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A B S T R A C T   

Over the last few years, electric cars (EVs) have grown in popularity. The battery management system (BMS) is 
critical to the long-term viability and smooth operation of an electric vehicle. The management of electric ve-
hicles’ batteries daily may help them operate better. All battery-related data is monitored and transmitted to the 
cloud in real time for monitoring via the Internet of Things, which is completely automated. Open loop ap-
proaches for predicting SOC, SOH, and SOP parameters suffer from a decrease in reliability when current sensor 
uncertainties and the rarity of relaxation status are addressed. Also, keep in mind that IoT network nodes are 
generally delay-tolerant, and message delivery latency still has a substantial impact on monitoring an electric 
vehicle’s battery system. (EV). The research team created an Internet of Things BMS based on LR parameter 
estimation and an ORMeshNet gateway topology to address this issue. Before any other systems can be monitored 
or diagnosed with the BMS or any other system, techniques are first created based on an LR to estimate SOC and 
SOH accurately and efficiently. This method achieves a higher rate of convergence as well as a higher level of 
fault tolerance than other estimation methods. The updated parameters and estimated states are used for the SOP 
estimator to provide more accurate peak power estimates while fulfilling operational constraints of the battery 
current, voltage, and SOC. Thereafter, the estimated results are transferred via IoT platform that comprises of 
OTH-AJS node selection followed with LND-BES optimal routing based MeshNet gateway protocol to transfer the 
data for monitoring. The proposed approach yields a throughput of 88.97%, a PDR of 87.98%, and a Goodput of 
83.98%. Experimental results show enormous improvement in estimating the parameters with better throughput, 
PDR, and goodput value as compared to existing methods.   

Introduction 

Electric Vehicles (EVs) are already accustomed to a wide variety of 
battery chemistries with different specifications, and this trend is 
anticipated to continue. BMS (Battery Management System) is offered to 
monitor the operational system, performance, as well as battery life, 
including the charge and discharge process [1,2]. It includes a variety of 
tools for measuring battery voltage, current, and temperature, among 
other things. These statistics can be used to identify the battery’s state of 
charge (SOC) and health (SOH). The battery management system (BMS) 
is a critical component of an electric vehicle since it guarantees that the 

battery functions efficiently and lasts a long time [3]. Electric vehicles 
(EVs) use lithium-ion cells in their battery packs, which are constructed 
into modules and connected in series to create the voltage needed for the 
vehicle’s operation. Lithium-ion batteries as electrical devices must 
work securely within a small voltage and temperature range due to their 
great sensitivity [4,5].The cell may degenerate if its temperature or 
voltage fall below the required range. The inside temperature of the 
battery can vary by more than 12 degrees Celsius, making it more 
difficult to measure than the surface temperature. However, by keeping 
an eye on the internal temperature, BMS can reduce energy use, prevent 
fires and explosions, and better understand the consequences of ageing. 
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Micro temperature sensor internal temperature measurement is often 
difficult and expensive. Another crucial task that a BMS must reliably do 
is measuring voltage. Each BMS cell must have at least one voltage 
acquisition channel to determine the current voltage level. These chips 
have a resolution of 380 V and an accuracy of 1 mV, which ranges from 
12 to 16 bits. Voltage measurements are also critical in determining 
SOC. If these values exceed the set maximum, the cell may be destroyed. 
For a common Lithium-Ion cell, the voltage and temperature must not 
exceed [2.5; 4.2] V and [13; 60] C, respectively [6,7]. The safety win-
dow refers to the range of values within which a cell is safeguarded from 
damage. Multidisciplinary research is needed to address severe concerns 
regarding the safety, dependability, and degradation of Li-ion batteries, 
but also to examine strategies to minimise system costs while ensuring 
battery energy storage systems run as effectively as feasible [8,9]. These 
initiatives include the creation of fresh batteries and cutting-edge bat-
tery management systems (BMS). Extreme/normal cell voltage re-
strictions the entire battery pack must have a structure to oversee, 
control, maintain, and manage these requirements. The battery man-
agement system (BMS) is the battery pack’s “brain” (BMS). A good 
battery management system will keep the battery safe, anticipate its 
lifespan, regulate charging and discharging, and figure out how many 
cycles it will go through before it needs to be recharged again. Thermal 
conditions must be controlled, module or pack currents must be 
organised, SOC and SOH must be measured, and cells must be altered to 
slow down cell degradation. To ensure safe battery operation, optimise 
battery control, offer maximum force, and extend battery life, a robust 
BMS is required. A BMS must connect with other onboard components, 
such as the engine control module, temperature control module, com-
mon bus bar, monitoring system, and car computer, to perform a wide 
range of functions on the vehicle. 

Due to recent advances in IoT and cloud computing resources, it is 
expected that the design and operation of large-scale battery energy 
storage systems will undergo a paradigm shift [10] due to the contin-
uous research into these technologies [11,12]. New cloud-connected 
battery management systems for tiny electric vehicles and cloud bat-
tery analytics services have been created in recent years [13,14] to speed 
up the development of battery products. However, the implementation 
of a building management system (BMS) on an IoT platform is extremely 
complicated. In contrast, considering the cumulative error supplied by 
current sensor uncertainties as well as the rarity of relaxation status has 
been shown to decrease the dependability of these open-loop algorithms 
for predicting the SOC, SOH, and SOP parameters [15,16]. [15,16] As a 
result, IoT nodes are frequently delay-tolerant, and message delivery 
latency remains high, resulting in high power communication as well as 
data loss and transmission failure as well as coverage issues and route 
breakage, among other issues, all of which have a significant impact on 
EV battery system monitoring [17,18]. The BMS requirements are: 
-Contactors Requirement -Electromagnetic Interference (EMI) Protec-
tion in general, galvanic isolation, and redundancy. Other prerequisites 
Depending on the application, there may be several other needs and 
restrictions, including those related to space and system costs, which the 
BMS must satisfy. For aeronautical applications, for instance, mechan-
ical toughness, weight, and power consumption are crucial 
characteristics. 

An IoT BMS based on LR parameter estimate and an Ormes Net 
gateway topology is being developed with the long-term goal of 
improving cost effectiveness, safety, reliability, and optimal operation of 
large-scale battery energy storage systems. NSFC is financing the 
project. 

Literature survey 

A cloud-based framework was developed by an international team of 
researchers under the direction of Amit Adhikaree and associates [19] 
for monitoring the condition of Lithium-Ion (Li-ion) battery systems on a 
wide scale. The platform was created using cloud-based services and 

Internet of Things (IoT) gadgets. The Internet of Things components 
featured sensors and actuators in addition to battery-powered wireless 
data collection and communication devices. These parts allowed mod-
ules to communicate both with one another and with the internet. Cloud 
computing combines elements including cloud storage, analytics soft-
ware, and visualisation. Based on the results, the cloud was able to use 
its high-performance computer resources to precisely monitor the bat-
tery’s status of charge. As a result, the established method increased the 
operational efficiency and scalability of large-scale battery energy 
storage systems. It also reduced their cost. Despite the approach’s su-
periority, the coverage problem remained unresolved. 

Weihan Li and colleagues [20] developed a cloud-based battery 
management system for battery systems with the goal of increasing 
computational power and data storage capacity using cloud computing. 
Using the Internet of Things, all battery-related data was collected and 
delivered to a cloud-based storage system. Battery diagnostic algorithms 
analysed the data and built a digital twin of the battery system therefore 
to better understand the battery’s charge and ageing state. Using cloud- 
based algorithms to predict battery system state-of-charge and health, 
the applicability of similar circuit models in digital twin battery systems 
was examined. An technique that uses particle swarm optimization to 
assess battery capacity and power fading as it ages was also examined. 
However, the SOH’s evaluation was lowered by the hazy sounds. 

T. Taesic Kim and coworkers [21] have created a cloud-based tech-
nique for tracking and diagnosing battery faults in big Li-ion battery 
energy storage systems [21]. [21] (BESS). The built cyber-physical 
platform comprised a cloud-based platform for regulating the battery 
modules’ performance, which incorporated the Internet of Things into 
the battery modules. A battery defect diagnostic algorithm based on 
outlier mining and condition monitoring have been developed for the 
Cloud Battery Management Platform (CBMP). The CBMP cost analysis 
and the cyber-physical testbed were utilised to verify the approach. This 
resulted in intelligent and cost-effective BESS systems and onboard 
health monitoring for big Li-ion BESS systems. Due to signal trans-
mission’s high rate of data loss, the approach was insisted upon. 

Mohammad Asaad and colleagues [22] created an optimization 
model to maximise trade income for EV aggregators using smart 
charging to boost profitability. To reduce battery degradation, a real- 
time Battery Monitoring System (BMS), an Enhanced Coulomb Count-
ing Method for SoC estimation, and the messaging-based MQTT 
communication protocol were provided. To install the new BMS, a 
hardware platform comprising sensing technology, a central CPU, 
interface devices, and Node-RED software was designed. Enhanced 
Coulomb counting considers self-discharge, temperature dependence, 
and aging-related degradation. Overshoot and poor SOP estimation 
hampered the approach. 

According to Guillaume Le Gall et al. [23], it is possible to use IEEE 
Std 802.15.4 Time Slotted Channel Hopping, a standardised protocol for 
low-power, lossy networks, in conjunction with other protocols. Begin-
ning with real-world tests in which the link quality of wireless nodes 
contained within an electric vehicle battery pack was examined at the 
Medium Access Control layer, the paper moved on to discuss theoretical 
considerations. Afterwards, using the findings of the investigations, it 
developed two topology management strategies and scheduled a method 
known as Linear Programming and Simple Descent, which are both 
based on linear programming. Because of battery management con-
straints, the goal was to achieve effective data transfer while remaining 
within those constraints. However, the approach was exceedingly 
complex and prone to multiple interferences. 

The remaining parts of the article are structured as described below. 
The connected works are presented in Section 2. Following that, the 
following section (section 3) presents a comprehensive examination of 
the suggested model. Following that, the performance of the suggested 
model is assessed in part 4, and the investigation is wrapped up in sec-
tion 5. 
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Proposed IoT BMS framework 

Electric vehicle battery management systems ensure the safe opera-
tion of the battery pack and communicate this information to other 
systems. IoT-based BMS monitors the battery online and helps prevent it 
from running outside of its safe operating range due to issues including 
excessive current, voltage, undervoltage, and temperature. Due to 
inaccuracies caused by current sensor or voltage sensor uncertainties as 
well as the unusual occurrence of relaxation state, open-loop approaches 
for calculating SOC, SOH, and SOP parameters are less reliable [24]. 
Monitoring and control, as well as remote data logging for battery at-
tributes, conditions, and other factors, are all significantly aided by the 
Internet of Things (IoT). The term “Internet of Items” describes a 
network of actual physical things (things) that have been outfitted with 
sensors, software, and other technologies to communicate and exchange 
data with other systems and devices online. Devices with low power 
consumption and wide coverage are essential for the future of renewable 
energy. The capacity of a channel diminishes as the bandwidth de-
creases. Its bandwidth ranges from 20 to 40 MHz, though its ranges from 
40 to 100 m, and its power consumption is high. While dormancy is high 
and IoT links regularly accept postponement, it leads to high power 
transfer, data loss and transmission failures as well as coverage concerns 
and poor routing or route breaking that have a substantial influence on 
battery-operated system monitoring in electric cars. Machine learning 
and artificial intelligence algorithms are utilised to analyse all battery- 
related data in real-time, including voltage, current, and temperature 
readings during charging and discharging. If a problem with the battery 
is found, the driver or service provider should be contacted [25]. As a 
result, there is an enhanced likelihood that a battery can be repaired or 
replaced before it fails or is irreparably damaged. The study has created 
an IoT BMS based on LR parameter estimate and ORMeshNet gateway 
topology to address the difficulties at hand, as shown in Fig. 1. 

Data acquisition 

As many as possible sensors are used to gather data that can be 

analysed in order to figure out how much charge is being stored in a 
battery cell at any one point in time. IoT Gateway/router transfers the 
data from communication component, which is the optimal node for the 
IoT device. Using the cloud battery management system, the module 
management system receives health monitoring information and control 
recommendations from the cloud battery management system. Sensor 
acquisition systems for Internet of Things devices usually contain a 
short-range radio, such as Wi-Fi, Zigbee, or low-power Bluetooth. These 
radios use Internet of Things protocols such Queue Telemetry Transport 
and Constrained Application Protocols [26] to communicate data and 
signals to other modules or a concentrator. Additional data aggregation, 
storage, and analysis are expected to be needed in the future as the 
Internet of Things Gateway generates huge volumes of information from 
many sources. 

Estimation 

Changes in model parameters and the SOH during real-world battery 
use are well known to have a significant influence on both the SOC and 
SOP. Ignoring the nature of such interaction, i.e., calculating SOC/SOH/ 
SOP in isolation is likely to reduce battery condition monitoring accu-
racy and resistance to variations in operational circumstances and 
health status. 

SOC and SOH estimation based on Lasso regularization 
One of the most important jobs of a battery management system is to 

estimate the state of charge (SOC) of the batteries. SOC is the ratio of a 
battery’s current capacity to its maximum nominal capacity. The state of 
charge, or SOC, is an important measurement for figuring out how well 
the battery storage systems in electric cars work (EV). Lithium-ion bat-
teries have therefore been actively researched in terms of SOC estimate 
due to their fast charging, extended life cycle, and high energy density 
properties [27]. The regression known as the Lasso (least absolute 
shrinkage and selection operator) decreases the residual sum of squares 
subject to the absolute value sum. Due to its outstanding performance in 
both variable selection and prediction accuracy, Lasso is frequently used 

Fig. 1. Proposed IoT BMS Framework.  
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to predict continuous variables. Lasso was used by Mansouri et al. to 
forecast a battery’s RUL. As a result of this, Friedman et al. [28] 
developed fast estimation algorithms for extended linear models with 
convex penalties. Fig. 2 shows how the dynamic characteristics of the 
lithium-ion battery can be described using a first-order RC ECM. To 
symbolise polarisation resistance and capacitance, we’ll use Rp and 
Cpae in Fig. 2, while Rt represents ohm resistance. Predicted terminal 
voltage, open-circuit voltage (I 0, V 0), and the voltage at which 
polarisation occurs (V p) are all calculated. SOC and I 0 have a nonlinear 
connection with respect to one another. The battery is allowed to rest for 
an hour after attaining SOC before its power characteristics are assessed. 
The battery’s power characteristics are reduced by 10 % each time the 
battery is allowed to rest; simultaneously, I 0 is measured. Piecewise 
linear interpolation can be used to obtain the function I 0 = n soc + n. 

Assuming the state variables a = [a1, a2]
T
=
[
Vp, soc

]T and In accor-
dance with Kirchhoff’s voltage law (KCL), the state equation is as 
follows: 

a′

= Ma+Nu (1)  

S = Pa+Qu (2)  

Where, =
[

0 0
0 − 1/Rpcp

]

,N =

[
1/cn
1/cp

]

, P = [ αn 1 ], Q = Rt, S =

Vt − βn, u = i. 
Using the z transform, discrete the Equations (1&2) to yield the 

Equation (3) as follows: 

Vt(k) = α1.Vt(k − 1) − α2.Vt(k − 2)+ β0.i(k) − β1.i(k − 1) − β2.i(k − 2)
(3)  

Where,α1, α2, β0, β1, β2 are the parameters to be estimated. 
In existing parameter estimation, the new approximation is equiva-

lent to the sum of the previous estimation, which has a substantial in-
fluence on the meeting rate and following presentation. To address this 
issue, the work employed Lasso regularisation to manage the conver-
gence rate and track the performance. Lasso regularisation employs a 
penalty constant ((h_1)) to maintain the learning rate (ƛ)) low enough 
for the method to rapidly track the local trend of non-stationary signals 
and, in a steady environment, gradually increase to enough to minimise 
parameter estimate error. 

If LR is not done, then when ƛ is equal to 1, all faults are always 
considered, and the tracking capabilities are inadequate. It is noise- 
insensitive, and the parameter estimate error in the steady-state is 
negligible. It is not susceptible to noise, and the error in estimating the 
steady-state parameters is small [29]. The evaluation of present faults is 
limited when ƛ is equal to zero, and while the tracking capabilities of 
time-varying parameters is significant, it is more susceptible to noise 
when is equal to 0. 

The lasso regularization is performed based on the, 

Y(k) = ΦT(k).Θ (4)  

E(k) = Y(k) − ΦT(k).Θ̂(k − 1) (5)  

L(k) = min
λ∈Rn

{
‖Y(k) − λ(ΦT(k).Θ̂(k − 1))‖

2n
+ℏ‖λ‖1

}

(6)  

Where E(k) is Y(k) the assessed fault,Θ = [α1, α2, β0, β1, β2]
TL(k) is the 

lasso regularization purpose. Rendering to the planned procedure, we 
can obtain the moderate value of the estimation parameter using the LR. 
Now the parameters of the battery system are finded out using the eqn: 

ocv = β2 (7)  

Rt = α1α2 (8)  

Rp =
β0 − α1α2β1

1 + β1
(9)  

cp =
TS

β0 − α1α2β
(10)  

SOH estimation. The Battery Management System (BMS) must consider 
the battery’s State of Health (SOH) and State of Charge (SOH) in order to 
prevent battery failure and extend battery longevity (SOH). SOH esti-
mation can tell us how successfully a lithium-ion battery stores and 
distributes electricity within a power grid. It’s a useful tool [30]. The 
Gaussian process regression with neural network (GPRNN) as its vari-
ance function is presented to analyse and forecast battery state of 
charge. Equation (11), where c n is the nominal capacity of a new cell 
and represents the capacity that remains after ageing, defines battery 
SOH. As indicated in Eq., the accumulated charge and the difference in 
SOC over time can be used to directly attain the current capacity based 
on the SOC variation (12). (13). 

Here, socα = [α1,α2] and socβ = [β0, β1, β2] are SOC estimates given by 
LR at the time step α and β, and ΔAH means the ampere-hour accu-
mulation between α and β. The estimated SOC at the headmost time step 
in the horizon instead of the SOC at the end of the horizon is applied. 
Considering that the capacity is a slow variable parameter in the aging 
process, the SOH monitoring is realized offline at a regular interval. 

soh =
c
cn

(11)  

socβ = socα −
ΔAH

c
(12)  

c =
ΔAH

socα − socβ
(13)  

SOP estimation 
To describe the greatest amount of electricity that a power battery 

can continuously release or absorb over a defined time, we use the term 
“state of charge” (SOP). An essential part of the battery management 
system is the calculation of SOP, which is required to provide electric 
vehicles with stable and reliable output power and to assure their safety 
over a specific period. The SOP indicates how quickly a battery’s energy 
can be added to or removed without violating a set of design limits 
stated by the manufacturer [31]. First, think about the power re-
strictions under voltage restrictions. Equation (14) is used to compute 
the voltage across the RC Network at the present time step k: 

Vp(k) = OCV − Ve(k) − ie(k)R0 (14) 

Then, its prediction value at the next time step can be derived based 
on the discretized form of Equation (3), as Equation (15): 

Fig. 2. First-order RC ECM.  
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Vp(k + 1) = e−
TS

Rpcp Vp(k) +
(

1 − e−
TS

Rp cp

)
Rpie(k) (15) 

Then, the current limits corresponding to the upper and lower 
voltage limits are calculated as Equation (16): 

idischarge
e (k + 1) =

[
ocv − Vp(k + 1) − Vmin[]p

]
(16)  

Where, Vmax and Vmin represent the upper and lower cut-off voltage 
respectively. 

At last, the power limits at discharge and charge conditions are 
constrained by voltage limits as Equations (17) and (18): 

sopV
discharge = Vdischarge

emin (17)  

sopV
charge = Vdischarge

emax (18) 

Then analyse the power limitations imposed by present restrictions. 
As previously mentioned, the voltage across the RC network at the next 
time step must first be computed using Equations (14) and (15). Equa-
tions (19) and (20) are then used to derive the voltage limitations that 
correspond to the higher and lower current limits: 

Vdischarge
e (k + 1) = ocv − Vp(k + 1) − R0Imax (19)  

Vcharge
e (k + 1) = ocv − Vp(k + 1) − R0Imin (20)  

Where, Imax and Imin represent the maximum and minimum current, 
respectively. At last, the power limits at discharge and charge conditions 
constrained by current limits as Equations (21) and (22): 

sopI
discharge = Idischarge

emax (21)  

sopI
charge = Idischarge

emin (22) 

Finally, examine the power restrictions imposed by SOC constraints. 
The polarisation voltage over the RC network must still be calculated 
using Equations (14) and (15). Equations (23) and (24) may be used to 
compute the current limitations under SOC constraints: 

I
socn[soc(k)− socmin []p ]
min (23)  

I
socn[soc(k)− socmax []p ]
max (24)  

Where socmax and socmin indicate the planned upper and lower cut-off 
SOCs, and Tp signifies the temporal window size, which may be modi-
fied to decide when the SOC restriction is activated. For the discharging 
process, a longer Tp equals lower current restrictions, and hence an 
earlier triggering of SOC limitations. Because Equations (23) and (24) 
have translated the SOC constraints to current limitations, the peak 
power under SOC limitation for the discharging and charging processes 
(denoted as sopsoc

discharge and sopsoc
charge respectively) may be obtained from 

the same formula under the current constraint [32]. Finally, the battery 
power will be restricted by the least absolute value of the three limita-
tions indicated above, which means as Equation ((25) & (26)): 

sopdischarge = min
[
sopV

discharge, sopI
discharge, sopsoc

discharge

]
(25)  

sopcharge = min
[
sopV

charge, sopI
charge, sopsoc

charge

]
(26) 

Finally, the estimated SOC, SOH, and SOP need to be communicated 
via the IoT platform. The data estimated gets stored over the optimal IoT 
nodes and they are transferred via a protocol to manage the Battery of 
the EV. 

Optimal node selection in IoT platform 

Communication between Internet of Things (IoT) devices is routed 

through a variety of networks. The Internet of Things connects all nodes 
to the Internet by utilising physical products that are equipped with a 
variety of sophisticated sensors of various types. Many Internets of 
Things nodes generate and transmit vast volumes of data, simplifying 
daily life, assisting with challenging decision-making, and offering 
crucial services to customers. Thus, the Internet of Things is predicted to 
rapidly develop as one of the most used networking technologies, 
delivering a wide range of advantages to consumers. However, message 
delivery latency is still a critical performance metric that should be 
minimised to the absolute minimum. As a first step toward addressing 
the issues, the team used an Artificial Jellyfish Search based on Optimal 
Tuning Hyperparameters to pick nodes for further investigation (OTH- 
AJS). An approach to node selection has been developed using jellyfish 
searching behaviour in ocean currents. This behaviour comprises 
amazing mechanisms including their convergence into jellyfish blooms, 
a time control mechanism for switching between different movements, 
and their movement inside a jellyfish swarm (active and passive mo-
tions). The jellyfish search (JS) algorithm optimises by observing jelly-
fish activity in the water. Published in 2021 by Jui-Sheng Chou et. 
Jellyfish can move freely. Regardless, they usually drift with the tides. A 
jellyfish bloom is a large swarm of jellyfish. Conditions such as tem-
perature and ocean currents influence swarm formation. The most 
important factor is swarming jellyfish. As a result, jellyfish can be found 
almost any place in the ocean. Because meal amounts vary, comparing 
food proportions would indicate the ideal position. So we developed a 
new algorithm based on jellyfish search and movement in the ocean 
[33]. Jellyfish optimizer. This method aids in the search for and selec-
tion of the optimum node for storing measurements. However, the high 
computational complexity, poor balance of exploitation and exploration 
rates, and low convergence rate result in a significant error rate when 
selecting the best nodes. The work uses an OTH-AJS optimizer to solve 
this problem. The proposed method employs Normalized Xavier 
Initialization of the jellyfish position in exploitation phased mode and 
regulates the balancing rate. The method additionally addresses on 
computing complexity and the convergence rate problem by employing 
a Bit shift map for jellyfish population initialization. 

Based on the features of the node the optimal node gets selected. The 
node features (FNodes) used are residual energy of the nodes (Nres), 
proximity (Nprox), distance to the user (Ndb), cost (Ncost), and node cen-
trality or coverage (Ncov), etc. The objective of selecting the node is given 
by taking a weighted sum approach (Ri) for different features and 
forming into one scalar objective function given as: 

Academics and industry are interested in the Internet of Things (IoT) 
as a new technology. An Internet of Things node is a small gadget 
powered by batteries. The data collected by IoT nodes will be routed 
through a gateway server, which will combine it and send it to a cloud 
platform for further processing. When IoT nodes are dispersed across a 
large area, nodes located far from the gateway server must transport 
data across many hops to the gateway server. To optimise power usage 
and maximise node operational time, the next forwarding node might be 
chosen based on the greatest power level available among numerous 
candidate nodes [34]. The ideal node is chosen based on the node’s 
characteristics. The node characteristics (FNodes) employed include re-
sidual energy (Nres), proximity (Nprox), distance to the user (Ndb), cost 
(Ncost), and node centrality or coverage (Ncov), among others. The goal of 
picking the node is done by using a weighted sum technique (Ri) for 
multiple attributes and combining them into a single scalar objective 
function. As a result, the Internet of Things is predicted to swiftly ascend 
to one of the most widely used networking technologies, giving a variety 
of benefits to consumers. Even though the nodes in these networks are 
frequently delay-tolerant, message delivery latency is a critical perfor-
mance indicator that should be kept to a minimum. 

Ω
(

(FNodes) = max
Γ

[Γ1N1 + Γ2N2 + Γ3N3 + Γ4N4 + ......+ ΓnNn]

)

(27) 
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To limit the amount of food available to the jellyfish, the selection is 
dependent on the way in which they function (the fitness value of their 
nodes). The current best answer is to follow all of the jellyfish’s paths in 
the same direction as the sea current. Following is the formula for ocean 
currents. 

Ω =
1

Fpop

∑
Ωi =

1
Fpop

∑
(N − ℵcNi) = N − ℵc

∑
Ni

Fpop
= N − ℵcυ (28)  

df = ℵcυ (29)  

Where F pop denotes the jellyfish population; Ni is the jellyfish that 
currently has the best placement in the swarm; ℵ_c is the attraction 
factor; is the average location of all jellyfish; df is the difference between 
the jellyfish’s current best location and the average location of all 
jellyfish. 

During the spatial distribution, a distance about the mean place 

covers some probability of entirely jellyfish, that is 

df = ℘ × ϕ × randf (0, 1) (30)  

ϕ = randα(0, 1) × υ (31)  

Where, ϕ is the standard deviation of the distribution. 
The new location of each jellyfish is now provided by the jellyfish 

locator: 

Ni(t + 1) = Ni(t) + rand(0, 1) ×
(
N*

i − DC × rand(0, 1) × υ
)

(32)  

Where, DC > 0 is a distribution coefficient related to the length of ϕ. 
The motion of the jellyfish is constrained within two groups, and 

they are Type-A motion and Type-B gesture. In addition to specifying the 
type-A motion of jellyfish around their own locations, the updated 
location of each jellyfish is also supplied. 

Fig. 3. Pseudo code for OTH-AJS.  
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Ni(t + 1) = Ni(t)+ ν × rand(0, 1) × (UB − LB) (33)  

Where UB and LB denotes the upper and lower bounds of search areas. 
ν > 0 is a motion coefficient related to the length of motion around 

jellyfish’s locations. 
According to the Type B motion, a jellyfish is picked at random, and 

then the motion is estimated along the direction of food based on the 
amount of food and change in the jellyfish’s position. This motion is 
known as a propagating motion. After that, the current position of the 
exploitation is brought up to date by employing, 

Ni(t + 1) = Ni(t)+ SP (34)  

SP = NXI

(

−

̅̅̅
6

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ni(t − 1) + Ni(t)

√ ,

̅̅̅
6

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ni(t − 1) + Ni(t)

√

)

× dir (35)  

dir =

{
Nj(t) − Ni(t)iff (Ni) ≥ f

(
Nj
)

Ni(t) − Nj(t)iff (Ni) < f
(
Nj
) (36)  

Where, NXI denotes the normalized Xavier initialization, Ni(t − 1) rep-
resents the previous position of the jellyfish. 

The type of motion that has taken place throughout time is detected 
using a time control system. Type A and type B motions inside a swarm, 
as well as jellyfish movement along a water current, are all controlled by 
this system. Over the duration of a particular time, the time control 
function generates a random number between 0 and 1. 

T(t) =
⃒
⃒
⃒
⃒

(

1 −
t

maxiter

)

× (2 × rand(0, 1) − 1)
⃒
⃒
⃒
⃒ (37)  

Where t denotes the time supplied as the iteration number and max_iter 
is an initialised parameter denoting the maximum number of iterations. 

Randomly priming the jellyfish population causes delayed conver-
gence and traps it at local minima. The work has employed a bit-shift 
map to increase convergence speed. Compared to random selection, 
this map produces more diversified starting populations and decreases 
the likelihood of premature convergence. The bit shift mapping is 
formulated as within the range of ∀ : [0, 1)→[0,1)∞ where ∀ =

[Z1,Z2, Z3, .....Zn], and initially,Z0 = Z. Now, the iterated function of the 
mapping is given as: 

N(x) =

⎧
⎪⎪⎨

⎪⎪⎩

2x 0 ≤ x ≤
1
2

2x − 1
1
2
≤ x < 1

(38) 

Shifting one bit to the right and replacing one “one” with a “zero” is 
how an iteration’s value is calculated if it is stated in binary notation, as 
seen in this example. 

Certain conditions are followed by the jellyfish that is when the 
jellyfish returns after circulating over the entire oceans, the efficient 
position of the jellyfish is assumed by: 
⎧
⎨

⎩

N ′′
i,d =

(
Ni,d − UB,d

)
+ LB(d)if Ni,d > UB,d

N ′′
i,d =

(
Ni,d − LB,d

)
+ UB(d)if Ni,d > LB,d

(39)  

Where, Ni,d is the location of the ith jellyfish in dth dimension; N′′
i,d is the 

effectual position subsequently examination border restraints. Finally 
based on the boundary conditions the fitness of the nodes is evaluated 
and the best values are selected and through which the data are stored 
and transferred to the IoT gateway. Thus, the overall outline of the 
proposed OTH-AJS is illustrated in the form of pseudo code in Fig. 3. 

IoT gateway protocol 

The parameters obtained by the gateway are transmitted to the node. 
The primary function of a gateway is to transfer data packets over a 

network from end devices to a primary server, typically over a backhaul 
interface, radio link, or 3G or 4G wireless network connection. IoT mesh 
nodes provide more intriguing regulations for connecting a range of 
networks and radio technologies, and so completely fulfil the ever- 
increasing demands of subscribers such as mobility, Quality of Service 
(QoS), and security. On the other hand, mesh architecture enables de-
vices to communicate with other network nodes (i.e., point-to- 
multipoint connections) via a capability known as multi-hopping [35]. 
A message can “hop” from one node to the next until it reaches its 
intended recipient. Mesh topology has a lot of advantages over star to-
pology, including a greater range distance and less data or transmission 
loss. However, without knowledge of the connections between network 
nodes, as well as their channel width for a given frequency range for data 
transfer, this may result in high power communication, coverage issues, 
poor routing, transmission failure, data loss, route breakage, and other 
issues that have a significant impact on battery monitoring. To address 
this issue, the team created an Optimal Routing Mesh networking 
(ORMeshNet) gateway topology. 

Consider the ideal node set N = [n1, n2, ...nn] and L is the set of 
feasible direct communication lines. Each node ni ∈ N represents an 
access point (AP) with a circular transmission range TR and an inter-
ference range IR. Among the total number of wireless nodes N, some are 
gateways that link to the Internet. Consider the set of m gateway nodes 
G =

{
g1, g2, ...gm

}
, where gi is the node for nn+i− m ,for 1 ≤ i ≤ m. All of 

the other wireless nodes ni (1 ≤ i ≤ n − m)∈ N\G are standard mesh 
nodes. 

Each regular mesh node receives traffic from all of its connected 
users and routes it to the Internet via some gateway nodes. We assume 
that each node ni ∈ N has a limited capacity to serve its associated data, 
which is represented by Di, but that the capacity between any gateway 
nodes to the Internet (to send its incoming traffic to the Internet) is 
adequate. 

During the transmission of the node ni ∈ N, all nodes within its 
transmission range, and therefore representing its neighbourhood rep-
resented by ∀e(i), get the signal from ni with sufficient power to allow for 
proper decoding with a high probability. It should be emphasised that 
transmitting data without knowing the connections between network 
nodes, as well as their channel width for a specific frequency range, 
might result in significant data loss. Optimal routing is produced using 
Bald Eagle search optimization, which takes into account energy and 
throughput optimization issues [36]. Various optimization limitations 
are taken into account, including connection capacity restrictions, flow 
conversations, flow conversations at the gateway, interference con-
straints, and so on. 

The objective function to be reduced is shown in the equation, and it 
consists of lowering the network’s energy consumption while max-
imising network throughput throughout the considered period t. The 
goal is to create a new routing protocol that can locate ways across a 
network while captivating into consideration trade-offs such as energy 
usage and throughput, such as: 

min
ζl + (1 − ζ)NR

t
(40)  

Where 0 is a weighting coefficient that is used to balance the amount of 
energy consumed and the rate of consumption. If = 0, we are primarily 
concerned with increasing the rate that can be achieved, and if = 1, we 
are concerned with reducing energy use while increasing throughput. In 
order to obtain optimal weighing coefficient for finding out the optimal 
route with balanced energy and throughput trade-offs, the work has 
developed a Logit Normal Distribution based BES optimizer (LND-BES). 
The developed technique for optimal routing performs a faster conver-
gence rate and maintains the search pattern between local and global 
points which tends to achieve an accurate routing with low computa-
tional complexity. The Logit normal distribution is used instead of 
random updating to update the final position of the best eagle during the 
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swooping stage. The logit normal distribution analyses the spread of the 
prey and finds out the closest best solution to attain the convergence. 

The best approach is determined by bald eagles’ hunting method or 
sophisticated social behaviour when searching for fish. The bald eagles 
(weighting coefficient) identify and pick the optimal location in terms of 
the quantity of food (route) inside the designated exploration space 
(constraints) where they may look for prey in the first stage of the 
procedure. Equation (41) is a mathematical representation of this 
behaviour. 

ζnew, i = ζbest + ν*l(ζmean − ζi) (41) 

As for the positional parameter, it has a range of values from 1.5 to 2 
and is a random integer between 0 and 1. They choose where to build 
their nest after gathering all the information they need from the previous 
stage. This is referred to as the “selecting step.” The eagles choose a new 
area for their search, but it is still within a reasonable distance. That 
which is now being searched for by bald eagles in this case is called 
“best” because it was found in their most recent search. In the previously 
selected search region, the eagles fly through the area at random. 
Meanwhile, the ζ_mean indicates that these eagles have devoured all the 
information contained in the previous points. 

By multiplying the randomly searched earlier information by ν, the 
present movement of bald eagles may be calculated. All search points 
are changed at random during this procedure. 

To speed up their search for prey, the birds then fly in different di-
rections within a spiral space to further narrow their search area. When 
it comes to calculating the ideal swoop position, Eq. (42). 

ζi,new = ζi + p(i)*(ζi − ζi+1)+ q(i)*(ζi − ζmean) (42)  

q(i) =
ql(i)

max(|ql| )
, p(i) =

pl(i)
max(|pl| )

(43)  

ql(i) = l(i)*sin(θ(i)), pl(i) = l(i)*cos(θ(i)) (44)  

θ(i) = z*π*rand (45)  

l(i) = θ(i) +W*Rand (46) 

W, an integer with a value between 5 and 10, controls the number of 
corner-to-corner point searches in the centre point, and z, a parameter, 
controls the number of search cycles in the centre point. 

The bald eagles then go on to the swooping stage, where they swing 
from the best position in the search space to their prey. All points are 
also moving in the direction of the best point. This behaviour is quan-
titatively shown in Equation (47). 

ζi,new = F + ζbest + ql(i)*(ζi − c1*ζmean)+ pl(i)*(ζi − c2*ζbest) (47)  

F(ζbest : η, σ) = 1
σ
̅̅̅̅̅
2π

√
1

ζbest(1 − ζbest)
e−

(logit(ζ)− η )2

2σ2 (48)  

Wherec1c2 ∈ [1,2], F(ζbest : η, σ) denotes the Logit normal distribution of 
the best solution by considering mean η and standard deviation σ. Ea-
gles’ motions take on a variety of forms. Polar equations describe the 
swooping action of these eagles. It is also necessary to consider both the 
difference between the current and best points and the difference be-
tween those two points while trying to figure out where the best point 
should be on the y-axis. Considering that the parameters c 1 and c 2 
increase the intensity of movement of bald eagles toward the best and 
centre places, the best solution must be multiplied by a random integer 
to obtain the result. Using the best answer as a starting point, the 
objective function can be utilised to determine the optimal course of 
action. 

Cell balancing 

By maximising the capacity of several series-connected cells and 

guaranteeing that all of the energy is usable, cell complimentary is a 
technique for extending the life of a battery pack. The first cell to 
discharge is also this one. The pack can’t reach its full potential as a 
result. The cell balancing algorithm steps in to help in these situations. 
Active and passive cell balance are the two different categories of cell 
balancing strategies. In the active balancing process, which equalises the 
potential of the cells, the stronger cells are used to charge the weaker 
cells. By coupling the stronger cells to a load during passive balancing, 
the excess voltage in the stronger cells is discharged. 

Results and discussion 

The testing bench is set up for the IoT-based validation of the plan-
ned BMS and consists of sensors, a battery testing system, a controller, 
an ESP8266, and a monitor. The Neware BTS 4000 battery testing sys-
tem has a maximum current and voltage capacity of 100 A and 5 V, 
respectively. The data was captured at 1 Hz, and the current and voltage 
sensors had respective accuracy margins of +0.1 percent and − 0.1 
percent of the full scale. The scientists examined a cylindrical, 3.35 Ah- 
capable commercial Li-ion battery (Panasonic NCR18650B). Using high- 
precision current measurements and a known initial SOC, the coulomb 
counting method, which has a track record of success, was used to 
compute the reference SOC. All estimation computations are carried out 
in MATLAB R2016b on a computer with a 2.30 GHz processor and 8 GB 
of RAM following the collecting of experimental data. 

Table 1 
Evaluation of proposed ORMeshNet with RMSE and TIME metrics.  

Estimation/technique EKF AEKF MHE UKF Proposed LR 

RMSE (%)  0.84  0.84  0.82  0.79  0.35 
TIME(s)  0.029  0.025  0.021  0.019  0.009  

Fig. 4. SOC estimation based on (a) RMSE (b) Time.  
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RMSE of SOC estimation and average computational time per step 

The root mean square value and time taken for the estimation of SOC 
by the Proposed LR method is validated against the existing estimation 
methods such as Extended Kalman Filter (EKF), Adaptive Extended 
Kalman filter (AEKF), Moving horizon estimation (MHE), and Unscented 
Kalman filtering (UKF). The values are tabulated in Table 1. 

From the above table, it can be illustrated that the proposed LR 
method tends to estimate the SOC of the battery with low estimation 
error by achieving an RMSE of 0.35 % and the computation time taken 
to evaluate the SOC was also low i.e. 0.009 s. But the existing method-
ologies tend to achieve an RMSE value that is relatively higher as 
compared to the proposed method i.e. ranging between 0.79 % and 0.84 
%. In addition to it, the computing time is also very high i.e. between the 
ranges of 0.019 s–0.029 s. The lower estimation error and low 
computing time of the proposed estimation approach are due to the 
highly efficient parameter estimation by the LR method. The graphical 
analysis of the proposed estimation of SOC against the existing method is 
stated in Fig. 1. 

Fig. 4 graphically enhances the efficiency of the proposed against the 
existing estimation methods. It can be stated that the existing methods 
get badly affected due to overshoot, noises, and other interference that 
degrades the estimation and leads to a lower performance rate as 
compared to the proposed method. 

SOC estimation outcome 
The parameter estimation of the SOC by the proposed LR method is 

contrasted against the existing methods. The analysis in Fig. 5 is done 
based on the reference points considered for each parameter. 

From the above, it can be said that there is a minute gap obtained 

between the parameters estimation of the proposed LR method and the 
reference value for the time ranging between 1000 and 5000 s. The 
estimation of the SOC parameters by the proposed method remains to be 
closest to the reference point that is the proposed LR obtains a Polarised 
resistance of 0.0511 O ~ 0.0509 O, Ohm resistance of 0.0535 O ~ 
0.0534 O, the polarised capacitance of 1200F ~ 1199F, and SOC of 91 % 
~89.99 %. However, the current technique produces a large disparity 
between the estimation and the reference position. When calculating the 
SOC parameter, the present technique trails the reference point by a 
moderate margin. The moderate margin is owing to poor sensor mal-
function and external disturbance management. As a result, as compared 
to previous approaches, the estimate of SOC parameters is improved. 

SOH estimation outcome 

To demonstrate the proposed SOH estimator’s accuracy and flexi-
bility, Fig. 6 depicts the SOH estimation results with and without noise. 

In order to better demonstrate the accuracy of the SOH estimator, 
Fig. 6 gives out the corresponding graphical analysis. It can be seen that 
the validation of the battery voltage estimation by the proposed method 
gives out a small lead of 0.095 V among the reference and estimated 
voltage and tends to achieve an absolute voltage error of 0.078 V for all 
battery states under working conditions. The average absolute voltage 
errors for the proposed method are 1.98 V respectively, which verifies 
that the proposed method has desirable accuracy and adaptability per-
formance against different loading profiles under all degradation levels. 
In addition, considering the slow-varying characteristic of capacity 
decrease, the SOH estimator does not need to be implemented online. It 
can be triggered every month offline to calibrate the capacity when the 
BMS is relatively free. Accurate SOH estimation provides the following 

Fig. 5. Estimation of parameters and SOC (a) Rp (b) Rt (c) Cp (d) SOC.  
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SOC and SOP estimators with good estimation bases. Now considering 
the estimation of SOH for capacitance the proposed method achieves an 
estimated capacitance difference of 0.036Ah without noise and 0.195 
Ah with noise for an average measurement of 2.39 Ah and in terms of 
SOH for resistance the proposed method achieves an estimated resis-
tance difference of 0.192 V without noise and 0.148 V with noise for an 
average measurement of 2.016 V. Thus, overall the proposed method 
tends to be highly adaptive and accurate for estimating the SOH 
parameters. 

SOP estimation outcome 

The changes of resistance and capacity degradation during battery 
operations are considered in the SOP estimation. The maximum dis-
charging and charging capabilities can be obtained by multiplying the 
measured current by the threshold value of the battery voltage. Based on 
the measured value, the estimation outcome of the SOP is analyzed in 
Fig. 7. 

From the figure, it can be stated that SOP estimation at peak 
discharge power tends to be 45.77 W for instantaneous load current and 
33.80 W for continuous current. As the respective measurement value is 
44.89 W and 32.57 W. It can be stated that for both continuous and 
instantaneous current the estimated peak discharge power remains to be 
closer to the measured value which indicates a low absolute error among 
the estimation of SOC and SOH which enhances the performance of 
determining the power. In the same manner SOP estimation at peak, 
charge power tends to be − 5.15 W for instantaneous load current and 
− 7.416 W for continuous current. As the respective measurement value 
is − 4.96 W and − 5.15 W. The proposed LR is capable to maintain a small 
SOP estimation error when current and voltage limitations dominate the 
SOP value at a higher SOC range. 

Performance analysis of proposed ORMeshNet gateway protocol 

The performance of the proposed IoT gateway protocol is evaluated 

Fig. 6. Validation of the proposed estimated SOH algorithm based on (a) 
Validation of battery voltage estimation using LR-calculated parameters and (b) 
Validation of the suggested estimated SOH algorithm based on When utilising 
LR-calculated parameters, the absolute error of voltage estimation is computed 
as follows: SOH(C) concentration measurements and estimations with and 
without sensor noise are included in this section (d) In the presence and absence 
of sensor noise, measurements and estimations of SOH(R) are performed. 

Fig. 7. SOP estimation (a) Peak discharge power (b) Peak charge power.  
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based on various metrics such as throughput, PDR, and Goodput in order 
to analyze the transfer of measured battery data to perform the moni-
toring and respective control measures i.e. cell balancing. 

The proposed gateway network that is ORMeshNet is validated based 
on throughput, PDR, and Goodput metrics. The validation illustrates 
that compared to existing methods, such as LoRa, Mesh topology, and 
Star topology, the proposed method tends to perform better data transfer 
with less informative data loss. It can be said that data loss was obtained 
less for the proposed method as it avoids data traffic and also consumes 
low power to transfer the data, which avoids node failure. Hence, the 
proposed method achieves a throughput of 88.97 %, PDR of 87.98 %, 
and Goodput of 83.98 %, whereas the existing methods achieve an 
overall metrics value ranging between 73.69 % and 79 %, which is 
relatively less as compared to the proposed method. 

Conclusion 

An electric vehicle’s Battery Management System is a system that 
ensures the battery pack’s safe functioning and reports its status to other 
systems. IoT-enabled BMS improves battery system monitoring, allow-
ing for more efficient EV operation. Due to many problems such as 
inadequate calculation of SOC, SOH, and SOP parameters, high data 
loss, high message delivery delay, and so on, implementing IoT for BMS 
remains a difficulty. To address this issue the work has developed an IoT 
BMS based on LR parameter estimation and ORMeshNet gateway to-
pology. The developed work estimates the parameters in a relatively 
long timescale by improving the accuracy of SOC and voltage estimates 
as compared to an estimation scheme in isolation. The microelectronic 
implementation of such a sensor is problematic, particularly for high 
current and voltage applications; this is one of the few key limitations, 
which also includes the high cost of implementation. Additional study is 
required to address these and other issues. In addition, the plan was 
validated by testing it with lead–acid batteries; however, it still needs to 
be validated with other common battery types, such as LIBs. The method 
employs an IoT-optimized routing protocol that optimises the network’s 
channel and frequency resources for resource allocation, such as data 
storage and transport. The technique shortens the duration of data 
transmission, guards against data loss or route failure, and manages 
node failure. Overall, the experimental analysis revealed that the esti-
mated SOH had an absolute error of 1.98 percent, and the calculated 
SOC obtained an RMSE or estimation error of 0.35 percent. The method 
transported the data with a throughput of 88.97 %, PDR of 87.98 %, and 
Goodput of 83.98 % and estimated SOP with a comparatively low error. 
Finally, when compared to current state-of-the-art techniques, the 
developed IoT BMS continues to be reliable. The system can be enhanced 
further by the addition of new functions. By developing a smartphone 
application that enables users to check their batteries and receive alerts 
when they are ready to run out of power, the technology can be inte-
grated into cell phones. The internet connection should be improved. 
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