Identification of Most Influencing Blast Design Parameters On Mean Fragmentation Size And Muckpile By Principal Component Analysis

N. Sri Chandrahasa, B.S.Choudhary, M.S.Venkataramayya

Abstract— Mean fragmentation size, muck pile are the most emphasis factors in terms of economic and safe production in mining. It is needful to maintain certain limits to reach optimum level of blast results. The motive of study is to identify the most influencing blast design parameters on mean fragmentation size and muck pile. The intent of the research was achieved through collection of field data related to blast design parameters which are drill hole depth, drill hole diameter, no of holes, no of rows, burden, spacing, average charge per hole, explosive, firing pattern, length width ratio, powder factor, mean fragmentation size, throw from three different limestone mines in Rajasthan. The collected data has analyzed statistically using principal component analysis (PCA) in IBM SPSS and XLSTAT software's. Most influencing significant and non-significant parameters on mean fragmentation size and muck pile were drawn from regression analysis by considering P, F and R square values in IBM SPSS, For more robust results further analysis has done with XLSTST by considering influenced parameters from correlation circle according to their respective coordinates.

Keywords- Blast Design Parameters, IBM SPSS, XLSTAT, PCA.

I. INTRODUCTION

Blast design parameters play a vital role in terms of mean fragmentation size and muck pile shape. The design parameters are drill hole depth, drill hole diameter, no of holes, no of rows, burden, spacing, average charge per hole, explosive, firing pattern, length width ratio, powder factor, mean fragmentation size, throw. It is very needful to find the which parameters influencing the mean fragmentation size and throw drastically both significant and non-significant manner .The goal will be materialize by a statistical method called Principal Components Analysis in both IBM-SPSS and XLSTAT software's . It is a variable reduction method that can be used to achieve this goal. Technically this method delivers a relatively small set of synthetic variables called principal components that account for most of the variance in the original dataset (1). The Analysis has become a popular data-processing and dimension-reduction technique, with numerous applications in engineering, biology, economy and social science. We begin by identifying a group of variables whose variance can be represented more parsimoniously by a smaller set of factors, or components. The end result of the principal components analysis will tell us which variables can be represented by which components, and which

Revised Manuscript Received on December 22, 2018.

N. Sri Chandrahasa, Part-time research scholar, IIT(ISM) Dhanbad and Asst Professor, Department of Mining Engineering, MallaReddy Engineering College, Hyderabad, Telangana, India

- B.S.Choudhary, Asst Professor, Department of Mining Engineering, IIT(ISM) Dhanbad, India
- M.S.Venkataramayya, Professor, Department of Mining Engineering, Malla Reddy Engineering College, Telangana, India. Corresponding Author (E-mail : srichandru2009@gmail.com)

variables should be retained as individual variables because the factor solution does not adequately represent their information(2)

The blast design parameters (12)

- Burden: It is the minimum distance between face and blast hole. Too less burden can cause fly rock and air blast problem and too high a burden will produce sever back break and greater vibration. Burden should be 0.5 to 0.8 times of the height of bench. B = 25D to 40D
- Spacing: It is the distance between two consecutive blast holes. Spacing = (1.2 to 1.5) burden
- Stemming: It is used after explosive is loaded in blast holes. Stemming affects blown out shot of the hole and also affects fly rocks. Stemming/burden > 0.6 (for controlling fly rock)
- Bore hole depth: It not only affects fragmentation but also the level of vibration. Bore hole depth is a function of spacing and diameter of the hole. Short holes produce blasting at greater violence and also produce greater vibration level of increased frequency.
- Types of explosives: Ground vibration is directly proportional to the type of explosives used.
- Explosive quantity: The level of vibration produced by a single row instantaneous blast is same as the level of vibration produced by a single or multi row blast with delay if the charge quantity per delay of the blast with delay equals to the total charge of the single row blast. Thus it is the charge per delay that controls the level of blasting not the total charge.

Mean Fragmentation Size: The word "fragmentation" is very loosely used and can mean anything from "the limits of breaking" to "the percentage passing, above or below, a certain size." the economically significant size range of a definable volume of broken rock. .The sizes are classified in to oversize, Fines and Mid-range(6). If the boulder size above which secondary breaking is necessary before further handling in underground mines is considered as a oversize and this can be as little as 300mm, while in opencast mines it is seldom defined as greater than 100mm. If the particle size below which product can either not be sold, or which

becomes difficult to handle due to flow, or other properties will be fall under fines. It is common for a minimum size of

6mm for coal or dolomite, but in gold ores this may be as small as 1 mm. Finally

& Sciences Publication

Identification Of Most Influencing Blast Design Parameters On Mean Fragmentation Size And Muckpile By **Principal Component Analysis**

mid-range sizes, those which have significant but not terminal importance for handling and the ability to achieve premium pricing.(4&10)

The Kuz-Ram model combination of Kuznetsov and Rosin-Rammlereaquations has been widely applied to predict blast induced fragmentation since its introduction (Cunningham 1983). It allows a blast designer to quickly estimate the fragment size distribution based on a given set of rock parameters, drill pattern and explosives loading factors. After many substitutions Kuz-Ram model found the index number n(3&5)

Muck pile: The parameters are throw, drop and lateral spreading .Throw is the horizontal distance up which center of gravity of blasted muck lies, drop of muck pile is the vertically lowering of the blasted muck and lateral spreading is the horizontal distance up to the blasted muck lies.(6&7).

II. OBJECTIVE

The main intent of research was to investigate the most influencing blast design parameters on mean fragmentation size and muck pile by the principal component analysis in both IBM SPSS and XLSTAT so that it is easy to maintain blast design parameters up to the mark to get optimum and safe production.

III. RESEARCH METHODOLOGY

In order to fulfill the research objective many data's were collected from three different cement companies in rajasthan, Shree Cements, Wonder cements and Indian cements. The Nimbeti Limestone Mines of M/s Shree Cement Ltd is a highly mechanized Limestone mines having 15 million tones rock handling per annum & consuming 2500MT of explosives per/annum the blasting was done by down line initiation with noise less trunk line detonator at top and blast holes of 165 mm diameter are drilled by using rotary drill and the holes are charged with bulk ANFO explosives. Bhatkotri Lime Stone Mines of M/s Wonder Cement Limited.Bhatkotari limestone deposit forms a part of the Nimbahera belt and belongs to Semri series of Lower Vindhyan age and the total thickness of the Nimbahera limestone is estimated to be 144 meter, of which the bottom is deep reddish purple in colour, while the upper 133.5 meter is grey in colour and the production of Quarry was over 12000-14000 tone/ day and the blasting practice in the mine was to use ANFO in conjunction with cartridge slurry explosive. The Partipura limestone Mine (PLM) -a captive limestone mine of Trinetra Cement Limited (TCL) a Subsidiary company of The India Cements Limited (ICL). PLM is fully mechanized opencast Limestone mine and the blasting practice in the mine was ANFO in conjunction with cartridge slurry explosive.

Fifty blast results has collected with respect to various blast design parameters from above said cement companies and here independent variables are mean fragmentation size and throw and rest all will fall under dependent variables and the cases are categorized in to two, In one case independent variable as mean fragmentation size and dependent variables are rest all factors and in second case independent variable as throw and dependent are remaining all parameters and the analysis has done with respective to three different mines in

two cases. For statistical analysis a method of principal component analysis has executed in both IBM SPSS and XLSTAT software's for sake of robust results. The method is mainly concerned with identifying variances and correlations in the data. Obtaining a factor solution through principal components analysis is an iterative process that usually requires repeating the SPSS factor analysis procedure a number of times to reach a satisfactory solution.

lethod:	Principal compon	ents 🗾	Continue
Analyze Correl Covar	lation matrix iance matrix	Display Unrotated factor solution Scree plot	Cancel Help
Extract – Eigen Numb	values over: 1		

Figure1. Operation of principal component

IV. LAB WORK Mean Fragmentation Size

& Sciences Publication

Results Obtained From Shree Cements (Case 1)

Figure2. Obtained regression analysis with PCA components in IBM SPSS

		С	ompon	ent	
	1	<mark>2</mark>	3	4	5
Front row	.857	<mark>220</mark>	.062	.196	.028
burden					
Burden	.161	<mark>592</mark>	.508	.188	251
Spacing	.061	<mark>843</mark>	.333	041	003
Delay	.230	<mark>.656</mark>	.346	.012	.353
No of holes	181	<mark>.483</mark>	.694	009	.209
No of rows	589	<mark>.036</mark>	.125	.709	.138
Hole depth	.590	<mark>.111</mark>	.062	.561	.391
L/W ratio	.506	<mark>.361</mark>	.374	604	168
Se/Be ratio	687	<mark>323</mark>	.343	259	.280
MFS	.170	<mark>.339</mark>	.351	.328	604
Throw	.798	<mark>077</mark>	197	.076	031
Firing	.420	<mark>151</mark>	.348	161	.331
Pattern					
Extraction Me	thod: F	rincipal	Compo	nent Ana	lysis.5
components e	xtracted	1.			

Figure3.Extracted components from matrix

Figure4.Variable chart obtained from XLSTAT

Muckpile Results Obtained From Shree Cements (Case 1)

Regression	Statistics
Multiple R	0.769997
R Square	0.592896
Adjusted R	
Square	0.582718
Standard	
Error	2.634584
Observation	
S	42

	Df	SS	MS	F	Significan ce F
		404.349	404.349	58.2549	
Regression	1	6	6	5	2.51E-09
		277.641	6.94103		
Residual	40	4	4		
Total	41	681.991			

	Coefficien ts	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
		1.17505	-	0.93786		2.28270	-	2.28270
ntercept	-0.09217	7	0.07844	8	-2.46705	6	2.46705	6
		0.04909	7.63249	2.51E-		0.47396	0.27550	0.47396
1pc	0.374733	7	3	09	0.275504	2	4	2

Figure 5. Obtained regression analysis with PCA components in IBM SPS

			Compor	nent	
	<mark>1</mark>	2	3	4	5
Front row	<mark>.829</mark>	.293	.222	.040	044
burden					
Burden	<mark>.123</mark>	.820	015	004	.211
Spacing	<mark>020</mark>	.877	.021	106	216
Dalay	<mark>.177</mark>	36	.102	.734	.109
Delay		8			
No of	<mark>259</mark>	05	016	.799	.288
holes		1			
No of rows	<mark>203</mark>	.021	886	.139	.195
Hole donth	<mark>.790</mark>	01	272	.360	074
Hole depui		9			
L/W ratio	<mark>.095</mark>	06	.856	.360	.206
L/ w Taulo		6			
Se/Be ratio	<mark>752</mark>	.348	176	.211	279
MFS	<mark>.193</mark>	.023	.033	.074	.834
Throw	<mark>.760</mark>	.028	.295	125	077
Firing	<mark>.262</mark>	.300	.269	.404	247
Pattern					

Figure6.Extracted components from matrix

Figure7.Variable chart obtained from XLSTAT

Mean Fragmentation Size Results Obtained From

& Sciences Publication

Identification Of Most Influencing Blast Design Parameters On Mean Fragmentation Size And Muckpile By **Principal Component Analysis**

Wonder Cements (Case 2)

R Square 0.727229 Adjusted R 0.001905 Standard 0.039068 Observation 23 ANOVA Df SS MS F ceF 1.04198 Regression 1 0.00159 0.00159 8 0.04319		1012	0.03205	0.00152				
R Square 0.72729 Adjusted R Supare 0.001905 Standard Error 0.039068 Observation <u>s</u> 23 ANOVA Df SS MS F core F	Regression	1	0.00159	0.00159	1.04198 8	0.04319		
R Square 0.772729 Adjusted R Standard 0.001905 Standard 0.039068 Observation s 23		Df	55	MS	F	Significan ce F		
R Square 0.772729 Adjusted R 0.001905 Standard 0.039068 Observation <u>23</u>	ANOVA							
R Square 0.772729 Adjusted R Square 0.001905 Standard Error 0.039068 Observation	S	23						
R Square 0.772729 Adjusted R Square 0.001905 Standard	Observation	0.039068						
R Square 0.772729 Aguated R Square 0.001905	Standard	0.020069						
R Square 0.772729	Adjusted R Square	0.001905						
	R Square	0.772729						
Multiple R 0.217423	Multiple R	0.217423						

Figure8. Obtained regression analysis with PCA components in IBM SPSS

		C	Compon	ent	
	1	2	3	<mark>4</mark>	5
Burden m	366	054	198	<mark>112</mark>	.661
Spacing m	422	.212	.742	<mark>.408</mark>	029
Depth of holes m	297	.272	.890	<mark>.036</mark>	013
No of holes	.886	.277	271	<mark>.075</mark>	.046
No rows	.551	763	.219	<mark>.063</mark>	058
Explosive ANFO kg	.817	.321	.333	<mark>109</mark>	.199
Throw	.333	337	131	<mark>.666</mark>	101
Total explosive kg	.808	.346	.398	<mark>039</mark>	.227
Firing pattern	.551	763	.219	<mark>.063</mark>	058
LW Ratio	.415	.844	234	<mark>.141</mark>	034
MKSK50	148	128	098	.568	.627
Extraction Me	thod:. a.	5 comp	onents	extracted	d

Figure9.Extracted components from matrix

Figure10 Variable chart obtained from XLSTAT Muckpile Results Obtained From Wonder Cements

(Case 2)

Regression	o Statistics							
Multiple R	0.121872							
R Square	0.848528							
Adjusted R								
Square Standard	-0.03206							
Error Observation	4.851939							
s	23							
ANOVA								
	Df	55	MS	F	Significan ce F	-		
		7.45345	7.45345	0.31661				
Regression	1	1	1	1	0.034796			
		494.367	23.5413					
Residual	21	6	2					
	10001	501.821						
Total	22	1						
	Coefficien	Standard	100000000	1000 100	Lower	Upper	Lower	Upper
	ts	Error	t Stat	P-value	95%	95%	95.0%	95.0%
		2 10899	4 02001	0.00061			4 09229	
Intercept	8.478197	7	5	9	4.092299	12.8641	9	12.8641
		0.06975	0.56268	0.04796		0.04796	0.48411	0.18430
4pc	0.039248	2	2	1	0.484113	1	3	5

Figure11. Obtained regression analysis with PCA components in IBM SPSS Figure12 Extracted components from matrix

		Co	omponent	;	
	1	2	3	<mark>4</mark>	5
Burden m	366	054	198	<mark>112</mark>	.661
Spacing m	422	.212	.742	<mark>.408</mark>	029
Depth of holes m	297	.272	.890	<mark>.036</mark>	013
No of holes	.886	.277	271	<mark>.075</mark>	.046
No rows	.551	763	.219	<mark>.063</mark>	058
Explosive ANFO kg	.817	.321	.333	<mark>109</mark>	.199
Throw	.333	337	131	<mark>.666</mark>	101
Total explosive kg	.808	.346	.398	<mark>039</mark>	.227
Firing pattern	.551	763	.219	<mark>.063</mark>	058
LW Ratio	.415	.844	234	<mark>.141</mark>	034
MKSK50	148	128	098	<mark>.568</mark>	.627

Figure13.Variable chart obtained from XLSTAT

Mean Fragmentaion Size

& Sciences Publication

Results Obtained From Indian Cements (Case 3)

SUMMARY O	UTPUT							
Sommart 6	onor	2						
Regression	o Statistics							
Multiple R	0.465376							
R Square	0.216575							
Adjusted R								
Square	0.160616							
Standard								
Error	0.100879							
Observation	11 March 10							
S	16							
ANOVA					Clanifican	-		
	Df	SS	MS	F	ce F			
		0.03938	0.03938	3.87024				
Regression	1	6	6	6	0.069288			
		0.14247	0.01017					
Residual	14	2	7					
		0.18185						
Total	15	8						
	Coefficien	Standard			Lower	Upper	Lower	Upper
	ts	Error	t Stat	P-value	95%	95%	95.0%	95.0%
		0.03359		1.05E-		0.29631	0.15222	0.29631
Intercept	0.224268	1	6.67648	05	0.152223	4	3	4
		0.00041	1.96729	0.06928				
pc1	0.000809	1	4	8	-7.3E-05	0.00169	-7.3E-05	0.00169

Figure 14. Obtained regression analysis with PCA components in IBM SPSS

	Com	ponent	Matrix	K ^a		
			Comp	onent		
	1	2	3	4	5	6
Burden m	<mark>.405</mark>	.702	.034	.021	479	.287
Spacing m	<mark>.454</mark>	.804	.217	052	078	.202
Depth of holes m	<mark>.902</mark>	.056	120	.181	.287	.053
Front row burden m	<mark>.034</mark>	.645	373	.114	.502	.074
No of holes	<mark>621</mark>	.031	.695	.050	042	.214
No of rows	<mark>718</mark>	.403	.124	.443	.114	.152
Explosive quantity Kg	<mark>.228</mark>	.084	.902	.289	.026	014
Charge length m	<mark>.900</mark>	.109	.088	.252	.209	.100
Firing pattern	<mark>.238</mark>	610	355	.379	.049	.450
Total delay time ms	<mark>361</mark>	374	.225	.045	.678	.339
Throw m	<mark>.118</mark>	747	023	.120	466	.373
LW Ratio	<mark>.347</mark>	291	.303	772	.249	065
MKSK50	.746	328	.356	124	.027	.061
Extraction Metho extracted	d: Princ	ipal Co	mponer	nt Anal	ysis. a.	6

Figure16.Variable chart obtained from XLSTAT Muckpile Results Obtained From Indian Cements

(Case3)

SUMMARY O	UTPUT							
Rearession	Statistics							
Multiple R	0.097984							
R Square	0.760091							
Adjusted R Square Standard	-0.06114							
Error	1.050518							
Observation								
\$	16							
ANOVA								
	Df	.5.5	MS	F	Significan CP F			
		0.14977	0.14977	0.13571				
Regression	1	4	4	6	0.061809			
-		15.4502	1.10358					
Residual	14	3	8					
Total	15	15.6						
	Coefficien ts	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
		0.69614				3.40558	0.41940	3.40558
Intercept	1.912492	8	2.74725	0.01573	0.419404	1	4	1
pc6	0.005764	0.01564 5	0.36839 6	0.05618	-0.02779	0.03931	0.02779	0.03931 9

Figure17. Obtained regression analysis with PCA components in IBM SPSS

	Component										
	1	2	3	4	5	<mark>6</mark>					
Purdon m	.405	.702	.03	.021	479	<mark>.287</mark>					
Burden III			4								
Spacing m	.454	.804	.21	052	078	<mark>.202</mark>					
Spacing in			7								
Depth of holes	.902	.056	12	.181	.287	<mark>.053</mark>					
m			0								
Front row	.034	.645	37	.114	.502	<mark>.074</mark>					
burden m			3								
No of holes	621	.031	.69	.050	042	<mark>.214</mark>					
NO OF HOLES			5								
No of rows	718	.403	.12	.443	.114	<mark>.152</mark>					
110 01 10 03			4								
Explosive	.228	.084	.90	.289	.026	<mark>014</mark>					
quantity Kg			2								
Charge length	.900	.109	.08	.252	.209	<mark>.100</mark>					
m			8								
Firing nattern	.238	610	35	.379	.049	<mark>.450</mark>					
Thing pattern			5								
Total delay	361	374	.22	.045	.678	<mark>.339</mark>					
time ms			5								
Throw m	.118	747	02	.120	466	.373					
THIOW III			3								
LW Ratio	.347	291	.30	772	.249	<mark>065</mark>					
Liv Iulio			3								
MKSK50	.746	328	.35	124	.027	<mark>.061</mark>					
	1		6								

Figure18.Extracted components from matrix

Figure19.Variable chart obtained from XLSTAT

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

Identification Of Most Influencing Blast Design Parameters On Mean Fragmentation Size And Muckpile By **Principal Component Analysis**

V. RESULTS AND DISCUSSIONS

The PCA results were drawn from component matrix according to their R2 and F values in regression analysis and results were compared with correlation circle in XLSTAT.

Shree Cements:

Influencing parameters on MFS:

Significant parameters

1. Spacing 2.Throw 3.Depth of hole 4. Throw 5 7 .L/W Ratio .No Rows 6.No Holes

Non-Significant parameters

Figure20.Significant parameters

Figure21.Non-significant parameters

Influencing parameters on Muck pile:

Significant parameters

1 Spacing 2.Throw3.Depth of hole 4.MFS 5. Firing pattern 6.No Rows 7.No Holes 8.L/W Significant parameters

1. Explosive 2. Burden

Figure22.Significantparameters

Figure23.Non-significant parameters

Wonder cements:

Influencing parameters on MFS:

Significant parameters

1 Spacing 2.Throw 3.Depth of hole 4. Throw 5. Firing pattern 6.Explosive 7.Burden 8.Charge length 9.Front row burden

Non-Significant parameters

Figure 24.Significant parameters

Figure25.Non-significant parameters

Influencing parameters on Muck pile:

Significant parameters

1 Spacing 2.MFS 3.Depth of hole 4. Delay 5.Firing pattern 6.Burden 7.Charge length 8.Front row 10.No Holes burden 9.No Rows Non-Significant parameters

1. Explosive 2.L/W Ratio

Figure 26.Significant parameters

Figure27.Non-significant parameters

Published By:

& Sciences Publication

Indian cements:

Influencing parameters on MFS:

Significant parameters

1. Delay 2.No Rows 3.No Holes 4.Depth of hole 5.L/W Ratio

Non-Significant parameters

1. Front row burden 2.Burden 3.Spacing 4.Firing pattern 5.Throw

Figure 27.Significant parameters

Figure 29.Non-significant parameters

Influencing parameters on Muck pile:

Significant parameters

1. Front row burden 2. Burden 3. Delay 4. Depth of hole 5.L/W Ratio 6. MFS

Non-Significant parameters

1. Spacing2.No Rows3.No Holes4.Se/Be5. Firing pattern

Figure 30.Significant parameters

Figure 31.Non-significant parameters

6. CONCLUSION

• PCA found that if Burden, Front Row Burden and Spacing decreases MFS will increase these are inversely proportional and from XLSTAT results given that Burden is negatively, Front Row Burden is positively and Spacing is orthogonally correlated

- PCA found that if Explosive charge, Delay, Depth of the hole, No of holes, spacing burden ratio increase MFS will increase these are directly proportional and from XLSTAT results given that Explosive, Delay, Depth of the hole, No of holes, spacing burden ratio are positively correlated
- PCA found that if Burden, Front Row Burden, Firing pattern decrease/change throw will decrease both are directly proportional and from XLSTAT results given that Burden is positively. Front Row Burden positively correlated and firing pattern negatively correlated
- PCA found that if Explosive charge, Delay, Depth of the hole, spacing burden ratio increase throw will decrease both are inversely proportional and from XLSTAT results given that Explosive is negatively correlated and delay, depth of the hole, spacing burden ration positively correlated

REFERENCES

- Cristinelconstantin., "Principal component analysis a powerful tool in computing marketing information" Bulletin of the Transilvania University of Braşov Series V: Economic Sciences, Vol. 7 (56) No. 2, 2014
- SvanteWold*KimEsbensen,PaulGeladi.," Principal component analysis" Elsevier: Volume 2, Issues 1–3, Pages 37-52, August 1987.
- Cunningham, C.V.B.,"TheKuz-Ram model for prediction of fragmentation from Blasting" Symposium on Rock fragmentation by blasting, Lulea University, pp 439-453, Sweden 22-26August, 1987
- 4. Choudhary., "B.S. Assessment of fragmentation in limestone quarry blasts" Ph.D. thesis, Banaras Hindu University, Varanasi,2011 (Unpublished).
- Kuznetsov, V.M., "The mean diameter of the fragments formed by blasting rock" Soviet Mining Science 9(2);144-148 , 1973
- 6. Choudhary, B.S., "Firing Patterns and its effect on muck pile shape Parameters and fragmentation in quarry blasts" International Journal of Research in Engineering and Technology, Volume: 02 Issue: 09, Sep-2013
- 7. Mohammad FarouqHossaini et.al." Minimizing Mucking Time by Prediction of Muckpile Top Size in Tunnel Blasting" A CaseStudy University of Wollongong. International Journal of Engineering and Technology, 2014.
- 8. P. K. Singh et.al.,"Blast design and fragmentation control key to productivity",2004 (Unpublished).
- T. Hudaverdi n, C. Kuzu, A. Fisne., "Investigation of the blast fragmentation using the mean fragment size and fragmentation index" International Journal of Rock Mechanics & Mining Sciences, 2012
- P.K. Singh et.al, "Rock fragmentation control in opencast blasting. Journal of Rock Mechanics and Geotechnical Engineering ,2016
- B. Adebayo and J.M. Akande.," Effects of blast-hole deviation on drilling and muck-pileloading cost" International Journal of Scientific Research and Innovative Technology ISSN: 2313-3759 Vol. 2 No. 6; June 2015.
- 12. Carlos lopezjimeno.,"Drilling and blasting of rocks"A published book,1995..

Published By: Blue Eyes Intelligence Engineering & Sciences Publication