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A B S T R A C T

Identifying cyber anomalies and attacks in today’s cybersecurity environment is essential. We can solve these 
difficulties by combining artificial intelligence (AL) and machine learning (ML) methods. The specifics of the 
existing security mechanisms and the supply quality define how effective ML-based security systems will be in 
strengthening such measures. Developing a security system to identify unusual activity and classify threats in the 
growing complexity and regularity of attacks is essential. This article provides a successful method to identify 
and classify cyber anomalies. We use a novel method in combination with Stochastic Gradient Boosted 
Distributed Decision Trees (SGB-DDT) with Honeybees Mating Optimisation (HBMO). To improve the detection 
accuracy, we use SGD-DDT, a distributed learning technique that is both highly scalable and effective by 
combining the collective wisdom of several decision trees. The SGB approach’s adaptability and error-learning 
properties make the model less vulnerable to dynamic cyberattacks. The complications of classifying cyber
attacks into different types have prompted this research to propose an enhanced HBMO method. The HBMO 
method aims to improve model performance while reducing processing overhead, which takes inspiration from 
honeybee mating behaviour. This proposed method, SGB-DDT, can accurately identify several categories of 
cyberattacks using the enhanced HBMO method. We assess the proposed method using a large and varied dataset 
of cyberattack incidents from NSL-KDD and UNSW-NB15, encompassing common and uncommon attack types. 
The experiment results show that the SGB-DDT with higher HBMO outperforms traditional ML techniques.

1. Introduction

In recent years, the importance of cybersecurity services and defence 
against various attacks—such as malware, botnets, worms, denial-of- 
service (DoS), and unlawful access—has increased. Massive amounts 
of computer network aberrations resulted in significant losses and 
serious consequences (Sarker et al., 2020). An excellent illustration of 
this is the ransomware attack that occurred in May 2017 and resulted in 
$8 billion in damages to several industries, including education, 
healthcare, banking, and power (Qu et al., 2021). safeguarding Internet 
of Things (IoT) networks and cyber systems Security breaches and 

attacks toward Internet of Things (IoT) networks and cyber systems have 
risen. A smart system that can detect these changes or invasions is 
essential for finding a solution.

Even though many well-known tactics, such as firewalls and 
encryption, are created to block internet assaults, this is of the utmost 
importance. This study’s foremost focus is the area of AI expertise. It 
emphasises the use of security models based on ML in particular. These 
models can become more effective by learning independently from 
security-related data.

Intelligent security services can be created using ML-based security 
models that assess numerous cyberattacks or irregularities and 
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eventually detect or foresee risks (Sarker et al., 2021). The term "mul
ticlass" refers to a challenge involving various connected cyberattacks, 
and "binary class" refers to a situation where abnormalities must be 
detected. Botnet detection (Soe et al., 2020; Hasan et al., 2019), the 
assessment of attacks and anomalies in IoT sensors within IoT environ
ments (Gauthama Raman et al., 2020), the classification of attacks for 
the development of intrusion detection systems, the identification of 
unusual network connections, differentiating between regular traffic 
and attacks, and other related topics have all been the focus of recent 
research. Although different ML techniques are used for various appli
cations, their scope frequently includes investigating differences in the 
significance of security attributes or doing empirical assessments uti
lising a constrained set of security intelligence modelling tools. 
Numerous security solutions can use the abnormal conduct referred to as 
anomalies in the case of unknown attacks and the accompanying model, 
which differs from regular traffic (Sarker et al., 2020). Because of this, 
efficient, intelligent modelling in cybersecurity requires categorising 
connected attacks into various known subcategories, including but not 
limited to DoS, botnets, malware, worms, and the like. The classification 
of anomalies is crucial for spotting strange attacks among routine 
network traffic. Given the complexities described previously, the effec
tiveness of various ML models can vary depending on their capacity to 
extract valuable insights from security-related data. This variation re
sults from the fact that a learning-driven security model’s efficacy might 
change based on the significance of relevant security features and the 
inborn features of the data. Anomalies, well-known or unheard-of attack 
types, and a wide range of security features frequently appear in 
real-world cybersecurity difficulties. As a result, creating a reliable 
classification model and a streamlined feature selection process are 
commonly required for effective intrusion detection systems.

A network and computer security systems are the two critical com
ponents of a traditional cybersecurity framework. Despite developing 
numerous technologies to combat web-based attacks, such as firewalls 
and encryption, an intrusion detection system (IDS) is more effective at 
safeguarding the computer network from external threats. An IDS’s 
primary role is thus to detect and prevent unauthorised computer sys
tems and network activities. Traditional technology, such as firewalls, is 
unsuitable for the job. An intrusion detection system observes and 
evaluates a network or computer system’s operations. Its goal is to 
recognise potential security flaws, including aggressive cyberattack 
tactics and denial-of-service (DoS) attacks. This system identifies, con
firms, and deals with illegal activities within a system, such as in
trusions, changes, or harm (Mohammadi et al., 2019). Differentiating 
between various cyberattack types and unexpected occurrences within a 
network is crucial for improving system security overall. It is also 
necessary to create a potent IDS, which is essential to contemporary 
network security.

GBDT have performed extraordinarily in various classification tasks 
among the many ML methods. However, because of the ever-increasing 
volume of data, traditional GBDT models may encounter difficulties 
processing the enormous amounts of information required in cyberse
curity applications. This restriction necessitates the creation of novel, 
scalable, and effective methods. To address these problems, stochastic 
gradient boosted - distributed decision trees (SGB-DDT), a unique and 
potent solution, combine the benefits of distributed decision trees and 
stochastic gradient boosting. SG-BDDT enhances cyber-attack classifi
cation accuracy and has the scalability to handle large-scale datasets.

HMO is a nature-inspired optimisation method based on the mating 
process of honeybees, which is a highly ordered and efficient event. 
Honeybees utilise various strategies, including waggle dances, to share 
information about suitable mating places and maximise their collective 
decision-making process. The potential of this algorithm resides in its 
capacity to effectively search through complex solution spaces and 
identify optimal solutions by replicating honeybee swarms’ cooperative 
decision-making and communication processes. Effective cyberattack 
modelling challenges are increased by several irrelevant features in 

modern security datasets with extensive security traits and dimensions. 
These additional qualities also pave the way for various concerns, such 
as higher variances that cause data overfitting in tree-based models that 
rely on single pathways, longer calculation and execution times for 
training models, and a lack of model generalisation. Consequently, there 
is reduced accuracy in predicting the rate of attack detection. One of the 
most precise metrics, the accuracy score, demonstrates how well the 
model produces accurate forecasts.

This paper introduces an innovative SGB-DDT method-based security 
approach for detecting anomalies and classifying multiclass cyber- 
attacks. Decision trees have long been acknowledged as powerful tools 
for classification problems because of their capacity to manage 
complicated data structures and interpretability. Combining the com
petencies of Decision Trees with Stochastic Gradient Boosting suggests 
improved accuracy, scalability, and adaptability, making it compatible 
with the actual detection and discouragement of cyber-attacks. The se
curity system processes enormous amounts of data quickly, utilising the 
combined computational power of networked nodes or devices, which is 
one significant advantage of using a distributed framework. By decen
tralising decision-making, the system can handle massive datasets, adapt 
to the ever-changing nature of cyberattacks, and boost accuracy and 
responsiveness.

The main contribution of the study: 

• Develop a comprehensive framework for effective cyber anomaly 
detection and multiclass cyber-attack categorisation by combining 
the strength of SGB-DDT and a novel enhancement to the HBMO 
algorithm.

• The suggested architecture uses the collective wisdom of many de
cision trees to improve detection accuracy using SGB-DDT, a highly 
scalable and distributed learning technique.

• The stochastic gradient boosting technique enables the model to 
adjust and learn from mistakes, strengthening its resistance against 
dynamic cyber-attacks. Due to the complexity of multiclass cyber- 
attack classification, this work provides an improved HBMO method.

• The HBMO method efficiently optimised the selection of significant 
features and hyperparameters, decreased computational overhead, 
and resulted in increased model performance. It was inspired by the 
mating behaviour of honeybees.

• The enhanced HBMO methodology enables the SGB-DDT framework 
to precisely classify cyberattacks across multiple categories.

• The proposed technique is estimated on a large and diverse dataset of 
cyber-attack occurrences from UNSW-NB15 and NSL-KDD, including 
known attack patterns and unique anomalies.

• In standings of recall, precision, and F1-score for tasks involving 
anomaly detection and multiclass cyber-attack categorisation, the 
testing data shows that the upgraded SGB-DDT, driven by HBMO, 
outperforms standard machine learning algorithms.

Following the introduction section, Section 2 discusses the research 
background and present state of the IDS research; then, Section 3 de
livers information about the proposed SGB-DDT and the tree topologies 
employed in MLTs for IDSs; Section 4 presents an analysis of the findings 
from experiments performed on the cybersecurity dataset, along with 
the performance assessment of the final security model; finally, Section 
5 summarises the research work along with its anticipated future work.

2. Literature survey

Zhang et al. (2021) described the best data partitioning technique for 
any network under cyber threats. The data partition considers both inner 
and outside attacks (risk propagation). Under both limited and unlim
ited risk propagation, the likelihood of a data breach and the possibility 
of its recovery are explored for various situations. It is found that the 
optimal partition method can be significantly more affected by risk 
propagation than by external attacks and that unrestricted risk 
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propagation increases cyber risk. Given its significant influence on the 
partitioning technique, the network topology should always be consid
ered. The corruption caused by compromise may call for different par
titioning tactics.

Hasan et al. (2020) framed the interaction between the attacker and 
defence as a two-player game for power systems by accounting for dy
namic cyber-attacks. Two efficient algorithms were developed to iden
tify the worst-case dynamic attack, which maximises the loss of system 
load, and a defence plan, which minimises the loss. Xing (2020) provides 
a recent summary of cascading failure in reliability engineering. 
Cascading failure and the spread of cyber risk are related but not iden
tical application domains. Cascading failure, on the other hand, essen
tially studies physical failure, whereas cyber risk propagation mainly 
examines the failure of the communication/network layer due to virus 
infection.

Sarker et al. (2021) thoroughly analyse the efficacy of several 
ML-centered security techniques using their CyberLearning concept. In 
this method, machine learning drives cybersecurity modelling, empha
sising correlated feature selection. A binary classification model is also 
included in their study to help identify anomalies inside the Cyber
Learning framework. These components combine to produce a multi
class classification system for coding diverse cyber-attacks.

Zhang et al. (2019) proposed a method for detecting dangers in 
cyber-physical systems. Their study used classification models, 
including decision trees, bootstrap aggregations, random forests, and 
k-nearest neighbours. They included an auto-associative kernel regres
sion model in their suggested research to speed up the detection of 
threats. Even though their advice was sound, the results fell below ex
pectations due to technological difficulties.

Ibor et al. (2020) work conceptualised predicting cyberattacks as a 
classification problem. They also introduced a novel technique that 
combines a deep learning architecture with the addition of rectified 
linear units (ReLU) as the activation function within a deep feed-forward 
neural network’s hidden layers. This method uses an iterative layer-wise 
learning technique to pull out critical characteristics from a dataset that 
includes both good and bad network traffic. Notably, the algorithm that 
underlies the model does dimensionality reduction, clustering, and 
early-stage feature selection, producing a set of input vectors known as 
hyper-features. The model’s effectiveness is assessed in a Python envi
ronment using datasets from CICIDS2017 and UNSW_NB15.

Li et al. (2021) advocated studying and completely reviewing the 
standard advancements made in the field of cyber security and investi
gating the problems, benefits, and drawbacks of the offered methods. 
The new descendant assaults are thoroughly discussed. The history of 
early-generation cyber-security techniques and conventional security 
frameworks is discussed. Furthermore, recent developments in cyber 
security, security concerns, and threats are explored. The comprehen
sive review study supplied to IT and cyber security researchers is ex
pected to be beneficial.

According to Furnell et al. (2020), a full explanation of a cyber-attack 
would significantly impact the legal system. This influence would 
guarantee continued awareness of and comprehension of the effects of 
these strikes. Sarker et al. (2021) emphasise that traditional national 
security concerns, which often have more visible characteristics and 
involve identifiable federal or regional players, differ dramatically from 
cyber threats. As a result of this transition, the traditional national se
curity paradigm is becoming obsolete and ineffective.

Mishra (2022) focuses on developing novel Intrusion Detection 
Systems (IDSs) by utilising Genetic Algorithms (GAs) in combination 
with Optimised Gradient Boost Decision Trees (OGBDTs). The study 
employs Enhanced African Buffalo Optimisations (EABOs) and 
OGBDT-IDS for data exploration, preprocessing, standardisation, and 
feature evaluation tasks. The proposed methods significantly enhance 
the detection of cyber intrusions, effectively handling both new and 
previously unseen cases, and surpass traditional machine learning 
techniques in performance. The OGBDT-IDS notably demonstrates the 

highest attack detection rates while offering the fastest prediction times.
Kumar and Sabeeena (2023) introduce a robust method for detecting 

potential cyber-attacks utilising the Gradient Boosting Classifier, a ma
chine learning algorithm renowned for its predictive solid capabilities. 
The approach incorporates advanced data preprocessing, careful feature 
engineering, and stringent model evaluation metrics. Its extensive ap
plications cover sectors such as finance, healthcare, and e-commerce, 
where it serves as a critical defence against data breaches and unau
thorised access.

Hassan et al. (2024) leverage machine learning (ML) techniques to 
analyse network traffic, detect anomalies, and classify activities, ulti
mately enhancing security and performance. The methodology in
corporates logistic regression, decision trees, and ensemble learning 
techniques. The results demonstrate improvements in identifying 
network inefficiencies and classifying traffic, which help reduce delays 
and bottlenecks. ML models offer robust protection against cyber 
threats, increasing user satisfaction and bolstering organisational repu
tation. The research highlights the critical role of ML in network traffic 
analysis.

Alrefaei and Ilyas (2024) introduce a real-time intrusion detection 
system with a PySpark architecture to identify IoT attacks. The system 
leverages machine learning algorithms and utilises the IoT-23 dataset, 
incorporating data preprocessing and feature selection techniques. Re
sults indicate that extreme gradient boosting achieves an accuracy of 
98.39%, while the random forest algorithm surpasses current methods 
with a prediction time of just 0.0311 seconds.

Zhang et al. (2023) suggest a deep capsule convolution neural 
network-based method for automatically identifying and categorising 
different cyber-attacks. The convolution neural network extracts tem
poral characteristics from historical operation status in the delivered 
data packets and spatial correlations between various nodes. The pro
posed structure’s capsules significantly preserve the measurement 
matrix’s topological consistency. The recommended method avoids the 
requirement for models and lessens the impact of ambiguous system 
characteristics on detection effectiveness. The suggested method can 
reach a remarkable 99.97% accuracy in detecting single cyberattacks 
and a 96.25% accuracy in detecting multiple simultaneous cyberattacks, 
according to numerical findings from experiments on the IEEE 39-bus 
test system.

2.1. Limitations of existing system

• Any anomaly detection is susceptible to both false positives and false 
negatives. Accomplishing a balance between these two is difficult 
and can influence the system’s success.

• Skilled attackers might devise attacks that are expressly tailored to 
escape detection systems. These adversarial attacks can exploit flaws 
in detection algorithms, rendering them ineffective.

• Implementing an effective cyber anomaly detection and catego
risation system frequently necessitates large computational re
sources, such as memory and processing capacity. For firms with 
insufficient IT infrastructure, this may not be viable.

• The approach’s scalability may be constrained, particularly when 
working with large and dynamic networks or data streams. Adapting 
the system to increased network traffic might be difficult.

• Anomaly detection systems may detect anomalies from regular ac
tivity but do not always provide context or information about the 
precise attack type or its possible impact.

• Making, implementing, and maintaining an efficient cyber anomaly 
detection and categorisation system can be costly, predominantly for 
smaller firms with limited properties.
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2.2. Problem identification of existing system

• Cybercriminals are always devising new attack methods and strate
gies. Conventional security techniques typically fail to keep up with 
modern threats, leaving businesses vulnerable to new cyberattacks.

• Cyberattacks differ in goal, impact, and techniques. It is difficult to 
classify and categorise these multiclass attacks effectively. Existing 
approaches may lack the graininess required to discern between 
different types of cyber threats effectively.

• Anomaly detection is a severe cybersecurity constituent, yet gaining 
high accuracy while avoiding false positives remains a resolute 
struggle. A continuous experiment must establish a balance between 
sensitivity and specificity.

• The sheer volume and diversity of data generated by network and 
system activity might load security systems. Collecting, analysing, 
and deriving meaningful visions from this data is difficult, especially 
when dealing with large-scale networks and complicated 
environments.

• Real-time monitoring is critical for early threat detection and 
response in today’s related environment. Developing systems that 
can continually pathway network traffic, system behaviour, and user 
actions in real-time is dangerous without cooperating performance.

• Many companies have limited resources and accomplished cyberse
curity specialists. Developing cost-effective solutions that businesses 
with negligible resources can organise is challenging.

3. Proposed system

This section clarifies our security architecture, which uses ML to 
identify potential attacks and detect anomalies. To achieve this, several 
processing steps were required, including the analysis of the security 
dataset, the preparation of raw data, the development of an efficient 
cyber anomaly detection and multiclass cyber-attack classification that 
combines the strength of stochastic gradient boosted distributed deci
sion trees (SGB-DDT) and a novel improvement to the Honeybees Mat
ing Optimisation (HBMO) algorithm, as well as the development of a 
security model. The SGB-DDT method’s block diagram is depicted in 
Fig. 1.

3.1. Exploring security dataset

Security datasets usually comprise various informative pieces 
covering numerous security-related topics and essential information. 
The construction of security models intended to detect anomalies is 
based on these databases. Identifying malicious activity or deviations 
requires a thorough understanding of unprocessed cybersecurity data’s 

fundamental properties and insights into the patterns noticed inside 
security incidents (Sarker et al., 2020). Notably, the widely used 
UNSW-NB15 (Moustafa & Slay, 2015) and NSL-KDD (Tavallaee et al., 
2009) security datasets were utilised to create and test the study’s 
data-centric security model.

Nine different attack types, including Fuzzers, Backdoors, DoS, 
Study, Exploits, Reconnaissance, Generic Attacks, Shellcode, and 
Worms, are covered within the dataset known as UNSW-NB1. It has 45 
qualities and 257,673 occurrences for training and testing purposes. 
While analysing its subject matter, the NSL-KDD dataset emphasises 
Denial of Service (DoS), User-to-root (U2R), Remote-to-local (R2L), and 
Probing Attacks. From a pool of 494,020 instances in the raw data 
source, we have chosen 41 security measures for our empirical study. 
Remembering that a dataset may contain attributes from different cat
egories is essential. The UNSW-NB15 dataset’s security attributes are 
listed in Table 1 with a range of values. Because of this, a key component 
of our research is properly evaluating this data and developing a robust 
security model that can accurately identify the wide range of attacks and 
abnormalities indicated above.

3.2. Secure data preprocessing

Data preparation components that specialise in method adaptation to 
meet the demands of a given dataset include anomaly and attack 
detection, feature encoding, and scaling.

Attacks and anomalies: As mentioned, nine different attack types 
may be found in the UNSW-NB15 dataset. Our study’s multiclass clas
sification model includes each of these distinct attacks. A binary clas
sification model is used to classify anomalies in our dataset, which are 
identified as such. This categorisation model covers four attack types: 
DoS, U2R, R2L, and probing. It is interesting to note that the NSL-KDD 
dataset also classifies these identical attack types as anomalies.

As shown in Table 1, the UNSW-NB1 dataset includes a variety of 
feature types, including nominal, integer, float, timestamp, and binary 
values. Our first step is vectorising any attributes with nominal values to 
align the data with the security model. Although "One Hot Encoding" is a 
common strategy, our study chooses "Label Encoding." The one-hot 
encoding strategy’s significant increase in feature dimensions poses a 
considerable problem. The label encoding technique, in contrast, 
quickly converts feature values into accurate numerical representations, 
which makes it easier to build a machine learning classification model. 
Similarly, the attributes of the NSL-KDD dataset are encoded to generate 
the final security model.

Feature scaling: A critical phase in data preprocessing is feature 
scaling, often known as data normalisation. Notably, the security char
acteristics built into a dataset may differ, showing variations across 
different aspects concerning their data distribution patterns. The dis
tribution of data for the two separate properties, sbyte, and snack, in the 
dataset UNSW-NB15. Consequently, we normalised the range of feature 
values to 0 with a standard deviation of 1 using the data scaling 

Fig. 1. Block diagram of SGB-DDT method.

Table 1 
UNSW-NB15 dataset features.

Feature Name Value Type Feature Name Value Type

ct_srv_src Integer sport Integer
Stcpb Integer res_bdy_len Integer
Swin Integer Dpkts Integer
Spkts Integer ct_ ftp_cmd Integer
trans_depth Integer dwin Integer
Ackdat Float ct_srv_dst Integer
Swin Integer dwin Integer
is_ ftp_login Binary Dpkts Integer
Smeansz Integer dmeansz Integer
Sload Float Dload Float
Spkts Integer is_sm_ips_ports Binary
Srcip Nominal state Nominal
Proto Nominal dtcpb Integer
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approach Standard Scaler.
Data splitting: Data splitting is crucial in our effort to develop 

learning-based security modelling. The rationale is that a bad data 
partitioning foundation could support a good security model. Our initial 
stage entails analysing the input data from diverse sources to develop an 
equitable model and assessment process. A k-fold cross-validation pro
cess is used to achieve this segmentation. When employing the k-fold 
cross-validation method, the previous section’s input data is arbitrarily 
separated into k distinct, mutually exclusive "folds," represented by the 
letters d1, d2,..., dk. There are about equal numbers of data instances in 
each fold. The task must be finished by the model in k iterations. Except 
for di, we use the data instances from each fold as the training dataset 
when creating the security model in iteration i. I use di as the testing 
dataset for each iteration of the evaluation. The model’s final output 
takes the average result into account.

3.3. Stochastic gradient boosting with distributed decision trees

To improve the cybersecurity system’s overall performance, we 
propose combining Distributed Decision Trees (DDT) and Stochastic 
Gradient Boosting (SGB), a potent ensemble learning technique. While 
DDT facilitates parallel processing and scalability over distributed 
computer resources, SGB addresses overfitting and generalisation con
cerns (Ye et al., 2009).

3.3.1. Distributed training data
The parallelisation of our decision tree training method necessitates 

disseminating training data across numerous computers. Our focus is on 
techniques that efficiently partition the data among many devices 
instead of merely copying the data to conserve memory. Several 
distributed tree construction methods now scale distributed tree con
struction in terms of memory utilisation and training efficiency. Our 
research used vertically and horizontally partitioned strategies to 
distribute our data.

3.3.2. MapReduce implementation
This strategy tried to align the issue with the MapReduce paradigm’s 

guiding principles. Each mapper would gather enough information to 
create a tree, and then by summing the various attribute-value pairs, 
each would determine the probable cut points. A thorough explanation 
of the mapper and reducer code used to find potential split locations is 
provided by Algorithm 1 in this section. The central component, desig
nated as(e,v), is a combination of features f and v. This is accompanied 
by the equivalent value (ki,wi)created using the continuing residual and 
the sample i weight. These elements work together to create the thor
ough statistical framework underpinning the mapping procedure. For 
each key, weight and residual sums build up during the reduction stage. 
A single traversal through the arranged cutpoints leads to achieving the 
globally optimal cut using the generated output file.

The MapReduce technique speeds up choosing the best cutpoint for 

each feature by reducing the sample count to match the number of 
distinct sample values. This method scales incredibly well when applied 
to datasets with boolean or categorical attributes. After training a full 
tree, two more map operations are required: one to apply the current 
ensemble and the other to divide the data across the nodes. The pseu
docode displayed in Algorithm 2 is used to update the residuals for each 
sample. The partitioner publishes each sample to a distinct output file 
depending on which side of the divide it falls. It is not included because 
creating the applier code in MapReduce is straightforward.

Only a few lines of code are needed for the MapReduce imple
mentation. However, a sizable system overhead appears as we use HDFS 
for communication and create numerous files during node split. 
Hadoop’s substantial communication load currently makes it unsuitable 
for algorithms of this kind. In the following parts, we focus on our MPI 
strategy because of the significant communication overhead.

3.3.3. Learning a distributed regression tree with MPI on hadoop
To improve communication, we take a different approach, 

substituting Hadoop streaming MPI for MapReduce as our second op
tion. Since vertical partitioning reduces the communication costs asso
ciated with computing a tree node, we chose it for this implementation. 
Unless otherwise stated, we shall use vertically partitioned data for the 
remainder of the study. Load balancing was done to cut down on the 
amount of time spent waiting for stragglers.

3.3.3.1. MPI on hadoop. We changed OpenMPI to launch, utilising 
Hadoop streaming to take advantage of existing Hadoop clusters. Our 
method’s main advantage is that we may leverage existing clusters 
instead of setting up a new MPI cluster, which saves time and money. 
The techniques needed to overcome technological obstacles include 
locating and getting in touch with the master node, starting jobs without 
SSH, and fault tolerance.

3.3.3.2. Finding the best split for a node. Among all possible splits for the 
featureDi,j, where the featurei ∈ E is a member of the set of all features 
(E), the best split for a node is the one that yields the most significant 
gain (d).

Each machine in the vertical partitioning context can access only the 
data required to establish precise local divisions Gʹ

i,jat a particular seg
mentation point j regarding featurei ∈ Es. Every machine in the feature 
spaceEL is dedicated to managing a specific sector. 

Gʹ
i,j = argmaxi,j

{
gain

(
Di,j

)}
(1) 

Each machine in the network selects the most advantageous benefit 
from its collection of features. The remaining machines are then 
informed of this discovery via an MPI broadcast. When considering the 
averaged local splits acquired from each machine, the split G∗

i,jassociated 
with the dividing pointdʹ

i,j that delivers the maximum gain is evaluated 
to determine the overall optimum splitGʹ

i,j. 

Algorithm 1 
Aggregating candidate splits.

map(key, value): 
E ⇐ set of features 
sample ⇐ split(value, delim) 
for e in E do key = (e, sample[e]) 
value = (sample[residual], sample[weight]) 
emit(key, value) 
end for 
reduce(key, values): 
residual_sum ⇐ 0 
weight_sum ⇐ 0 
for v in values do 
residual_sum ⇐ residual_sum + v.residual 
weight_sum ⇐ weight_sum + v.weight 
end for emit(key, (residual_sum, weight_sum))
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G∗
i,j = argmaxi,j

{
gain

(
dʹ

i,j

)}
(2) 

Every machine knows the optimum global division because the di
vision characteristic has been stored in memory. Each machine then 
divides the samples, after which it delivers the precisely updated post- 
split indices. After that, each machine is waiting.

3.3.3.3. Partitioning the data. After learning a split point, data are 
divided into two subgroups for classic decision tree construction. When 
using distributed partitioning, only one computer has the feature to 
partition the dataset in memory. Because of this, the system can only 
partition the data with the best split, which then updates the other 
workstations.

The training data for each stochastic GBDT tree is initially selected 
randomly. Since the gradient of the loss function serves as the target for 
each sample in the next tree, we need the current score for each sample 
in the training set while boosting. This presents a complicated issue in 
the distributed instance since we must apply the present ensemble on 
samples with features dispersed across numerous workstations. We 
adjust our partition technique to consider all samples in the training set 
while maintaining the incremental score index to fix the problem. 

scoren(y) = scoren− 1(y) +
∑Jn

j=1
δjnI

(
y ∈ Rjn

)
(3) 

When the linked region’s response δjnis in the regionRjn, the indicator 
function, I, and the sample score from training the priorn − 1 trees all 
affect the score at tree n. It is feasible to gradually update the score index 
as new nodes are trained so that the solution matches the residual mean 
of the samples found in the inner nodes of the tree. The sample rate is 
negatively correlated with each tree’s additional overhead.

3.3.3.4. Finding the best node for splitting. A similar technique that 
separates the leaf node with the most significant gain from the others is 
used to create greedy trees. Although there is no guarantee that this will 
result in the best tree, it is an effective linear process and uses the same 
strategy as our non-distributed variant.

Other tree-growing techniques, like growing by level, can be 
implemented with more parallelism, but we choose to employ the 
greedy approach to produce identical trees.

3.3.4. Stochastic gradient boosting with distributed decision trees
The structure of the additive regression model known as gradient- 

boosted decision trees consists of many weak decision tree learners. 

bo(y) =
∑o

i=1
δibi(y) (4) 

where δistands for the pace of learning. In stochastic gradient boosting, a 
subsample of the training data is used to train each weak learnerbi(y).

The gradient of the loss functionL(xi, si), with the parameters 
xitypically being the true label of the sample and the score si typically 
beingsi = Bo− 1

(
yi
)
, is the typical targetti of a sample yifor the k-th tree. 

The loss function could be in the form of least squares or a more 
specialist function.

A special issue arises when distributed decision trees are trained 
using data spread over numerous nodes. We must keep track of the 
sample results while training or collecting feature values from distant 
devices. This is required since the ensemble’s training data ensemble’s 
loss function depends on the scores of each sample. Our solution uses the 
latter to reduce machine-to-machine communication. Consequently, we 
change our applier function during training to be 

Bo(y) = so(y) (5) 

where so(y) = 0and so(y)is the index specified in Section 3.3.4.3. The 
next step is boosting, as demonstrated below: 

1. TSohe training data will be randomly sampled with replacement
2. to obtain the subset.
3. Ensure that the goal kiof examples iSos set to ki = L

(
xi,so

(
yi
))

wherexi 
the sample’s true label is.

4. With the samples
(
yi,ki

)
, whereyi ∈ So, train the k-th tree,bo(y)

3.4. Honeybees mating optimisation (HBMO)

A few thousand workers, a few hundred drones, and one or more 
long-living queens make up a typical honeybee colony. The ’royal jelly’ 
is only given to the queen bee. Due to the queen bee’s unique diet, she is 
more significant than any other bee in the colony. The drones are in 
charge of giving sperm to the queen. A drone’s demise occurs after 
mating. Worker bees are exceptionally skilled at taking care of broods. 
Eggs can be fertilised or not to form a brood. The former group may 
produce future queens or workers, whilst the latter may produce drones. 
The queen(s) mate throughout their flight away from the nest. During 
this trip, the drones accompany the queen and follow her; a select 
number are allowed to mate in midair. The spermatheca gathers sperm 
after each mating, creating the colony’s genetic storage facility. When 
she lays fertilised eggs, the queen occasionally chooses a blend of sperm 
from this pool to fertilise an egg. When the queen’s energy reaches a 
certain level, her flight is over, and she returns to the nest (Maheri et al., 
2017).

Each worker can be considered a heuristic function in charge of 
maintaining and improving a group of broods while constructing the 
optimisation strategy. As the research continues, an annealing function 
can be used to represent the likelihood of a drone mating with a queen. 

Prob(Z,M) = e−
Δ(f)
S(t) (6) 

In this case, S(t) denotes the queen’s velocity at a specific time t. The 
symbol represents the absolute fitness gap between the drone M and the 
queen ZΔ(f). The possibility of drone M successfully mating with queen 
Z is also indicatedProb(Z,M). Notably, the queen mates more quickly and 
is more likely to do so when the drone is as fit as the queen or when she is 
just starting her mating flight. In contrast to Simulated Annealing, Eq. 
(6) solely relies on the queen’s speed, energy, and drone energy to es
timate mating chance during each trip. Simulated Annealing takes into 
account comparative threshold considerations. The energy and speed of 
the queen randomly decreasing upholds the method’s stochastic core. 
The speed and energy of the queen decrease with each shift in spatial 
direction, as shown by the following equations: 

Algorithm 2 
Partitioning a Node n.

map(key, value): 
sample ⇐ split(value, delim) 
if sample[n.feature] < n.splitpoint then 
residual = sample[residual] + n.left_response 
else 
residual = sample[residual] + n.right_response 
end if 
emit(key, value)
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S(t +1) = α × S(t) (7) 

E(t +1) = E(t) − χ (8) 

E(t) is the energy lost between 0 and 1 after each transitionα. The 
valueχ is given to the algorithm. In this study, χit is purposefully set at 
0.01 for all occurrences, and the energy content of the queen during each 
trip varies at random within the range [0, 1]. Since the energy content 
determines when to stop each mating excursion, the valueχ substantially 
impacts how EHBMO (Extended Honey Bee Mating Optimisation) con
verges. Smaller valuesχ could cause the convergence to be slowed down, 
while larger values could cause the flights to end with an incomplete 
spermathecal.

Individual queens’ spermatheca capacity, energy reserves, and ge
netic makeup can vary. Because of this, the queen’s energy and speed are 
randomly initialised before each mating flight. A genotype and a genetic 
marker serve as a representation of a drone in the algorithm. All drones 
are haploid by nature. Therefore, half of the genes can be randomly 
marked with a genotype marker while the other remains unmarked. 
Only the unmarked genes, in this instance, produce sperm that is used 
randomly during mating.

The drones are chosen depending on how well they mate with the 
queen during each cross-over flight. These drones are a collective of 
changing structures that strive for optimal configuration. These specially 
chosen drones are kept and used to produce and enhance broods. The 
number of drones, or "Max Sperm," refers to the extreme amount of trial 
constructions that can be kept in the spermathecal.

To improve the genetic makeup of the progeny, the work
ers—representing a variety of heuristics—work. Overall fitness is 
influenced by the genetic makeup that determines how quickly the kids 
will improve. The drone’s genes are reproduced into the genetic 
composition of the progeny during development, while the queen’s 
genes account for the remaining genes. The fitness of the resulting ge
netic composition is assessed by assessing the value of the objective 
function and its normalised equivalent within the genetic makeup of the 
young ones. A brood only has one genotype; it should be acknowledged. 
The following are the main steps of the HBMO algorithm. 

1) Following the creation of the initial population at random, the 
leading queen, which represents the ideal member, starts her mating 
flight. Throughout the flight, she compiles the spermatheca (a list of 
drones) by probabilistically choosing the drones. The next step is to 
randomly select a drone from the list to start a brood.

2) New broods (test solutions) are produced by fusing the drone and the 
queen’s genotypes.

3) Broods (trial solutions) are searched locally using workers 
(heuristics).

4) The degree of improvement made on the brood is used to gauge the 
fitness of the workers.

5) The stronger broods take the place of the weaker queens.

One structural analysis is performed each time the fitness of a drone, 
brood, or queen is evaluated. The number of structural inspections in 
each flight varies depending on the number of bees counted, such as the 
number of drones travelling to the queen and broods.

3.5. Advantages of the proposed method

• HBMO, in combination with Stochastic Gradient-Boosted Distributed 
Decision Trees, enhances the overall accuracy of cyber anomaly 
detection and cyber-attack classification, resulting in more depend
able security measures.

• This technique can adequately classify multiclass cyber-attacks, 
providing for a thorough awareness of varied threats, which is crit
ical in current cybersecurity.

• The system becomes more resistant to false positives and negatives, 
lowering the odds of overlooking serious threats or triggering un
needed warnings.

• The stochastic gradient boosting method expedites potential cyber- 
attack responses by increasing detection efficiency.

• The system is well-suited to dynamic and ever-changing cyberse
curity landscapes because HBMO and Stochastic Gradient Boosted 
Distributed Decision Trees can adapt to developing cyber threats and 
anomalies

4. Result and discussion

This result section discusses classifying incursions into distinct 
groups and identifies cyber anomalies, then describes the evaluation 
metrics, the environmental setup, and the final result of the system-to- 
security system

4.1. Experimental setup

The proposed method is evaluated through an experiment using a 
Windows 10 computer with 16 GB of RAM and an Intel Core i5–10210U 
CPU. The experiment uses the datasets UNSW-NB15 and NSL-KDD for 
testing purposes. A variety of significant libraries, including matplotlib 
(version 3.3.2), NumPy (version 1.19.2), pandas (version 1.1.3), sci-kit- 
learn (version 0.23.2), Keras (version 2.6.0), and TensorFlow (version 
2.6.0), are utilised with Spyder Python, notably version 3.8.

4.2. Evaluation Metrics

As shown in the following image, the efficiency of our security 
technique in classifying multiclass intrusions and spotting cyber ab
normalities is determined by computing the final results using metrics 
including precision, recall, f-score, accuracy, and execution time.

The accuracy score’s precision outweighs the value of the perfor
mance evaluation criteria listed above: true negatives, false positives, 
true positives, and false negatives must be calculated. 

• TP (true positive): A situation where the security model successfully 
categorises or recognises advantageous threats or abnormalities.

• TN (true negative): A circumstance in which the security model 
successfully detects or categorises threats or anomalies as 
unfavourable.

• FP (false positive): A situation where the security model incorrectly 
recognises or classifies a particular group of threats or abnormalities.

• FN (false negative): A case in which the security model incorrectly 
identifies or fails to detect a negative class of threats or 
abnormalities.

4.2.1. Precision analysis
The classification precision (detection rate) is defined as the per

centage of relevant instances (e.g., attacks) among the retrieved in
stances. 

Precision =
TP

TP + FP
(9) 

In Fig. 2 and Table 2, the SGD-DDT technique’s precision is con
trasted with other widely used approaches. The graph shows how the ML 
approach performs better in terms of precision. In comparison to the 
SGD-DDT model, which has a precision of 93.425% for 100 data, the 
Adaptive Boosting, eXtreme Gradient Boosting, Logistic Regression, 
Random Forest, SVM, and RNN models have precision values of 
89.213%, 87.314%, 85.314%, 91.213%, 85.132% and 90.023% 
respectively. The proposed SGD-DDT model has a precision of 95.692% 
under 500 data compared to the models for Adaptive Boosting, eXtreme 
Gradient Boosting, Logistic Regression, Random Forest, SVM and RNN, 
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which have precision values of 90.728%, 88.043%, 86.552%, 91.926%, 
94.87% and 94.93%.

4.2.2. Recall analysis
The proportion of positive examples that are correctly labelled is 

known as the classification recall (sensitivity); 

Fig. 2. Precision Analysis for SGD-DDT method.

Table 2 
Precision analysis for SGD-DDT method.

Number of data Adaptive Boosting Logistic regression eXtreme Gradient Boosting Random Forest SVM Deep learning method (RNN) SGD-DDT

100 89.213 87.314 85.314 91.213 85.13 90.023 93.425
200 89.526 87.728 86.819 91.454 88.65 92.18 93.928
300 90.029 88.415 85.839 92.637 91.23 93.24 94.225
400 90.426 88.917 86.063 92.038 93.64 93.82 94.627
500 90.728 88.043 86.552 91.926 94.87 94.93 95.692

Fig. 3. Recall Analysis for SGD-DDT method with existing systems.
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Recall =
TP

TP + FN
(10) 

In Fig. 3 and Table 3, the SGD-DDT technique’s recall is contrasted 
with other widely used approaches. The graph illustrates how the ML 
approach enhances recall performance. Adaptive Boosting, eXtreme 
Gradient Boosting, Logistic Regression, Random Forest, SVM and RNN, 
for instance, have recall values of 79.017%, 87.435%, 84.526%, 
81.526%, 85.234% and 89.567% respectively. In contrast, the SGD-DDT 
model has a recall value of 90.324% for 100 data. The proposed SGD- 
DDT model has a recall value of 93.028% under 500 data, as opposed 
to recall values of 81.242%, 89.536%, 86.435%, 83.628%, 89.567% and 
90.856% for the Adaptive Boosting, eXtreme Gradient Boosting, Logistic 
Regression, Random Forest, SVM and RNN, respectively.

4.2.3. F-score analysis
The mean score that incorporates recall and precision (i.e., false 

positives and false negatives are utilised) is known as the F-score. 

F − Score = 2((Precision ∗Recall) /Precision+Recall)) (11) 

In Fig. 4 and Table 4, the SGD-DDT technique’s f-score contrasts with 
other widely used approaches. The graph shows how the ML approach 
performs better with the f-score. For instance, the Adaptive Boosting, 
eXtreme Gradient Boosting, Logistic Regression, Random Forest, SVM 
and RNN models have f-scores of 80.627%, 81.928%, 83.928%, 
84.627%, 85.736% and 86.003% respectively. In contrast, the SGD-DDT 
model has an f-score of 87.918% for 100 data. The proposed SGD-DDT 
model has an f-score value of 89.516% under 500 data, compared to 
the Adaptive Boosting, eXtreme Gradient Boosting, Logistic Regression, 
Random Forest, SVM and RNN models, with f-score values of 81.324%, 
84.563%, 82.536%, 86.314%, 86.897% and 87.753%, respectively.

4.2.4. Accuracy Analysis
Accuracy is determined by the ratio of correctly classified records to 

all records or counts, as stated in Eq. (12). 

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(12) 

In Fig. 5 and Table 5, the accuracy of the SGD-DDT technique is 
contrasted with that of other widely used approaches. The graph shows 
how the ML approach performs more accurately and efficiently. Adap
tive Boosting, eXtreme Gradient Boosting, Logistic Regression, Random 
Forest, SVM and RNN models, for instance, have accuracies of 91.029%, 
93.029%, 94.910%, 96.314%, 96.879% and 97.005% for 100 data, 
however the SGD-DDT model has a value of 97.415%. The proposed 
SGD-DDT model has an accuracy of 98.718% under 500 data, compared 
to the accuracies of 91.902%, 94.028%, 95.829%, 96.615%, 97.164% 
and 98.567% for the Adaptive Boosting, eXtreme Gradient Boosting, 
Logistic Regression, Random Forest, SVM and RNN models, respectively.

4.2.5. False alarm rate analysis (FAR)
The false alarm rate refers to the number of incorrectly labelled 

routine occurrences the system detects. The following formulas can be 
used to compute these measures. 

False Alarm Rate =
FP

TN + FP
∗ 100% (13) 

Fig. 6 and Table 6 display a FAR comparison of the SGD-DDT strategy 
with other well-known approaches. The ML technique has an enhanced 
performance with reduced FAR, as shown in the graph. For instance, the 
FAR value for the SGD-DDT model is 21.029% for 100 data, compared to 
the FAR values of 33.029%, 30.213%, 27.342%, 24.782%, 24.678% and 
23.879% for the Adaptive Boosting, eXtreme Gradient Boosting, Logistic 
Regression, Random Forest, SVM and RNN models, respectively. The 
SGD-DDT model performs effectively on various data sets with low FAR 
values. Similarly, the FAR with 500 data for the SGD-DDT is 23.256%. 
Still, for the Adaptive Boosting, eXtreme Gradient Boosting, Logistic 
Regression, Random Forest, SVM and RNN models, it is 36.829%, 
32.938%, 29.782%, 26.452%, 25.546% and 22.347%, respectively.

4.2.6. Classification Time Analysis
The duration it takes for a system or algorithm to categorise and 

identify potential cybersecurity threats or attacks into different pre
defined classes or categories based on their characteristics and patterns 
is called classification time in the security approach to detect cyber 
anomalies and multiclass cyber-attack classification. This procedure 
enables security experts to respond rapidly to possible dangers and 
effectively defend against cyber-attacks (Table 7).

Fig. 7
The proposed SGB-DDT method showed a notable enhancement in 

accuracy and performance measures when compared to conventional 
and deep learning methods, with an accuracy rate of 98.718%, precision 
of 95.692%, recall of 93.028%, and an F-score of 89.516%. These 
measures indicate that the SGB-DDT approach successfully identifies 
cyber irregularities and categorises different forms of cyber assaults. The 
comparison demonstrates that it surpasses classical machine learning 
techniques, which usually attain accuracies between 85% and 95%. In 
contrast, deep learning methods can achieve similar results but usually 
demand greater computational resources and tuning. The SGB-DDT 
method better balances accuracy and resource efficiency, making it 
particularly beneficial for organisations with minimal IT infrastructure. 
The technique, designed for efficient processing of large amounts of 
data, uses distributed computing to improve scalability, an essential 
factor in the ever-expanding field of cybersecurity with increasing data 
size and complexity. Its structure enables fast data processing for real- 
time monitoring and threat detection. Moreover, incorporating the 
Honeybees Mating Optimisation (HBMO) algorithm improves the 
method’s resilience to adversarial attacks, an essential characteristic in 
an environment where attackers constantly change their tactics to avoid 
being detected. The SGB-DDT method also performs better in real-time 
detection abilities, which are crucial for immediate threat reaction, 
enabling constant surveillance of network traffic and system activity to 
mitigate the chances of substantial harm.

The Stochastic Gradient Boosting (SGB) algorithm and the Distrib
uted Decision Trees (DDT) framework impact the SGB-DDT method’s 
computational complexity. The SGB complexity is approximately O(T * 
N * D), where T is the number of trees, N is the number of training 
samples, and D is each tree’s depth. The DDT framework improves ef
ficiency by using parallel processing, which reduces overall computa
tional time. As a result, the overall complexity is O(T * N * D), with 
actual performance varying depending on the implementation, dataset 
size, and computational resources available. The distributed nature of 
DDT effectively reduces computational burdens, making the SGB-DDT 

Table 3 
Recall analysis for SGD-DDT method.

Number of data Adaptive Boosting Logistic regression eXtreme Gradient Boosting Random Forest SVM Deep learning method (RNN) SGD-DDT

100 79.017 87.435 84.526 81.526 85.234 89.567 90.324
200 80.425 88.920 84.738 81.627 87.564 89.876 90.627
300 80.728 87.231 85.324 82.938 88.567 90.045 91.728
400 80.926 88.926 85.627 82.536 89.123 91.234 91.526
500 81.242 89.536 86.435 83.628 90.258 90.856 93.028
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method appropriate for large-scale cybersecurity applications.

5. Conclusion

This work introduces the idea of "CyberLearning," which includes a 
multiclass classification model intended to recognise various kinds of 
cyberattacks and a binary classification model for identifying anomalies. 
Our initial focus was on investigating the impact of several security 
features to construct a robust machine learning-driven model employing 
a careful feature selection process. We created these thorough security 
models by fusing famous machine learning classification approaches 
with deep learning methodologies, notably using artificial neural net
works. After that, we thoroughly assessed the performance of these 
learning-centric security models. In this result analysis, we performed 
tests with data from the security datasets. We strongly believe that our 
experimental research and analysis findings will be helpful in theoretical 
and specialised settings. These discoveries can be used to build data- 
oriented solid security models and systems supported by ML ap
proaches. With the following testing results: precision of 95.692%, recall 
of 93.028%, f-score of 89.516%, accuracy of 98.718%, False alarm rate 
Analysis of 23.256%, and Classification time 1.526ms, the recom
mended framework SGB-DDT demonstrates impressive performance. 
Future studies will apply the model to anticipate the different sorts of 
cyber-attacks and assess their effectiveness with other security attribute 
variables. Deep learning methods for supervised and semi-supervised 
machine learning responsibilities will be addressed to boost 

classification accuracy and shorten the training and testing phases for 
cyber-attack classification models.
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Fig. 4. F-Score Analysis for SGD-DDT method.

Table 4 
F-score analysis for SGD-DDT method.

Number of data Adaptive Boosting Logistic regression eXtreme Gradient Boosting Random Forest SVM Deep learning method (RNN) SGD-DDT

100 80.627 81.928 83.928 84.627 85.736 86.003 87.918
200 80.213 81.627 83.526 84.029 85.943 86.456 87.415
300 80.917 82.425 83.213 85.324 86.078 86.978 88.341
400 81.526 82.938 83.029 85.728 86.347 87.123 88.617
500 81.324 82.536 84.563 86.314 86.897 87.753 89.516
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Fig. 5. Accuracy analysis for SGD-DDT technique.

Table 5 
Accuracy analysis for SGD-DDT method.

Number of data Adaptive Boosting Logistic regression eXtreme Gradient Boosting Random Forest SVM Deep learning method (RNN) SGD-DDT

100 91.029 93.029 94.910 96.314 96.879 97.005 97.415
200 91.526 93.728 95.021 96.911 96.912 97.385 97.615
300 92.638 94.536 95.426 97.415 96.976 97.643 97.017
400 92.918 93.626 96.542 97.718 97.005 98.124 98.415
500 91.902 94.028 95.829 96.615 97.164 98.567 98.718

Fig. 6. False alarm rate Analysis for SGD-DDT method.
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