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Abstract: Turning accuracy and high productivity rates have 

become the key determinants and both accuracy and surface 

quality plays vital role. In this publication a diversified 

multivariate model of an orthogonal turning operation has been 

formulated considering a series of turning experiments. Using the 

obtained experimental data, the cutting dynamics has been 

modeled with radial basis function neural network for different 

work piece materials. In par with basic cutting parameters, tool 

overhang and tool wear were selected as inputs and static cutting 

edge forces, average roughness values and critical chatter length 

on work piece were presented as outputs. For four work materials 

considered in experiments, four neural networks were trained. 

Using these neural network models, optimum cutting parameters 

such as speed, depth of cut, feed and tool-overhang lengths are 

projected by minimizing total cutting edge force with the help of 

genetic algorithms. 

Keywords: cutting parameters, design parameters, neural 

network and genetic algorithm. 

I. INTRODUCTION 

Turning is one of the widespread machining operations in 

various industries. In this process, it work-piece rotates 

about its own longitudinal axis on the head stock of a 

machine called lathe. The work-piece is supported by the 

chuck at one end called head stock and by a tailstock at the 

other. A cutting tool mounted on the tool post of the lathe is 

fed along the work-piece axis to remove material according 

to the dimensions and produce the required shape. 

In this process, there are several parameters that define 

the cutting conditions. They are cutting speed, feed rate, and 

cutting depth. Cutting speed is defined as the rate at which 

the uncut portion of the surface of the work-piece passes 

along the cutting edge of the tool. Feed rate is calculated as 

the distance moved by the cutting tool along the longitudinal 

direction for each revolution made. Cutting depth is defined 

as the thickness of the metal that is removed along the radial 

direction. by the cutting tool in the longitudinal direction in 

each revolution. Cutting depth is the thickness of the metal 

removed in the radial direction. The principal surface 

machined is concentric with the axis of the work-piece as 

shown in Fig 1.1. 
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Figure 1.1: Cylindrical turning on a lathe 

 

Turning operations are more predominantly used to more 

accurately and precisely produce net shapes in the 

manufacturing sector. Applications range from the turning 

of dies and molds, jet engine spares made from heat resistant 

alloy components, aircraft fuselage components and wing 

panel structures, and especially biomedical parts. The 

machining of small and compact structures may technically 

only take a few minutes compared to the overall mass 

production applications in industries, while complex dies, 

molds and aerospace structures in fact may take several 

more days of turning when accuracy and productivity rates 

become crucial determinants in the economic persistence of 

the manufacturing industry. Both the accuracy of dimension 

and surface quality of machined parts are usually influenced 

by the relative vibrations between the machine tool used and 

machine part structures, the selection of appropriate tool 

geometry and grade, the positioning accuracy of the tool and 

the work piece, and the thermal stability of the computer 

controlled machine tools. Process planners usually select 

cutting conditions such as depths of cut, spindle speeds, and 

feed-rates based on their accumulated experience and 

knowledge which has been gained earlier. 

II. Experimental analysis 

Further in the third study, the experimental cutting tests 

are performed on the 1Hp center lathe machine available at 

the CMTI Bangalore. To record output response parameters  

such as the cutting force of the components along all three 

directions (X.Y and Z), flank wear, surface roughness & 

critical chatter lengths with the process input factors.  
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In this parametric study four different work piece 

materials are considered for the experimental analysis and 

their levels are given in the Table 2.1. 

Table 2.1 Cutting operational parameters with various 

levels 

Work-

piece 

Material 

Cutting 

Speed rate 

(m/min) 

Feed rate 

(mm/rev) 

Depth of 

cut (mm) 

Tool 

overhang 

length(mm) 

EN19steel 7,14, 24 
0.1 

(constant) 

0.1,0.2,0.

3,0.4,0.5,

0.6,0.7 

52,56,59,63 

EN9 Steel 7,14, 24 
0.1(consta

nt) 

0.1,0.2,0.

3,0.4,0.5, 

0.6,0.7 

53,56,60,63 

Mild Steel 7,14, 24 

0.1, 0.138, 

0.175, 0.2, 

0.275, 

0.35, 0.5 

0.1(consta

nt) 
52,55,58,61 

Aluminium 

6061 
7,14, 24 

0.1, 0.138, 

0.175, 0.2, 

0.275, 

0.35, 0.5 

0.1(consta

nt) 
54,57,59,63 

The experimental cutting tests has been initiated for the 

few lengths of the work pieces as the tool advances its 

structural properties such as cutting stiffness is drastically 

changes. The output responses such as feed force (Fx). 

Radial forces (Fy), Tangential forces (Fz) and the critical 

lengths due to chatter are considered by varying the levels of 

feed(f), cutting speed(v) , depth of cut(d) and tool overhang 

lengths. In the present case, the tool overhang is considered 

as the length between the end of the cutting edge to the 

shank position in the tool holder. Using the meter scale the 

appropriate lengths has been adjusted in the tool holder. 

Figure 2.1 demonstrate the experimental lathe setup 

employed to carry out the cutting tests. 

 

 
Fig.2.1 Experimental setup employed 

 

2.1 Neural network 

In comparison with the back propagation neural network 

models, the recent network like Radial basis function has 

multiple advantages during its functioning. This RBF 

network, contains a single hidden layer at its centre and 

further the training is to be provide at the output layer with a 

high convergence rate. The working principle and the training 

of the layers are briefly explained at the below section. 

Radial basis network consists of three predominant layers: 

(i) the basic Input layer (i) Hidden layer which consists of 

radial basis neurons (iii) output layer which possess linear 

neurons. The input layer passed through a nonlinear 

stimulation function called radial basis function to extract the 

outputs from the above mentioned hidden neurons. Figure 

2.2 shows the RBF model with different inputs and outputs. 

 

 
Fig.2.2. Schematic of a RBF network 

 

An RBF can be designated as a multidimensional function 

that is dependent on the distance between the input vector 

and the center vector. The input layer comprises of neurons 

with a linear function that only feeds the input to the hidden 

layer. Further the association between the input layer and 

the hidden layer are not biased, that is each of the hidden 

neuron receives a corresponding input value which is intact. 

The hidden neurons are specific processing units that 

perform the radial basis function. 

(3) Inverse multi-quadratic function: f (r) = (r
2 
+ 

2
)

–1/2 

(4) Thin-plate-spline function: f (r) = r
2
 log(r) 

(5) Piece-wise linear function: f (r) = ½(r+1–r-1) 

(6) Cubic approximation function: f (r) = ½(r
3
+1–r

3
-1) 

Here  is a real time parameter (called scaling parameter) 

and r denotes the distance between the input vector X and 

the center vector at i
th

 hidden node Ci. The Distance is 

customarily measured by the Euclidean norm written as: 

iX C . Let the input vector at any time n be denoted by 

X(n) = [x1(n), x2(n),……..xN(n)]
T
 and let the center vector of 

each and every hidden neuron be denoted by Ci(for i = 

1,2,…..H), where H is the neuron number of the hidden 

layer. Then the output is given by 

hi(n) = fi( iX(n) C )  ( for i = 1,2,3, 4…..H) (1) 

The association between the hidden layer and the output 

layer are biased. Each neuron from the output layer has a 

linear input-output relationship so that they perform the 

simple summations equations: that is, the output executed by 

the i
th

 neuron in the output layer at any given time n is 
H H

i ij j ij j j

j 1 j 1

y (n) w h (n) w f ( X(n) C )
 

    , (i = 1,2,3, 

…….L)  (2) 

where L is the number of neurons in output layer and wij 

is the connection weight between the j
th

 neuron in the hidden  

layer and i
th

 neuron in the output layer. At the end of 

processing all input sets (known as epoch or cycle), a square 

error is computed according to the relation: 

 

 

 

 

{C2} 

{C1} 

x

n 

x

2 

x

1 

{Cm} 

Input layer 

Hidden layer 
Output layer 

No weights 

{Ci} 

yL(n

) 

 

 

 

y1(n) 

y2(n) wij 



International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-7 Issue-5S2, January 2019 

    532 

Published By: 

Blue Eyes Intelligence Engineering 
& Sciences Publication  Retrieval Number: ES209501751919©BEIESP 

MSE =

M
2

n 1

ˆ(Y(n) Y(n))


  (3) 

where Y(n) = [y1(n) y2(n) ……. yL(n)]
T
 is the output 

vector and Ŷ(n) is the corresponding desired output (target) 

vector and M is the total number of available training sets. 

III. Results and discussions 

From practical point of view in the first two sets of 

experiments, feed is kept constant while in the last two sets 

of experiments depth of cut is maintained constant. 

3.1 Cutting forces with variation in tool overhang lengths 

(TOL) 

In the initial conduction of cutting experiments, cutting 

forces has been evaluated with the deviation in the depth of 

cut at different levels of tool overhang lengths. It is clearly 

evident that when there is an upsurge in the overhang 

lengths the magnitude of the cutting edge forces has been 

drastically improved in three cutting directions as shown in 

the Fig.3.1 

 

 
(a) EN9 Steel 

 
(b) EN19 Steel 

 
(c)Mild Steel 

 
(d) Al 6061 

Figure: 3.1. Variation of cutting forces with different TOL 

 

3.2 Flank wear with variation in tool overhang lengths 

(TOL) 

Furthermore, the Figures 3.2(a) to 3.2(d) represents the 

effect of tool overhang length on the flank wear. It is 

observed that an increment in the values of the tool 

overhang length, there is an increase in the flank wear for 

different materials. 

 
EN9 Steel 

 
(b) EN19 Steel 

 
(c) Mild Steel 

 
(d) Al 6061 

Fig 3.2(a)-(d) Flank wear with variation in tool overhang 

lengths (TOL) 
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3.3 Surface roughness with variation in tool overhang 

lengths (TOL) 

The effect of tool over hang length on the surface 

roughness for different materials has been analyzed. It is 

observed that, as the tool overhang length increases there is 

a reduction in the surface roughness (Ra) values as shown in 

Fig.3.3(a)-(d). 

 

 
(a) EN9 Steel 

 
b) EN19 Steel 

 
(c) Mild Steel 

 

 
(d) Al 6061 

Fig. 3.3 (a)-(d) Deviation of tool overhang length with the 

surface roughness (Ra) 

 

Figures 3.4 show the network training in terms of mean 

square error variation at every cycle. Here j is selected as 1. 

As j increases the average predictions were found to be 

reasonably poor for EN9 steel. 

 

 
Fig. 3.4 Variation of mean square error during turning. 

 

IV. Experimental studies 

The cutting parameters such as the cutting speed, the tool 

feed rate and the depth of cut attained have different effects 

on the cutting forces, tool wear and tear and exterior surface 

quality and critical chatter length. Hence in order to know the 

simultaneous effect of tool overhang along with the standard 

cutting factors on cutting edge forces, surface roughness 

along with tool wear status, a chain of cutting experiments 

were carried out. These are shown for four different work 

materials (EN9 steel, EN19 steel, Mild steel and Aluminium 

6061) in Tables 4.1 and 4.2. Tables also depict optimum 

machining settings predicted by GA program for the 

respective minimum values of cutting forces. 
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Table-4.1: Output values of Genetic Algorithm Program with respect to input ranges (d=0.2mm) 

Material v(m/min) f(mm/rev) l(mm) Fx(N) Fy(N) Fz(N) Ra(µm) Cc(mm) vo(m/min) fo(mm/rev) lo(mm) 

EN19 

Steel 

7-14 0.1-0.4 53-57 462.6 631.5 723.6 1.46 16.23 7 0.1 56.95 

7-14 0.1-0.4 57-63 466.8 631.0 723.8 1.35 16.21 7 0.1 63.00 

7-14 0.4-0.7 53-57 542.9 810.8 923.9 2.51 14.27 7 0.4 56.90 

7-14 0.4-0.7 57-63 539.3 808.6 923.3 2.45 14.28 7 0.4 62.97 

14-22 0.1-0.4 53-57 586.4 760.1 856.7 2.12 18.07 14 0.1 57.00 

14-22 0.1-0.4 57-63 591.5 755.4 857.2 2.14 18.12 14 0.1 57.00 

14-22 0.4-0.7 53-57 595.4 801.5 964.6 3.21 13.71 14 0.4 56.89 

14-22 0.4-0.7 57-63 601.5 785.0 966.5 3.23 13.12 14 0.4 62.95 

EN9 

Steel 

7-14 0.1-0.4 52-56 441.6 430.4 725.6 1.49 17.7 7 0.1 55.9 

7-14 0.1-0.4 56-62 489.8 513.8 912.5 1.38 14.8 7 0.1 61.9 

7-14 0.4-0.7 52-56 504.0 551.1 934.8 2.54 14.2 7 0.4 55.9 

7-14 0.4-0.7 56-62 584.0 631.8 921.3 2.49 13.0 7 0.4 62.0 

14-22 0.1-0.4 52-56 424.1 615.0 834.7 2.18 16.4 14 0.1 55.9 

14-22 0.1-0.4 56-62 430.3 623.3 788.6 2.19 16.2 14 0.1 61.2 

14-22 0.4-0.7 52-56 688.6 736.1 989.6 3.29 12.0 14 0.4 55.9 

14-22 0.4-0.7 56-62 689.9 737.8 998.7 3.28 12.2 14 0.4 61.5 

Table-4.2: Output values of Genetic Algorithm Program with respect to input ranges (f=0.1 rev/mm) 

Material 
v 

(m/min) 
d (mm) l(mm) Fx (N) Fy (N) Fz (N) Ra (µm) Cc (mm) 

vo 

(m/min) 
do (mm) lo (mm) 

Mild 

steel 

7-14 0.1-0.3 54-57 598.6 888 1334.2 1.86 9.64 7 0.1 56.9 

7-14 0.1-0.3 57-61 597.3 889 1339.7 1.92 9.65 7 0.1 61.0 

7-14 0.3-0.5 54-57 620.2 1032 1443.2 2.96 7.73 7 0.3 56.9 

7-14 0.3-0.5 57-61 639.0 1031 1442.6 2.98 9.24 7 0.3 61.0 

14-22 0.1-0.3 54-57 773.9 1175 1556.8 3.85 8.96 14 0.1 56.9 

14-22 0.1-0.3 57-61 773.9 1178 1557.9 3.89 8.97 14 0.1 60.9 

14-22 0.3-0.5 54-57 716.7 1224 1587.3 4.67 8.57 14 0.3 56.8 

14-22 0.3-0.5 57-61 718.6 1225 1589.4 4.81 7.04 14 0.3 60.9 

AL6061 

7-14 0.1-0.3 54-57 164.2 236.7 392.7 0.91 12.14 7 0.1 57.0 

7-14 0.1-0.3 56-62 164.4 236.8 392.8 0.94 12.06 7 0.1 61.5 

7-14 0.3-0.5 53-56 187.2 258.4 428.1 1.13 12.36 7 0.3 55.9 

7-14 0.3-0.5 56-62 188.1 258.9 428.6 1.14 12.32 7 0.3 61.8 

14-22 0.1-0.3 53-56 208.4 313.2 466.7 1.31 10.83 14 0.1 55.6 

14-22 0.1-0.3 56-62 208.7 313.4 466.7 1.31 10.54 14 0.1 61.9 

14-22 0.3-0.5 53-56 212.4 319.8 481.2 1.68 10.85 14 0.3 55.9 

14-22 0.3-0.5 56-62 212.6 319.9 481.2 1.69 10.89 14 0.3 61.9 
 

 

This chapter has illustrated the analytical and 

experimental results relating to orthogonal and oblique 

turning operations. All the results are very much coinciding 

with the published data available in literature. In all the three 

cases presented only monitoring of instability during cutting 

operation is considered. 

V. Conclusions 

In this case study, an exclusive multivariate model of an 

orthogonal turning operation has been articulated based on a 

sequence of turning experiments. Using the various 

experimental data for different work piece materials, the 

cutting dynamics is modeled with radial basis function 

neural network. In addition to basic cutting parameters, tool 

overhang and tool wear were selected as inputs and static 

cutting forces, average roughness values and critical chatter 

length on workpiece were presented as outputs. For four 

work materials considered in experiments, four neural 

networks were trained. In each case, all the 84 experimental 

values were summarized with few network parameters 

(central vectors and weights). As a next step of using these 

neural network models, optimum cutting parameters namely 

speed, feed, depth of cut and tool-overhang lengths are 

established by minimizing total cutting force with the help 

of genetic algorithms. It is found that compared to speed, 

feed, and depth of cut the tool overhang has profound 

influence on the cutting forces and critical chatter locations. 

The stability lobe diagrams with different tool overhang 

lengths (stiffness) were plotted. 
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