range for the
normal distribution curve is observed to be 0.0085, and this
value can be satisfactorily considered near to 0.01. The x-axis
shows the correlation coefficient features, and the y-axis shows
the dependent feature of PM2.5.

4.5. Comparing NDCF among Machine Learning Models.
Figure 10(a) represents the LR model curve fitting showing
a value of about 0.0085 with the correlation coefficient in
the x-axis and the dependent feature of PM2.5 in the y-axis.
Figure 10(b) represents the KNN model without hyperpara-
meter tuning which shows overfit of the curve while the
curve fitting value is 0.0095 for the KNN model using hyper-
parameter tuning and is shown in Figure 10(c). Figure 10(d)
represents RF models without hyperparameter tuning which
shows overfit of the curve while the curve fitting value is
0.0094 for the RF model using hyperparameter tuning and
is shown in Figure 10(e). Figure 10(f) represents RL models

Table 2: Statistical analysis of both meteorological and PM2.5 datasets (2014 to 2019).

Statistical features T TM Tm H PP VV V VM PM2.5

Count 2044 2044 2044 2044 2038 2044 2044 2044 2044

Mean 23.98728 30.4362 19.60274 66.01761 3.085113 6.75093 4.114335 7.037818 219.8787

SD 2.318939 2.879207 2.268557 14.38204 10.13789 0.637014 2.324433 3.311582 100.0151

MIN 19.1 23.8 13.7 25 0 4 0.2 1.9 38

25% 22.43359 28.50713 18.08281 56.38164 -3.70727 6.32413 2.556964 4.819058 152.8685

50% 22.48728 28.9362 18.10274 64.51761 1.585113 5.25093 2.614335 5.537818 218.3787

75% 25.54097 32.36527 21.12267 75.65358 9.877499 7.177729 5.671705 9.256578 286.8888

MAX 29.9 37.6 24.8 94 132.33 9.2 12.4 22.2 824
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Figure 5: Years vs. PM2.5 mean and SD.
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without hyperparameter tuning which otherwise represents
overfit of the curve while the curve fitting value is 0.0075
for RL models using hyperparameter tuning and is shown
in Figure 10(g). Figure 10(h) represents Xgb models without
hyperparameter tuning which otherwise represents overfit of
the curve while the curve fitting value is 0.0086 for Xgb
models using hyperparameter tuning and is shown in
Figure 10(i). Figure 10(j) represents the curve fitting for
the Adab model with tuning which is observed to have
0.0095 which is a perfect fit model.

4.6. Performance Measures. Table 3 represents the perfor-
mance results of different machine learning models which
are used to predict the PM2.5 pollutant. The results of LR,

RF, KNN, RL, Xgb, and Adab for various performance met-
rics are as follows: for MAE, their values are 55.12, 39.84,
49.13, 55.12, 8.27, and 9.23, respectively; for MAPE, their
values are 2.69, 1.94, 2.40, 2.69, 0.40, and 0.45, respectively;
for MSE, their values are 5157.17, 2980.71, 4889.74,
5157.17, 192.08, and 112.15, respectively; and for RMSE,
their values are 71.81, 54.59, 69.92, 71.81, 13.85, and 10.59,
respectively. From the above results, Xgb, Adab, RF, and
KNN models are considered to achieve better performance
results in all means and then compared to the other models.

Table 4 represents the correlation coefficient determina-
tion in terms of R2 using LR, RF, KNN, RL, Xgb, and Adab.
From Table 4, when the performance results of the training
set value is nearer to one, it is considered to be the better

Figure 6: Feature extraction of PM2.5.
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performance. So the better performance results are KNN
train set and test set values of 1.0 and -0.228, respectively;
Xgb train set and test set values of 0.999 and 0.3072, respec-
tively; and RF train set and test set values of 0.904 and 0.382,
respectively.

4.7. Comparative Analysis

4.7.1. Comparison in Terms of RMSE and MAE. Among all
pollutants, only the PM2.5 pollutant is considered in the
existing Xgb and Adab models [10] for comparison with

Figure 7: Feature extraction using regression.
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proposed models in terms of performance metrics like
RMSE and MAE because other types of models were not
reported in the existing work. In the case of the existing
work, RMSE for Xgb and Adab is observed to be 38.8253
and 38.825, respectively, while MAE for Xgb and Adab is
27.054 and 32.957, respectively; in the case of proposed
models, RMSE for Xgb and Adab is 13.85 and 10.59, respec-
tively, while MAE for Xgb and Adab is 8.27 and 9.23, respec-
tively. On comparing these two data, proposed models
represent better results than the existing work, and regarding
error rate, the existing model shows increased error rates

compared to the proposed model which is represented in
Table 5(a).

In the case of the existing work especially that use the
trajectory model and trajectory with wavelet model to pre-
dict the PM2.5 pollutant [20], 2 days for each monitoring sta-
tion (a, b, c, and d) are considered with RMSE and MAE as
evaluating metrics. But for comparison with the present
model, only one station with one day is considered because
the error rate for the remaining days for other stations is
higher than the proposed value. On comparing these two
data, proposed models (Xgb and Adab) represent better
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Figure 10: Continued.
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results than the existing work, and also regarding error rate,
the existing model shows increased error rates compared to
the proposed model which is represented in Table 5(b).

4.7.2. Comparison in Terms of MAPE. In the case of the
existing paper, MAPE values for Linear-Support Vector
Machines (L-SVM), Boosted Trees (BT), Convolutional
Generalization Model (CGM), and neural networks (NN)
are observed to be 41.8, 44.4, 15.0, and 40.7, respectively
[26], while in the case of proposed models, MAPE values

for LR, RF, KNN, RL, Xgb, and Adab are observed to be
2.69, 1.94, 2.40, 2.69, 0.40, and 0.45, respectively. This result
clearly shows that the proposed models represent better
MAPE with decreased error rates for all the six models when
compared with existing models and is shown in Table 6(a).

The proposed models use 2190 days data for predicting
PM2.5 with better results while the existing VAR-NN-PSO
model [13] shows a MAPE value of 3.57% for 180 days
PM2.5 data in Pingtung and a MAPE value of 4.87% in
Chaozhou. This is shown in Table 6(b).

Table 3: Statistical validation for proposed models using the
following metrics.

S. no Proposed models MAE MAPE MSE RMSE

1. LR 55.12 2.69 5157.17 71.81

2. RF 39.84 1.94 2980.71 54.59

3. KNN 49.13 2.40 4889.74 69.92

4. RL 55.12 2.69 5157.17 71.81

5. Xgb 8.27 0.40 192.08 13.85

6. Adab 9.23 0.45 112.15 10.59
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Figure 10: (a) LR model curve fitting. (b) KNN model without hyperparameter tuning. (c) KNN model using hyperparameter tuning.
(d) RF models without hyperparameter tuning. (e) RF model using hyperparameter tuning. (f) RL models without hyperparameter
tuning. (g) RL models using hyperparameter tuning. (h) Xgb models without hyperparameter tuning. (i) Xgb models using
hyperparameter tuning. (j) Curve fitting for the Adab model with tuning.

Table 4: Statistical validation in terms of correlation coefficient R2.

S. no Proposed models R2 train set R2 test set

1. LR 0.401 0.320

2. RF 0.904 0.382

3. KNN 1.0 -0.228

4. RL 0.4013 0.320

5. Xgb 0.999 0.3072

6. Adab 0.6055 0.4290
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In the case of the existing spatial ensemble model [11],
one location with 4 quadrants is considered for PM2.5 data,
and MAPE values obtained for the 1st, 2nd, 3rd, and 4th quar-
ter are 5.7034%, 13.9070%, 28.7859%, and 9.8086%, respec-
tively. But in the case of the proposed models, data from
all polluted locations are considered for predicting PM2.5,
and it is in a better way than the existing models as shown
in Table 6(c).

4.8. Deployment of the Models. In proposed models for test-
ing, various meteorological data are randomly selected from
datasets like T (25.3), TM (31.6), Tm (22.4), H (74), PP (0),
VV (6.3), V (3.9), and VM (9.4) to predict the PM2.5 pollut-
ant range. For Xgb, KNN, and Adab, the results obtained are
0-18.583μg/m3, 18.583-25.023μg/m3, and 25.023-28.234μg/
m3, respectively, which fall in the category of “good” air
quality levels. Similarly, RF of 28.234-49.032μg/m3 and RL

Table 6

(a) Comparison in terms of MAPE

Proposed models Present MAPE Existing models Existing MAPE

LR 2.69 L-SVM 41.8

RF 1.94 BT 44.4

KNN 2.40 CGM 15.0

RL 2.69 NN 40.7

Xgb 0.40

Adab 0.45

(b) Comparison in terms of MAPE

Proposed models Present MAPE Existing MAPE

LR 2.69

3.57RF 1.94

KNN 2.40

RL 2.69

4.87Xgb 0.40

Adab 0.45

(c) Comparison in terms of MAPE

Proposed models Present MAPE Existing model Existing MAPE

LR 2.69

Spatial ensemble model

5.70

RF 1.94 13.90

KNN 2.40 28.78

RL 2.69 9.80

Xgb 0.40

Adab 2.55

Table 5

(a) Comparison in terms of RMSE and MAE

Proposed models Present RMSE Present MAE Existing RMSE Existing MAE

Xgb 13.85 8.27 33.0947 27.054

Adab 10.59 9.23 38.825 32.957

(b) Comparison in terms of RMSE and MAE

Proposed models Present RMSE Present MAE Existing models Existing RMSE value for 1 day Existing MAE value for 1 day

Xgb 13.85 8.27 Trajectory 28.98 21.52

Adab 10.59 9.23 Trajectory with wavelet 19.75 11.58
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of 49.032-51.334μg/m3 value fall in the category of “satisfac-
tory” air quality levels. In the case of “moderately pollutant,”
air quality levels of 51.334-65.345μg/m3 in LR agree to this.
In the remaining default PM2.5 pollutant ranges like 91-120,
121-250, and 250+, none of the proposed machine learning
models is forecasting air quality levels. Comparing the
models regarding the category of “good” air quality levels,
Xgb comes first followed by KNN and then Adab, which is
shown in Table 7.

5. Conclusions

Air pollution is harmful to both the environment and
human existence. When some substances in the atmosphere
exceed a certain concentration, it results in air pollution.
One of the effective pollution control measures is to predict
PM2.5 and to forecast the air quality. In the proposed
models, the PM2.5 pollutant is predicted using meteorologi-
cal datasets and six different models (LR, RF, KNN, RL,
Xgb, and Adab models) are used for forecasting air quality
levels. The results were evaluated using statistical metrics
such as MAE, MAPE, MSE, RMSE, and R2. The better per-
formance results for correlation coefficient determination
in terms of R2 are KNN train set and test set values of 1.0
and -0.228, respectively; Xgb train set and test set values of
0.999 and 0.3072, respectively; and RF train set and test set
values of 0.904 and 0.382, respectively. Among those pro-
posed models from the results with respect to MAE, MAPE,
and RMSE metrics (8.27, 0.40, and 13.85; 9.23, 0.45, and
10.59; 39.84, 1.94, and 54.59; and 49.13, 2.40, and 69.92,
respectively, for Xgb, Adab, RF, and KNN), it could be obvi-
ous that Xgb, Adab, KNN, and RF are reliable models when
compared to the existing models. The PM2.5 pollutant
(PClow-PChigh) range observed for these models is 0-
18.583μg/m3, 25.023-28.234μg/m3, 18.583-25.023μg/m3,
and 28.234-49.032μg/m3, respectively. It can be concluded
that by using the proposed models, the PM2.5 pollutant can
be predicted; thereby, it can forecast the air quality levels
also in a better way. Finally, it is obvious that this research
is very useful for the society since forecasting air quality
levels acts as an important tool to prevent air pollution by
taking necessary actions and steps to control the pollutants.
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