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   Abstract  

 

This present research paper describes the application of Differential Quadrature Method (DQM) for getting the computational 

solution of singularly perturbed two point boundary value problems with varied condition in this method the concept based on 

the approximation of the derivatives of the unknown functions involved in the differential equations at the grid point of the 

solution domain.  It is a significant discretization technique in solving initial and /or boundary value problems precisely using a 

considerably small number of mesh points. To test the applicability of the method we have solved several related model 

problems and presented the computational results. The computed results have been compared with the exact/approximate 

solution to exhibit the accuracy and efficiency of the developed technique. 

Keywords- Differential Quadrature method; perturbation parameter, Singular perturbation; Ordinary differential 

equation, Boundary layer, Two –point boundary value problem, Deviating parameter  

 

I. INTRODUCTION 

The traditional finite difference method has an important limitation in practical applications, which is the requirement of a 

structured grid. The purpose of this paper is to introduce the Differential Quadrature method which is helpful   on complex 

domains by replacing the derivatives as a weighing function.  The application and analysis of the cubic spline is a continuous 

curve having some knots in the middle which is a method for all sort of model problems governed by the singular perturbation 

problems or convection-diffusion equation. The Stencil Mapping method is developed for complex domains.  

II. DESCRIPTION OF THE DIFFERENTIAL QUADRATURE METHOD 

The Differential Quadrature Method (DQM) was introduced by Bellman et al.[3] in the early 1970s and since then , the 

technique has been successfully employed  for finding the solutions of many problems in applied and physical sciences.  This 

process has been predicted by its proponents as a potential alternative to the conventional solution techniques such as the finite 

element and finite volume methods.   The basic idea of the differential Quadrature method is that the derivative of a given 

function with respect to a space variable at a specific point is approximated as a weighted linear sum of the functional values at 

all discrete points in the domain of the variable.   

In order to show the mathematical representation of the method, we select a one dimensional field variable. F(x) 

prescribed in a field domain a=x1 ≤x ≤ xn =b. Let fi =f(xi )be the function values specified in a  finite set of N discrete points xi ( 

I=1,2,3, …….N )   of the field domain in which the end points  x1 and xN are included.  Next consider the value of the function 

derivative  
   

     at some discrete points xi, and let it is expressed as a linearly weighted some of the function values.  

     ) = 
       

    ∑      
  

         (j=1,2,3,……N)                                                 (1) 

Where      
  are the weighting coefficients of the r

th
 order derivative of the function associated with point‟s xi. The 

Quadrature rule is in equation (1) to obtain the derivative. Using equation (1) for various order derivatives, one may write a 

given differential equation at each point of its solution domain and get the Quadrature analog of the differential equation as a set 

of algebraic equations in terms of the N function values.  These equations may be solved, in conjunction with the Quadrature 

method of the boundary conditions, to obtain the unknown function values provided that the weighting coefficients are known a 

priori.  

For a detailed discussion on singular perturbation problems One can refer Kevorkian and cole[10], Bender and 

Orszag[4]  and M. Stynes et. al[12]. 
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In DQM , it is  supposed that the solution of a one-dimensional differential equation is approximated by N-terms high 

degree polynomial.   

f(x) =         ∑    
    

   
                  (2) 

Where ck is a constant.   

The weighting coefficients may be determined by some appropriate functional approximations and the approximate 

functions are referred to as test functions.  The primary requirements for the selection of the test functions are of differentiability 

and smoothness.  Means the test function of the differential equations must be differentiable at least up to the n
th 

derivative ( n is 

the highest derivative)  and sufficiently smooth to be satisfied the condition of the differentiability .  A convenient and most 

commonly used choice in one-dimensional problems is the Lagrangian interpolation shape functions     , where  

f(x) =         ∑        
 

   
         (3) 

lj (x) are the monomials of the  (N-1)
th 

 order polynomials .  Observe that the number of test functions is equal to the 

number of the sampling points and for completeness, the number of the sampling points should at least be equal to one plus the 

order of the highest derivatives.  Substituting        of equatin (3) in equation (1), the weighting coefficients can be easily 

obtained.   

A. The Polynomial Test Function-Based Weighting Coefficients 

The accuracy of differential Quadrature solution depends on the accuracy of the weighting coefficients.  To obtain accurate 

weighting coefficients, Quan and Chang derived explicit formulae of the Lagrangian-interpolation –function based weighting 

coefficients for the first and second order derivatives. These formulae were obtained by taking the test function in the Lagrangian 

interpolation process as in equation (1) and (3). These explicit formulae‟s merit is that highly accurate weighting coefficients 

may be determined for any number of arbitrary spaced sampling points.   In the weighting coefficients may be determined by 

some appropriate functional approximations and the approximate functions are referred to as test functions.  The primary 

requirements for the selection of the test functions are of differentiability and smoothness.  Means the test function of the 

differential equations must be differentiable at least up to the n
th 

derivative ( n is the highest derivative)  and sufficiently smooth 

to be satisfied the condition of the differentiability .  A convenient and most commonly used choice in one-dimensional problems 

is the Lagrangian interpolation shape functions      , where  

f(x) =         ∑        
 

   
         (3) 

lj (x) are the monomials of the  (N-1)
th 

 order polynomials .  Observe that the number of test functions is equal to the 

number of the sampling points and for completeness, the number of the sampling points should at least be equal to one plus the 

order of the highest derivatives.  Substituting        of equation (3) in equation (1), the weighting coefficients can be easily 

obtained.   

B. The Polynomial Test Function-Based Weighting Coefficients 

The accuracy of differential Quadrature solution depends on the accuracy of the weighting coefficients.  To obtain accurate 

weighting coefficients, Quan and Chang derived explicit formulae of the Lagrangian-interpolation –function based weighting 

coefficients for the first and second order derivatives. These formulae were obtained by taking the test function in the Lagrangian 

interpolation process as in equatin (1) and (3).  These explicit formulae‟s merit is that highly accurate weighting coefficients may 

be determined for any number of arbitrary spaced sampling points. In the literature shown that the weighting coefficients of r
th 

  

order derivatives of the Lagrangian interpolation test functions are  

    
   

 
  

             ( i,j = 1,2 ,3,………N )                                (4) 

Where         = 
    

         
   

;       ∏        
    

       = 
      

  
 = ∏          

         

Xi „s are the locations of the grid points.  N is the number of smpling points .Here the equation (4) is valid as long as 

linearly independent  polynomials  are used as a trial functions and, thus thee values of the coefficients are affected only by the 

distribution of the grid points.   

Note that the Lagrangian interpolation shape functions li(x) has the following property  

li(x) =                        

                                                       =   0     , if     i≠ j                                 (5) 

Using equations (1), (3) and (4) based on Lagrangian interpolation shape functions , Quan and Chang[15] and Shu and 

rechards[18] obtained the following weighting coefficients.   

    
   

 
       

  
   

      

             
    ( i,j =   1,2,3…..  N , i≠j  ) 

Where        
    

(    )  
 (  ) 

   ;       ∏          
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(     )( 
   ) 

                       
 

    
     

    (  )

              
       

       
    
   

(     ) 
 , i,j = 1,2 3……N ; i          

    
     

    (  )

     = - ∑     
                       

                                                       (6) 

C. Selection of Sampling Points 

A moderate and natural choice for the sampling points is that of the equally spaced points.  But the Differential Quadrature 

solutions usually deliver more accurate results with unevenly spaced sampling points.  A rational basis for the sampling points is 

provided by the zeros of the orthogonal polynomials.   A well versed type of sampling point s in the DQM is the so called Gass-

Chebyshev sampling points.  For a domain specified by a ≤ x ≤ b and discretized by a set of unequally spaced points   then the 

coordinate of any point i can be evaluated by  

     
 

 
|     

   

   
 |                                                                                   

D. Application to Differential Equations 

The basic key procedure in the DQM method is to approximate the derivatives in a differential equation by using equation (1) the 

associated equations, we can obtain simultaneous equations which can be solved by use of Gauss elimination method or other 

methods. Means DQM is composed the following steps. 

The function to be determined is replaced by a group of function values at a group of selected sampling points. Gauss-

Chebyshev-Labatto sampling points are strongly recommended for numerical stability.   

1) Approximate derivatives in a differential equation by these N unknown function values.   

2) Form a system of linear equations and solving the system of linear equation yields the desired unknowns.   

The proper implementation of boundary condition is very important for the accurate numerical solution of the 

differential equation.  Essential and natural boundary condition can be approximated by DQM.  Using the technique in solving 

differential equation, the governing equations are actually satisfied at each sampling point of the domain, so one has one 

equation for each point, for each unknown. In the resulting system of the algebraic equation from the DQM, each boundary 

condition replaces the corresponding field equation.  This method is simple and when there is one boundary condition at each 

boundary and when we have distributed the sampling points so that there is one point at each boundary.   

E. Application to Singular Perturbation Problems 

To show the applicability of DQM, we consider the singularly perturbed two point boundary value problems of the form    

(8)                                                                    qxp  ; g(x)  b(x)y(x) (x)y a(x)  (x)y ''' 
 

With   di y(p) +d2 y
‟
 (p)  =c5                                                                    (9) 

And     d3 y(q) + d4 y
‟
(q) = c6                               (10) 

Where ε is a small parameter 0< ε ≤ 1.  p,q, d1, d2, d3, d4 , c5 ,c6 are given constants . a(x), b(x) and g(x)  are assumed to 

be  sufficiently continuously differentiable functions in [p,q ].  d1, d2, d3, d4 are non-zeros simultaneously . 

 For finding the solution of the governing equation (8) with the boundary conditions( Neumann  (9) &  (10)  by 

Differential Quadrature method.  One has to follow the method as illustrated below.   

1) Discretize the interval [p, q] such that p= x1 < x2 < ………..xN     =q 

Here N is the number of mesh points. Write yi = y(xi) & gi =g(xi) 

Apply the DQM to approximate the derivatives in the equations (8) , ( 9 )  & (10 ) that takes to the following discretized form of 

the equations . 

 ∑     
   

  
 
      ∑     

   
  

 
         -    =   0  ,  I= 1,2,3……N.                                        (11) 

With the boundary conditions  

     +   ∑     
   

   
 
                            (12) 

And 

     +  ∑     
   

   
 
                                                                                                            (13) 

use the  equations (12)and (13)  to solve for two unknown values y1 &yN 

With the associated equations  

    
 

   
[  (         

 )          
   

 ∑      
   
   ]                   (14) 

    
 

   
[  (         

 )          
   

 ∑       
   
   ]                                                     (15) 

          (         
   

)(         
   

)          
       

   
 

AXK1 =         
       

   
- (         

 )       
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AXKN =             
       

   
 -(          

   
 )       

   
 

2) Apply the equation (11) at all interior grid points xi (i=1,2,3,……N-1)  which gives to a system of N-2 equations  with N 

unknowns.   

3) Use the equation for y1 and yN from equation (14) and (15) in the obtained equations from step (2)  to get another system of 

(N-2 )  equations with n-2 unknowns  i.e. yi,i=2,3,4,……..N-1. 

4) Solve the above system of equations.   

5) Apply the available values   yi,i=2,3,4,……..N-1 from step (3)  in the equation (14) & (15) to get the approximate  values of 

y at the boundary points  x=x1  and  x= xN  . 

6) Here we have applied Gauss-elimination ( Back substitution way) 

7) Partial pivoting and employed the C code  to solve the obtained system of linear equations in the step (3)  for the unknown 

values y1 , y2 , y3,……..yN . 

III. NUMERICAL EXAMPLES 

To show the applicability of the Differential Quadrature method we have employed this developed method to singular 

perturbation problems of linear or Non-linear behavior and computed the results for various values of N and  . Some of the 

selected examples chosen because of they have been popularly discussed in the literature and exact solutions are available for 

comparison also measure the accuracy of the method.   

 Here important observation is that the Differential Quadrature method results are given at uniform grids x i =ih with 

h=0.01 and K=100, which have interpolated from the use of Spline- interpolation polynomial. For the derivation of this 

polynomial , we have used the DQM results (xi ,yi ),    i=1,2…..N are the values  of dependent variable at Non-Uniform  grid 

points ( Lagrangian)  xi obtained from equation (7) .  

 To show the accuracy and efficiency of the method we have also given the computational results (Using cubic spline 

interpolation polynomial) in terms of utmost   Absolute error.  (UAE) . for the examples (1.1) and (1.2)  at a uniform grid  

k=100,1000 with h=0.01, 0.001 with the small parameter .Here the computations results can be given in terms of mean absolute 

error or the mean absolute percentage error  or in terms of other types of error.   

Example 1.1      Consider the following linear singular perturbation probem from Dorr et.al[6] & Andargie et.al[1]. 

                              with y
‟
(0) =0 , y(1)+   y

‟
(1) =1 

In the above example a(x) =1 , b(x) =-1 and g(x) =0  

The exact solution is y(x) =  
     

       
     

                                   
                 

                                                       
 

Here    =
   √    

  
  ,       =

   √    

  
 

Here the computational results are presented in Table 1.1 (a) in terms of Optimum Absolute error (OAE) for various 

value of N and . The table 1.1(b) show the comparison with exact and Andargie et.al [1] solution.   

Table 1.1 (a) Maximum Absolute error in the Solution (Compiled by using cubic Spline interpolation poly.) for uniform 

points    =ih (i=0,1,2…..K) with h=0.01 and h=0.001 for the problem 1.1  
Table 1.1(a): 

   N=16 N=32 N=64 N=80 

 K=100 K=1000 K=100 K=1000 K=100 K=1000 K=100 K=1000 

     0.007594 0.007601 0.001786 0.001869 0.0004836 0.0004888 0.0003182 0.0003260 

     0.009632 0.009632 0.2010 0.002012 0.0004852 0.0004888 0.0002765 0.0002879 

10-3 0.01650 0.01650 0.0027841 0.002817 0.0005096 0.0005121 0.0002962 0.0003052 

10-4 0.020134 0.02013 0.003660 0.004486 0.0007957 0.0008160 0.0004524 0.0004524 

10-5 0.020532 0.02053 0.003797 0.004893 0.0009161 0.001155 0.0005478 0.0005585 

10-6 0.02057 0.02057 0.003811 0.004935 0.0009292 0.001194 0.0005609 0.0005984 

10-9 0.02057 0.02057 0.003813 0.004940 0.0009310 0.001199 0.0005633 0.0006002 

Computational results for Example 1.1 
Table 1.1(b): 

Argument 

value(x) 

Exact soln. 

y(x) 

DQM Solution y(x) N=80 

K=100,  =     

O.A.E. 259041800   

Andargiae solution  y(x), =10-4 

,h=0.01,=0.0008 

DQM Solution y(x) N=35 

K=100,  =     

O.A.E .25904180    

0.00 0.3679162 0.3680108 0.3691142 0.3679253 

0.02 0.3751303 0.3751303 0.3757321 0.3753079 

0.04 0.3829003 0.3829003 0.3833029 0.3828789 

0.06 0.3905439 0.3905439 0.3910365 0.3906134 

0.08 0.3985698 0.3986699 0.3989262 0.3985026 

0.10 0.4063769 0.4063868 0.4069751 0.4065539 

0.20 0.4494031 0.4494032 0.4497223 0.4493118 

0.80 0.8186652 0.8101927 0.8188484 0.8186589 
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0.90 0.8914529 0.8854268 0.9154872 0.9258462 

1.00 0.9999000 0.9998693 0.9999001 0.9998859 

Example 1.12   Consider the singular perturbation problem from Dorr et.al[6]  with a=1 and n=1                
                     ,               

The computational results are presented in table 1.2(a) , in terms of Maximum Absolute error  for various values of N and .   

The Table 1.2(b) compares with the exact and Andargie et.al[1]  

For this example 1.12 a(x) =-1, b(x) =-1 and g(x) =0 

The exact solution is given by      
   

       
           

                      
        where 

    =
  √    

  
  ,       =

  √    

  
 

The computational results are presented in Table 2.2(a) and 2.2(b) for different values of N and . This example exhibits 

the right end boundary layer behavior.   
Table 1.2(a): Computational results for the example1.12 

Argument 

value(x) 

Exact soln. 

y(x) 

DQM Solution y(x) ; N=46 

K=100,  =     

O.A.E. 0.1854896    

Andargie Solution  y(x), =10-4 

,h=0.01,=0.0008 

 

DQM Solution y(x) N=98 

K=100,  =     

O.A.E .2855062    

0.00 0.9999000 0.9999282 0.9999009 0.9999105 

0.20 0.8186653 0.8186924 0.8188949 0.8188948 

0.40 0.6702799 0.6702996 0.6706179 0.6706179 

0.60 0.5487997 0.5488139 0.5491892 0.5491892 

0.80 0.4493200 0.4493309 0.4497477 0.4497477 

0.90 0.4065656 0.4065794 0.4069981 0.4069981 

0.92 0.3985159 0.3985258 0.3989487 0.3989487 

0.94 0.3906255 0.3906269 0.3910585 0.3910598 

0.96 0.3828916 0.3828987 0.3833245 0.3833246 

0.98 0.3753105 0.3752099 0.3757532 0.3757532 

1.00 0.3679162 0.3679299 0.3691349 0.3691349 

Table 1.2(b): 

Argument value(x) Exact soln. y(x) 
DQM Solution y(x) ; N=56 K=100,  =     

O.A.E. 0.1195669    

DQM Solution y(x) N=88 K=100,  =     

O.A.E 0.4959109    

0.00 0.9999000 0.9999935 0.9999933 

0.20 0.8186653 0.8187791 0.8187711 

0.40 0.6702799 0.6703058 0.6703593 

0.60 0.5487997 0.5489030 0.5489054 

0.80 0.4493200 0.4494078 0.4493231 

0.90 0.4065656 0.4065762 0.4065796 

0.92 0.3985159 0.4025403 0.3985339 

0.94 0.3906255 0.3906401 0.3906351 

0.96 0.3828916 0.3715862 0.3828842 

0.98 0.3753105 0.3752778 0.3753292 

1.00 0.3679162 0.3678831 0.3679164 

Example 1.3: Consider the following homogeneous singular perturbation problem  

)1(

)1()12(
)21()(

1)1(0)0(

10,21)()( '''








x

x

e

e
xxxy

yandywith

xxxyxy














 
We have solved the above problem with  = 10

-3
 and   =10

-4
 respectively.  The approximate solutions obtained by the 

proposed method described in chapter-2 are compared with the exact solution in tables 3.2 a and 3.2 b for  = 10
-3

 and   =10
-4

 

respectively.  From the results we can conclude that the approximation is in good agreement with the exact solution.   
Table 1.3(a): 

Argument value(x) 
DQM Approximate Solution y(x) ; N=56 K=100,  =    ,   =0.009 

M. A.E   0.1195669    
Exact  Solution 

0.00000 -0.00000002 0.00000000 

0.00200 -0.85699360 -0.86093540 

0.55000 -0.14659230 -0.14660000 

0.60000 -0.03916838 -0.03919995 

0.70000 0.19060910 0.19060000 
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0.80000 0.44043510 0.44040000 

0.90000 0.71021060 0.71020000 

1.00000 1.00000000 1.00000000 

Example For the above problem 1.3 with  = 10
-4

 , h= 0.0015 & = 0.009 With DQM method the results are as given below. 
Table 1.3(b): 

Argument value(x) DQM Approximate Solution y(x) ; N=56 K=80,  =    , Exact solution 

0.00000 0.00000000 0.00000000 

0.00020 -0.86029370 -0.86429180 

0.50000 -0.24994970 -0.24990000 

0.550000 -0.14742380 -0.14741000 

0.60000 -0.03996952 -0.03991995 

0.65000 0.07255605 0.07256994 

0.70000 0.19001050 0.19006000 

0.75000 0.31253600 0.31255000 

0.80000 0.43999070 0.44004000 

0.85000 0.57251580 0.57253010 

0.90000 0.70997110 0.71001990 

0.95000 0.85249320 0.85251000 

1.00000 1.00000000 1.00000000 

Example 1.4: Consider the following homogeneous Singular value perturbation problem from Kevorkian and Cole [10] with α 

=0: 

))exp(-1/-(1

))exp(-x/-(1
  y(x) 

bygiven  issolution exact  The

1 y(1) and 0y(0) with 1x0  0, )()( '''









 xyxy

 

The computational results are presented in Table 1(a) and (b) for  = 10
-3

, 10
-4

 respectively. 
Table 1.4(a): 

X DQM Approximate Solution y(x) ; N=56 K=80,  = 10-3 Exact solution 

=0.001,h=0.01 =0.008 =0.009 =0.007  

0.00 0.00000000 0.00000000 0.00000000 0.00000000 

0.02 0.9876486 0.9899944 0.9917358 1.0000000 

0.04 0.9998419 0.9998944 0.9999319 1.0000000 

0.06 0.9999925 0.9999934 0.9999995 1.0000000 

0.40 0.9999964 0.9999964 1.0000000 1.0000000 

0.60 0.9999976 0.9999976 1.0000000 1.0000000 

0.80 0.9999988 0.9999988 1.0000000 1.0000000 

1.00 1.00000000 1.00000000 1.0000000 1.0000000 

(b) F or the above problem again selecting the values = 10
-4 

and h= 0.01 the computed results by using DQM method as follows.   
Table 1.4(b): 

Argument value(x) DQM Approximate Solution y(x) ; N=56 K=80,  = 10-3 Exact solution 

h=0.02 =0.008 =0.009 =0.007  

0.00 0.00000000 0.00000000 0.00000000 0.00000000 

0.02 0.9998016 0.9998477 0.9998792 1.0000000 

0.04 0.9999999 1.0000000 1.0000000 1.0000000 

0.60 1.0000000 1.0000000 1.0000000 1.0000000 

0.80 1.0000000 1.0000000 1.0000000 1.0000000 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 

IV. RESULT ANALYSIS AND CONCLUSIONS 

In the presented paper the Differential Quadrature method (DQM) applied to solve linear singular perturbation problems with 

boundary layer (Left, right) The major applications presented here revealed that the method has the erudite efficiency of solving 

general singularly perturbed two point boundary value problems with Dirichlet‟s boundary conditions, Neumann‟s boundary 

conditions & mixed boundary conditions, and also getting approximate solutions with minimal computations.   It can be viewed 

from the results that the methods approximated the exact solution or asymptotic or approximate solution very much with small 

number of sampling points.  This exhibits the accuracy and efficiency of the method.  Here we have given few values although 

the solutions can be compiled at desired number of equally spaced points.   

It has been observed that the computed approximate solution matches with the exact solution very fair indicates the 

efficiency of the DQM method.  Also it has been observed that increase in the number of mesh points gives rise to an increase in 
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the accuracy of the solution, as similar with the most numerical methods. However a small number of grid points in DWM give 

highly accurate results with the use of non-uniform mesh points. This method gives a supplementary technique to the 

conventional ways of solving singular perturbation problems.   
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