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Abstract 

This is study of the unsteady first order chemical reaction effects on 

radiative flow past a uniformly accelerated isothermal infinite vertical plate 

with radiation and uniform mass diffusion with heat source and surface 

temperature are investigated. The governing nonlinear partial differential 

equations have been reduced to the coupled nonlinear ordinary differential 

equations by using perturbation technique. The influence of the various 

interesting parameters on the flow velocity, temperature and concentration 

discussed through graphs in detailed. This model finds applications in solar 

energy collection systems, geophysics and astrophysics, aero space and also 

in the design of high temperature chemical process systems. 
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1. Introduction 

Materials of nonlinear liquids have been studied in the technological and engineering processes. 

Examples of non-Newtonian fluids are ketchup, paints, clay coating, toothpaste, cosmetic products, 

shampoos, sugar solutions, colloidal suspension solutions, silly putty, exotic lubrications detergents, 

condensed milk etc. Such fluids are used as a base liquid in numerous applications including 

plasma, lubrications of gases, food mixing, lubrications of oils, cooling of nuclear reactors and 

pseudoplastic liquids. Non-Newtonian liquids have gained considerable attention in physiology, 

pharmaceutical products, industry, biosciences, engineering and many others. Various models are 

developed to deliberate different characteristics of nonlinear liquid. Most of the studies dealing with 

transport phenomena are based on presuming that the fluid is incompressible and viscous, where the 

mass density is a constant quantity, and the velocity does not depend on the mass density. Pressure 

in the incompressible fluid flow model is not a thermodynamic state variable, but simply a force in 

the linear momentum balance equation. Such an easy rheological model for the fluid is suitable for 

modelling of slow flows [1-12]. 

 

In light of the previously conducted studies, a mathematical model is presented here to better 

understand the effects of a chemical reaction an optically thin radiating viscous incompressible non-

Grey fluid flows naturally through an impulsively begun infinite vertical plate encased in a porous 

medium with ramped wall temperature, with ramped plate velocity and chemical reaction. The plate 

is accelerated for a limited period and then travels with uniform velocity.  Chemical reactions can 

be codified as either heterogeneous or homogeneous processes. This depends on whether they occur 

at an interface or as a single phase volume reaction. In well-mixed systems, the reaction is 

heterogeneous, if it takes place at an interface and homogeneous, if it takes place in solution. In 

most cases of chemical reactions, the reaction rate depends on the concentration of the species 

itself. A reaction is said to be of first order, if the rate of reaction is directly proportional to the 

concentration itself [13-24].
 

 

The study of flow problems, which involve the interaction of several phenomena, has a wide range 

of applications in the field of science and technology. One such study is related to the effects of 

MHD free convection flow, which plays an important role in agriculture, engineering and petroleum 

industries. The problem of free convection under the influence of magnetic field has attracted the 

interest of many researchers in view of its application in geophysics and astrophysics. In many 

situations there may be an appreciable temperature difference between the surface and ambient 

fluid. These necessities the consideration of temperature dependent heat sources or sinks which may 

exert strong influence on the heat transfer characteristics. The study of heat generation or absorption 

in moving fluids is important in view of several physical problems, such as fluids undergoing 

exothermic or endothermic chemical reactions [25-42].
 

 

Hence, it is proposed to study the first order chemical reaction on unsteady flow past a uniformly 

accelerated isothermal infinite vertical plate with heat and mass transfer, in the presence of thermal 

radiation. The dimensionless governing equations are solved using the perturbation technique. The 

solutions are in terms of exponential and complementary error function. Such a study found useful 

in chemical process industries such as wire drawing, fibre drawing and food processing and 

polymer production. 

 

2. Formulation of the problem 

 

We consider unsteady radiative flow of a viscous incompressible fluid past a uniformly accelerated 

isothermal infinite vertical plate with uniform mass diffusion in the presence of chemical reaction 

with heat source has been considered. Here the unsteady flow of a viscous incompressible fluid 

which is initially at rest and surrounds an infinite vertical plate with temperature T  and 

concentration C .  The x-axis is taken along the plate in the vertically upward direction and the y-

https://www.sciencedirect.com/topics/engineering/process-engineering
https://www.sciencedirect.com/topics/engineering/cosmetic-product
https://www.sciencedirect.com/topics/engineering/colloidal-suspension
https://www.sciencedirect.com/topics/engineering/bioscience
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axis is taken normal to the plate. At time 0t  , the plate and fluid are at the same temperatureT . 

At time 0t  , the plate is accelerated with a velocity
3

0u t
u




  in its own plane and the temperature 

from the plate is raised to 
w

T w and the concentration levels near the plate are also raised to 
w

C . It is 

assumed that the effect of viscous dissipation is negligible in the energy equation and there is a first 

order chemical reaction between the diffusing species and the fluid. The fluid considered here is a 

gray, absorbing emitting radiation but a non-scattering medium. Then under usual Boussinesq’s 

approximation the unsteady low is governed by the following equations: 

   
2 2

0

2

u u B
g T T g C C u

t y

  
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
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          (1) 
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            (2) 

 
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t y

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  

        (3) 

The initial and boundary conditions: 

 
3

0

0, , , 0

0 : , , 0

0, ,

w w

u T T C C for all y t

u t
t u T T C C at y

u T T C C as y



 

 

     


       

     

          (4) 

Where u  is the velocity of the fluid along the plate in the x - direction,  t  is the time, g is the 

acceleration due to gravity,    is the coefficient of volume expansion,    is the coefficient of 

thermal expansion with concentration, T  is the temperature of the fluid near the plate, C is the 

species concentration in the fluid near the plate, C is the species concentration in the fluid far away 

from the plate,  is the kinematic viscosity,   is the electrical conductivity of the fluid, 0B is the 

strength of applied magnetic field,  is the density of the fluid, p
C  is the specific heat at constant 

pressure, K is the thermal conductivity of the fluid,   is the viscosity of the fluid, D  is the 

molecular diffusivity. 

The local radiant for the case of an optically thin gray gas is expressed by 

 4 44r
q

a T T
y

 


  


        (5) 

It is assume that the temperature differences within the flow are sufficiently small such that 4
T  may 

be expressed as a linear function of the temperature. This is accomplished by expanding 4
T  in a 

Taylor series about T  and neglecting higher-order terms, thus 
4 3 44 3T T T T             (6) 

By using equations (5) and (6), equation (2) reduces to 

   
22

3

02
16

p

T T u
C k a T T T Q T T

t y y
     

   
           

   (7) 

On introducing the following non-dimensional quantities: 
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       (8) 

where  Gr  is the thermal Grashof number, Gc  is modified Grashof Number, Pr is  Prandtl 

Number, M is the magnetic field, Sc  is Schmdit number, Kr  is Chemical Reaction,   is Heat 

source parameter  respectively. 

Introducing the above non dimensional quantities in equations (1) - (3) and using equation (7) 

reduces to 
2

2
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t
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
 
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               (9) 
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                      (11) 

The negative sign of Kr  in the last term of the equation (11) indicates that the chemical reaction 

takes place from higher level of concentration to lower level of concentration. 

 

The initial and boundary conditions: 

0, 0, 0 for all , 0

, 1, 1 at 0
0

0, 0, 0 as

U C t
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t

U C

 
 
 
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      (12) 

3. Solution of the problem 

Equations (9) – (11) are coupled, non – linear partial differential equations and these cannot be 

solved in closed – form using the initial and boundary conditions (12).  However, these equations 

can be reduced to a set of ordinary differential equations, which can be solved analytically. This can 

be done by representing the velocity, temperature and concentration of the fluid in the 

neighbourhood of the fluid in the neighbourhood of the plate as   
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                 (13) 

Substituting (13) in equations (9) – (11) and equating the harmonic and non – harmonic terms, and 

neglecting the higher order terms of  20  , we obtain  

0 0 0 0U MU Gr GcC              (14) 

 1 1 1U M n U Gr GcC                     (15) 

  2

0 0 0R EcU                 (16) 

 1 1 0 1Pr 2R n EcU U                (17) 

0 0 0C Sc Kr C                            (18) 

 1 1 0C Kr n ScC              (19) 

The corresponding boundary conditions can be written as  
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        (20) 

The equations (14) - (19) are still coupled and non-linear, whose exact solutions are not possible. So 

we expand 
0 1 0 1 0 1, , , , ,U U C C   in terms  0 1,f f   of Ec  in the following form, as the Eckert number 

is very small for incompressible flows. 

     
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0 01 02

1 11 12

f f Ec f

f f Ec f
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                    (21) 

substituting (21) in equations (14) - (19), equating the coefficients of Ec  to zero and neglecting the 

terms in Ec
2
 and higher order, we get the following equations. 

01 01 01 01U MU Gr GcC                        (22) 

02 02 02 02U MU Gr GcC                       (23) 
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01 01 0C Sc Kr C                           (30) 
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 11 11 0C Kr n ScC              (32) 

 12 12 0C Kr n ScC                            (33) 

The respective boundary conditions are  
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   (34) 

solving equations (22) - (33) under the boundary conditions (34) we obtain the velocity, 

temperature and concentration distributions in the boundary layer as  
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Skin-friction: 

We now calculate Skin-friction from the velocity field. It is given in non-dimensional form as:  
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Rate of heat transfer: 

The dimensionless rate of heat transfer is given by 
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Sherwood number: 

The dimensionless Sherwood number is given by 

1

0

C
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4. Results and discussion 

For physical interpretation of the problem, the numerical computations are carried out for different 

physical parameters thermal Grashof number, mass Grashof number, chemical reaction parameter, 

Prandtl number, radiation parameter, heat source parameter, Schmidt number and time upon the 

nature of the flow and transport. The values were considered for graphical representation as R = 1.0, 

M = 0.5, 2.0,Gc   2.0,Gr   Ec = 0.001, Kr = 1.0, Sc = 0. 65. The value of Prandtl number  Pr  

are chosen such that they represent air  Pr 0.71 . The numerical values of the velocity, 

temperature and concentration are computed for different physical parameters thermal Grashof 

number, mass Grashof number, chemical reaction parameter, Prandtl number, radiation parameter, 

heat source parameter, Schmidt number and time are studied graphically. The velocity profiles for 

different values of t  is studied and presented in figure (1). It is observed that the velocity increases 

with increasing values of the time  t  .  In figure (2) and (3) velocity profiles for different values of 

Gr  and Gc  for fluid Prandtl number, Pr 0.71  are shown. From figure (2) and (3) it can be 

concluded that velocity increases with increasing values of Gr  andGc . In these figures (2) and (3) 

for 0.65Sc   is lower than Pr 0.71  and hence concentration layer is thinner than thermal layer. 

This confirms the downward flow to a thin region near the surface. The velocity profiles for 

different values of chemical reaction parameter  Kr  and heat source parameter    shown in 

figures (4) and (5). It is observed that the velocity decreases with increasing values of chemical 

reaction parameter  Kr  and heat source parameter. Figure (6) it can be concluded that velocity 

decreases due to an increase in the Schmidt number. For lower Schmidt number the thickness of the 

concentration layer increases and the region of flow extend farther away from the plate. The 

temperature profiles are calculated for different values of heat source parameter  at time 0.2t   and 

Pr 0.71  from equation (13) and these are shown in figure (7) in the presence of air. The effect of 

heat source parameter decreases with increasing values of heat source parameter. The concentration 

profiles for different values of the chemical reaction parameter and Schmidt number are presented 

in figures (8) and (9). The effect of the chemical reaction parameter is dominant in concentration 

field. The profiles have the common feature that the concentration decreases in a monotone fashion 

from the surface to a zero value far away in the free stream. It is observed that the wall 

concentration increases with decreasing values of the chemical reaction parameter. The effect of the 

Schmidt number is dominant in concentration field. It is observed that the wall concentration 

decreases with increasing values of the Schmidt number.  

 

Conclusions 

The following conclusions were made after studies this paper. 

 It is observed that the velocity increases with increasing values of Grashof number, mass 

Grashof number and time.  
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 But the trend is just reversed with respect to the chemical reaction parameter. 

Appendix 
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Fig. (1): Velocity profiles for different values of  t
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Fig. (6): Velocity profiles for different values of Sc

U
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Fig. (7): Temperature profiles for different values of  
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Fig. (9). Concentration profiles for different values of Sc

C
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