ASSOCIATOR IDEAL IN (-1, 1) RINGS

By

P. SARADA DEVI#1, MANTHA SRIKANTH#2

** Assistant professor, Department of mathematics Malla Reddy Engineering College (Autonomous) Hyderabad-500100, Telangana, India.

¹Sarada.chakireddy@gmail.com

²manthasrikanth9@gmail.com

ABSTRACT: Kleinfeld and Smith [1], have proved that Semiprime flexible weakly novikov rings are associative. In this paper we show that a semiprime 2-and 3- divisible (-1,1) ring satisfying weak novikov identity is associative.

KEY WORDS: Semiprime (-1,1) ring, (-1,1) ring, Associator ideal, Weakly novikov rings.

1. Introduction: A (-1,1) ring is a nonassociative ring in which

$$(a, b, b) = 0$$
, i.e., $(a, b, c) + (a, c, b) = 0$ -----(1)

and
$$(a, b, c) + (b, c, a) + (c, a, b) = 0$$
 -----(2) for all a, b, c in R.

In any nonassociative ring R, the associator (a, b, c) is defined by (a, b, c) = (ab)c - a(bc) and the commutator is defined by (a, b) = ab - ba. [3]. A non-associative ring R is said to be weakly novikov if it satisfies the identity

$$(w, a, bc) = b (w, a, c)$$
 -----(3) for all w, a, b, c in R.

An alternative ring R is a ring in which (aa)b = a(ab) and b(aa) = (ba)a for all a, b in R. These equations are known as the left and right alternative laws respectively. The ring R is called semi prime, if for any ideal A of R, $A^2 = 0$ implies A = 0. [2]

The commutative center U of R is the set of all elements $u \in R$ such that (u, R) = 0. Let A be the associator ideal of R. The associator ideal A consists of all finite sums of associators and left multiples of associators. R is called k - divisible if kx = 0 implies x = 0, $x \in R$ and k is a natural number. Throughout this paper R will denote a 2 – and 3 – divisible (-1, 1) ring satisfying the weak novikov identity.

2. Preliminaries: In any ring the following identity

$$(wa,b,c) - (w,ab,c) + (w,a,bc) = w(a,b,c) + (w,a,b)c$$
 ------(4) holds.
In any (-1, 1) ring R the following identities hold [2] & [4]:

$$(a, b, u) + (b, a, u) = 0$$
 ----- (5)
 $(u, a, b) - 2 (b, a, u) = 0$ ----- (6)

ISSN NO: 1781-7838

and
$$(c, c, (a, b)) = 0$$
 ----- (7) for all $u \in U$ and $(a, b, c) \in R$.

By linearizing the right alternative identity (b, c, c) = 0, we obtain

$$(wa, b,c) = w(a,b,c)$$
 -----(8)

Now Comparing (4) and (8) implies -(w,ab,c) + (w,a,bc) = (w,a,b)c.

By substituting w = c in this equation, we get that

$$(c,a,b) c = 0.$$
 ----(9)

A linearization of (9) is (w,a,b) c = -(c,a,b)w. -----(10)

For arbitrary elements a, b, x, y, z in R, we observe that

$$(w^{\pi}, b, (x^{\pi}, y, c^{\pi})) = (sgn\pi) (w, b, (x, y, c)),$$
 ----- (11)

where π is any permutation on the set $\{w,x,c\}$.

Also we get
$$(w,b^{\sigma},(x,y^{\sigma},c)) = (sgn\sigma)(w,b,(x,y,c)),$$
 -----(12)

Where σ is any permutation on the set $\{b, y\}$.

Also, we get
$$(a^{\alpha},b,c^{\alpha})(x^{\alpha},y,z^{\alpha}) = (sgn\alpha)(a,b,c)(x,y,z),$$
 -----(13)

Where α stands for any permutation on the set $\{a, c, x, z\}$.

By taking q = (a,y,c)(x,y,z) and using (12) we get 2q=0.

Using 2-divisible, we know that q = 0, so that (a,y,c)(x,y,z) = 0.

By linearizing this, we get

$$(a,b,c)(x,y,z) = -(a,y,c)(x,b,z).$$
 -----(14)

3. Main Results:

Lemma 1: A is anticommutative

Proof: From (14) and (13), we have

$$(a,b,c)(x,y,z) = -(x,y,z)(a,b,c)$$
 -----(15)

In view of (8) it suffices to take all finite sums of associators. This and (15) implies that A is Anticommutative

Lemma 2: - A is alternative.

Proof: - Let q be an arbitrary element in A and w, a, b, c are arbitrary elements in R.

Using (3), (8) and (10) we get (c,a,b). qw = -(c,a,b)q.w

By taking (c,a,b) = p, we have p.qw = -pq.w -----(16)

for all p, q in A and all w in R.

By assuming that r is an element of A. we get

$$(p,q,r) + (q,p,r) = 0.$$

At this point A is both left and right alternative. Hence A is alternative.

Lemma 3: - If M is a 2-divisible anticommutative alternative ring, then (M^2) $(M^2) = 0$.

Proof: - Let w, a, b, c be arbitrary elements in M then we have (ab) $(ca) = a(bc)a = -a^2$ (bc) = 0, from alternative identities and anticommutativity. Linearizing this identity, we get (wb) (ca) = -(ab) (cw).

Applying this in conjunction with anticommutativity we observe that wb also anticommutes with ca so that 2 (wb) (ca) = 0.

Since M is 2-divisible (wb) (ca) = 0, so that (M^2) (M^2) = 0.

Using the above lemmas, we prove the following main result.

Theorem 1: - A semiprime 2-divisible (-1,1) weakly novikov ring R is associative.

Proof: - Let p, q be arbitrary elements of A, A is the associator ideal of R, and c is an arbitrary element of R. From (16), we have pq.c = -p.qc. Hence A^2 is a right ideal of R.

Also
$$(c,p,q) = -(p,q,c) - (q,c,p) = -(p,q,c) + (q,p,c)$$

= $-(pq).c+p.qc+qp.c-q.pc$ is

an element of A^2 . Since cp.q is in A^2 , c.pq = - (c,p,q) + cp.q also is in A^2 . Thus, A^2 is an ideal of R. Then lemmas (1), (2) and (3) imply that the ideal A^2 of R squares to 0. Applying semiprime, A = 0 follows and so R must be associative.

ISSN NO: 1781-7838

REFERENCES

- [1] Kleinfeld, E. and Smith, H.F. "Semiprime flexible weakly novikov rings are associative", Common in Algebra, 23(13), (1995) 5079 5083.
- [2] Irvin Roy Hentzel. "The Characterization Of (-1,1) Rings", Journal of Algebra. 30, No. 1-3, June 1974.
- [3] Hentzel, I.R. "Nil semisimple (-1, 1) rings", J. Algebra 22(1972), NO.3, 442 450.
- [4] Kleinfeld, E. and Smith, H.F. "Prime rings in the join of alternative and (-1, 1) rings", contemporary Mathematics, Vol 131(1992), 613 623.