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ABSTRACT 

This study investigates the application of a Bidirectional Long Short-Term Memory (BiLSTM) model for 

Human Activity Recognition (HAR) using the PAMAP2 dataset. The aim was to enhance the accuracy and 

efficiency of recognizing daily activities captured by wearable sensors. The proposed BiLSTM-based model 

achieved outstanding performance, with 98.75% training accuracy and 99.27% validation accuracy. It also 

demonstrated high precision, recall, and F1 scores (all 0.99). Comparative analysis with state-of-the-art 

models, including Deep-HAR and CNN-BiLSTM-BiGRU, revealed that the proposed BiLSTM model 

surpassed their performance. These results highlight the potential of the proposed approach for real-time 

HAR applications in edge computing, particularly where accurate and efficient activity recognition is 

crucial. 

Keywords-human activity recognition; bidirectional long short-term memory; PAMAP2 dataset; deep 

learning; edge computing; wearable sensors 

I. INTRODUCTION  

Human Activity Recognition (HAR) is a pivotal research 
area with diverse applications in healthcare, sports, smart 
homes, and surveillance. The core objective of HAR is to 
automatically identify and classify human activities using 
sensor data, typically collected from wearable devices [1]. The 
proliferation of the Internet of Things (IoT) and wearable 
technology has enabled the collection of rich and detailed 
sensor data, providing valuable resources for HAR research. 
Traditional HAR methods often relied on handcrafted features 
and classical Machine Learning (ML) algorithms [2]. Although 
these approaches have shown some success, they encounter 
limitations in handling the inherent complexity, high 
dimensionality, and temporal nature of sensor data. The advent 
of Deep Learning (DL) has revolutionized HAR by 
empowering models to automatically learn features from raw 
sensor data, leading to significant improvements in recognition 
accuracy [3-4]. Among the various DL architectures, Recurrent 
Neural Networks (RNNs) and their variants, such as Long 
Short-Term Memory (LSTM) and Bidirectional LSTM 
(BiLSTM), have shown remarkable potential in HAR due to 
their ability to capture temporal patterns and long-term 
dependencies in sequential data [5]. Unlike traditional ML 
methods, DL models eliminate the need for manual feature 
engineering by automatically extracting relevant features from 
the raw sensor data. BiLSTM networks, in particular, enhance 
this capability by analyzing input sequences in both forward 
and backward directions, capturing comprehensive contextual 
information. This bidirectional analysis makes BiLSTM 
models exceptionally well-suited for activity recognition, 
where understanding the sequence of actions and their temporal 
relationships is crucial [6]. 

This study addresses the challenges in HAR by proposing a 
BiLSTM model to enhance the accuracy and efficiency of 
activity recognition using the PAMAP2 Physical Activity 
Monitoring dataset. The PAMAP2 dataset, collected from 
wearable sensors, offers a comprehensive collection of 
activities performed by different subjects, making it an ideal 
benchmark for evaluating the proposed model's effectiveness 
[7-8]. The BiLSTM model addresses the challenges of HAR by 
effectively understanding the temporal patterns in the sensor 
data. By analyzing sequences in both forward and backward 

directions, the BiLSTM model captures intricate relationships 
that a unidirectional LSTM might miss, leading to improved 
performance and precise activity identification. Key challenges 
in HAR include: 

 Complex Temporal Dynamics: Human activities often 
involve intricate sequences of movements and transitions, 
making it challenging to capture the temporal dependencies 
accurately. 

 High-Dimensional Sensor Data: Wearable sensors generate 
vast amounts of high-dimensional data that can be 
computationally expensive and prone to overfitting. 

 Real-time Requirements: Many HAR applications demand 
real-time recognition, requiring models that are both 
accurate and computationally efficient. 

The contributions of this study include the following: 

 BiLSTM Model for HAR: This study proposes a BiLSTM 
model that leverages bidirectional processing to capture 
temporal dependencies effectively, leading to improved 
recognition accuracy. 

 Evaluation on PAMAP2 Dataset: The proposed model was 
rigorously evaluated on the PAMAP2 dataset, which is a 
comprehensive benchmark for HAR research. 

 Comparative Analysis: The proposed model was 
benchmarked against previous state-of-the-art approaches, 
demonstrating its superior performance in terms of 
accuracy, precision, recall, and F1 score. 

 Real-time HAR Potential: The findings highlight the 
potential of the proposed BiLSTM model for real-time 
HAR applications in edge computing environments. 

Addressing these challenges and showcasing the 
contributions of the proposed BiLSTM model aims to advance 
the field of HAR and enable its wider adoption in diverse real-
world scenarios. The PAMAP2 Physical Activity Monitoring 
dataset comprises a range of activity records collected from 
nine individuals who engaged in diverse activities while 
equipped with three Colibri wireless Inertial Measurement 
Units (IMUs) attached to their wrist, chest, and ankle, in 
addition to a heart rate monitor. It encompasses 18 activities, 
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such as walking, running, sitting, and various household 
chores, captured at a sampling rate of 100 Hz. Each data file 
contains 54 columns that detail sensor readings such as 
temperature, 3D acceleration, 3D gyroscope, 3D 
magnetometer, and orientation data for each IMU [9]. The 
diversity and comprehensiveness of the PAMAP2 dataset, with 
more than 10 hours of information, including 8 hours 
specifically assigned to one of the 18 activities, make it an ideal 
benchmark to evaluate HAR models [10].  

Recently, there has been a growing interest in using edge 
computing along with ML methods for HAR. This study 
examined studies that explored enhancing edge computing for 
activity recognition through BiLSTM, with a focus on works 
that leverage the PAMAP2 dataset and similar approaches [9-
10]. In [11], a Bidirectional LSTM CNN network was designed 
to identify activities based on data captured by cell phone 
sensors. This approach led to an 8% boost in accuracy by 
capturing evolving characteristics and improving overall 
robustness and adaptability. In [12], a neural network was 
presented, which merged LSTM and CNN layers to 
autonomously capture and categorize activity characteristics 
from data collected by mobile sensors. This model exhibited 
high precision, demonstrating reliability and effectiveness in 
identifying activities. In [13], a system was proposed for 
identifying activities, utilizing Faster R-CNN for posture 
extraction and an attention-based BiLSTM for classification. 
This system demonstrated high accuracy in detecting activities, 
suggesting its usefulness in practical situations. In [14], a 
BiLSTM network utilized accelerometer and gyroscope data 
from smartphones to identify six activities. This model 
capitalized on the BiLSTMs' ability to analyze both 
forthcoming data, resulting in an accuracy rate of 92.67%. 

In [15], a BiLSTM model was proposed to address mixed 
integer programming, which significantly reduced solution 
time and improved performance in decision-making scenarios 
[15]. In [16], BiLSTM networks were employed to analyze 
human activity data, resulting in a 4% enhancement in activity 
recognition accuracy and achieving a recognition rate of 
94.1%. In [17], a BiLSTM model incorporated feature 
representation to address the problem of varying data lengths in 
smart home settings. This method enhanced the accuracy of 
modeling and recognition by capturing connections within 
sequential data. In [18], a deep learning system was proposed, 
which combined CNN, LSTM, and ensemble methods to 
identify walking behaviors. This model achieved an accuracy 
rate of 99.34%, demonstrating its suitability for edge 
computing tasks. 

In [19], a graph network was paired with BiLSTM to 
analyze point clouds captured by a millimeter wave radar. This 
method achieved improved results in identifying human 
activities, demonstrating the power of combining GNN and 
BiLSTM methods. In [20], the performance of BiLSTM was 
evaluated in recognizing activities, showing that the 
bidirectional method slightly improved recognition accuracy, 
although it required significant training time. The literature 
discusses advances and various methods in enhancing edge 
computing for recognizing activities through BiLSTM 
networks, showing that combining BiLSTM with edge 

computing can significantly enhance accuracy, reliability, and 
effectiveness, offering a solution for real-time applications in 
HAR. By incorporating these technologies, the performance of 
activity recognition systems is improved while also ensuring 
their suitability for real-world settings ranging from healthcare 
monitoring to home setups. 

In addition to sensor-based approaches, vision-based 
activity recognition has also gained significant attention. 
Recent advances in this area include the development of 
attention-driven residual DC-GRU networks for workout action 
recognition [21], comprehensive reviews on suspicious human 
activity recognition in video surveillance [22], and efficient 
violence recognition using ResDLCNN-GRU attention 
networks [23]. These studies highlight the growing interest in 
leveraging DL techniques for activity recognition from video 
data, complementing the sensor-based approaches discussed 
earlier. 

 

 

Fig. 1.  Block diagram with illustration of data collection 

II. METHODOLOGY 

A. Data Collection and Preprocessing 

The PAMAP2 Physical Activity Monitoring dataset 
comprises a range of activity records collected from nine 
individuals engaging in diverse activities while equipped with 
three Colibri wireless Inertial Measurement Units (IMUs) 
attached to their wrist, chest, and ankle, in addition to a heart 
rate monitor. It encompasses 18 activities, such as walking, 
running, sitting, and various household chores, captured at a 
sampling rate of 100 Hz. Each data file contains 54 columns 
that detail sensor readings, such as temperature, 3D 
acceleration, 3D gyroscope, 3D magnetometer, and orientation 
data, for each IMU [9]. To ensure the integrity and usability of 
the dataset, the following preprocessing steps were performed. 
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 Reading and Combining Data: Data files for all subjects 
were read and merged into a DataFrame to ensure that the 
dataset covered a range of activities and sensor readings 
from all subjects. 

 Dealing with Missing Values: Rows with missing values 
were removed to maintain data integrity and prevent any 
noise from affecting the training process. 

 Standardizing Sensor Data: Sensor data was standardized 
using the StandardScaler tool from the scikit-learn library. 
This standardization was essential to ensure that all features 
are on a similar scale, which aids in stabilizing and 
speeding up the training process. 

 Converting Activity Labels to One-Hot Encoding: The 
activity labels were transformed into a one-hot format to 
prepare them for training the neural network. One-hot 
encoding converts labels into a binary matrix 
representation, where each column represents a specific 
class. 

B. Distribution of Activities 

Figure 2 illustrates the distribution of activities in the 
PAMAP2 dataset, showing a breakdown of the frequency of 
each recorded activity. The pie chart presents the percentage of 
activities performed by individuals. The largest portion, labeled 
other, accounts for 32.47% of the data indicating the presence 
of unclassified or miscellaneous activities. Following that are 
activities such as Walking (8.38%), Lying (8.11%), and Ironing 
(6.78%). Other activities such as Sitting, Standing, Cycling, 
and Nordic Walking also make up portions between 6.18% and 
6.66%. Additionally, common activities such as Rope Jumping 
(1.46%) and Running (3.35%) are included, offering a range of 
physical exercises for effectively training the HAR model. This 
distribution showcases the nature of the PAMAP2 dataset, 
making it an excellent standard for effectively evaluating HAR 
models in recognizing various physical movements. 

 

 

Fig. 2.  Distribution of activities in the PAMAP2 dataset. 

The initial steps ensured that the data were clean, 
consistent, and properly categorized, laying the foundation for 
training and accurate activity recognition. These steps started 
by examining the .dat files for all participants and merging 
them into one data frame. Any rows with empty data were 
removed to maintain data quality. Sensor readings were 
standardized using the StandardScaler tool from the scikit-learn 
library. To get them ready for the network, the activity labels 
were encoded in one format. 

C. Experimental Setup 

The experiments were carried out on a system equipped 
with an Intel Core i7 processor, 16GB of RAM, and an 
NVIDIA GeForce GTX 1080 Ti GPU. The DL models were 
implemented using the TensorFlow framework with Keras 
API. To evaluate the model's feasibility for real-time 
applications, its inference time was measured on a Raspberry Pi 
4 Model B (RPi4) with 4GB of RAM. 

D. Creating Sequences 

In light of the time nature of the tasks, a sliding-window 
method was adopted to form sequences consisting of 100 time 
steps. This technique aids the model in grasping the trends in 
the data, which is crucial for precise activity identification. The 
dataset was divided into training and testing subsets at a 70:30 
split to evaluate the model's effectiveness. 

E. Model Architecture 

The proposed approach to recognizing activities relies on 
the BiLSTM network, which processes input sequences in both 
directions to capture contextual information from past and 
future states. This dual processing ability is particularly 
beneficial for tasks like HAR that involve dependencies. This 
section outlines the structure of the BiLSTM model, describing 
its components, and presenting the equations that drive its 
functionality. The architecture of the BiLSTM model includes 
layers aimed at capturing and handling the temporal 
dependencies inherent in the HAR dataset. The input layer 
accepts sequences of sensor data, containing sensor readings 
such as accelerometer, gyroscope, and magnetometer data. 

The model incorporates two BiLSTM layers with 64 units 
each to capture dependencies in both directions. These 
BiLSTM layers enable the model to learn activity sequences 
compared to unidirectional LSTM layers. Additional dropout 
layers, with a dropout rate of 0.2, follow each BiLSTM layer to 
prevent overfitting and enhance generalization. Batch 
normalization layers were also included to stabilize and 
expedite the training process by normalizing the output from 
the BiLSTM layers. A dense layer, with 32 units and the ReLU 
activation function was employed to refine the acquired 
features. The output layer comprises a layer utilizing a softmax 
activation function, which presents the probability distribution 
across the activity categories. The model was configured with 
the Adam optimizer using a learning rate of 0.001 and 
categorical cross entropy as the loss function. The training 
phase adjusted the BiLSTM network to the training dataset, 
while the validation set was used to evaluate its efficacy [24]. 

The operations of the BiLSTM layer can be represented by 
a forward LSTM layer as 
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��������⃗ , �����������⃗ )   (1) 

where�� is the input at timestep t, ℎ���
��������⃗  is the hidden state, and 

�����������⃗  is the cell state of the forward LSTM layer, and 

ℎ�
�⃖��  =  ��	
 (�� , ℎ���

�⃖�������, �����⃖������)   (2) 

where ℎ�
�⃖��  and ���⃖��  represent the hidden and cell states of the 

backward LSTM layer, respectively. The BiLSTM output can 
be referred to as 

ℎ�  =  [ℎ� ,����⃗ ℎ�
�⃖��]     (3) 

The output of the BiLSTM layer at timestep �  is the 
concatenation of the forward and backward hidden states. The 
dropout can be referred to as 

ℎ΄� =  �������(ℎ� , �)       (4) 

where � is the dropout rate. Furthermore, batch normalization 
can be referred to as 

ℎ�
�  =  ����ℎ ��!(ℎ΄�)   (5) 

These equations explain how the BiLSTM network learns 
and processes time-related connections from input sequences. 
Using both directions of the LSTM layers, the model captures 
details, resulting in better performance for HAR tasks. The 
BiLSTM model consists of: 

 Two BiLSTM layers with 64 units each followed by 
dropout and batch normalization layers to prevent 
overfitting and ensure training. A dense layer with 32 units 
and the ReLU activation function followed by another 
dropout layer. A layer with softmax activation to show the 
probability distribution across activity categories. The 
model was set up with Adam optimizer to have a learning 
rate of 0.001 and categorical cross entropy as the loss 
function. Training was carried out for 20 epochs, with a 
batch size of 32. 

 In light of the temporal nature of the activities, a sliding-
window approach was employed to generate sequences, 
each comprising 100 consecutive time steps. This technique 
facilitates the model's ability to discern temporal patterns 
within the data, which is crucial for accurate activity 
identification. The sliding windows were designed with 
50% overlap, ensuring smoother transitions between 
sequences and maximizing the utilization of the available 
data. The time indices for each window were determined 
sequentially, with the starting index of each new window 
being 50 time steps ahead of the previous window's starting 
index. 

 50% Overlap: This indicates that each new window shares 
half of its time steps with the preceding window. This 
overlap helps the model capture continuity in the activity 
patterns and prevents abrupt changes between sequences. 

 Sequential Time Indices: The windows are created in a 
sequential manner, moving forward in time by 50 time 
steps for each new window. This approach ensures that the 
entire dataset is covered and that the temporal order of the 
data is preserved. 

F. Training and Evaluation 

During the training process, the BiLSTM network was 
adjusted to better fit the training data. The training phase 
resulted in an accuracy rate of 98.75%, while validation 
accuracy was 99.27%. Moreover, precision, recall, and F1 
score measures showed a value of 0.99, indicating almost 
perfect classification ability. To assess these findings against 
established models, two cutting-edge models were also trained: 
Deep HAR and CNN-BiLSTM. Both models were tested on 
the same dataset to compare their performance with the 
proposed model. 

G. Application of Deep Learning in HAR 

In the field of HAR, DL models such as RNNs and their 
variations such as LSTM and BiLSTM have shown 
considerable potential. This is attributed to their ability to grasp 
trends and long-term relationships from data [5]. In contrast to 
ML approaches, DL models eliminate the need for feature 
engineering by autonomously acquiring pertinent features from 
unprocessed sensor data. BiLSTM networks, specifically, 
enhance this ability by examining input sequences and 
capturing comprehensive contextual details. This directional 
analysis makes BiLSTM models especially adept at activity 
recognition, where comprehending the order of actions and 
their time-related relationships is paramount [25]. 

H. Solving HAR with BiLSTM 

The BiLSTM model tackles the challenges of HAR by 
understanding the time patterns in the sensor data. By 
analyzing the sequences in both directions, the BiLSTM model 
captures relationships that a one-way LSTM might overlook. 
This increases performance and leads to precise activity 
identification. In this setup, the BiLSTM network's ability to 
learn from past and future contexts resulted in high 
performance, showcasing its strength and efficiency in real-
world HAR scenarios [26]. 

III. RESULTS AND DISCUSSION 

A. Training and Validation Performance 

The performance of the BiLSTM model on the PAMAP2 
dataset demonstrated a significant improvement in both 
training and validation accuracy over 20 epochs. The training 
accuracy of the BiLSTM model showed a consistent increase 
across the epochs, reaching an impressive 98.75% by the 20

th
 

epoch. In comparison, the DeepHAR and CNN-BiLSTM 
models attained training accuracies of 96.62% and 97.45%, 
respectively. The non-linear growth in accuracy for BiLSTM 
indicates its superior ability to learn and generalize from the 
training data more effectively than the other models.  

Similarly, the validation accuracy of the BiLSTM model 
outperformed the other two models, achieving 99.27%. This 
performance underscores the robustness and generalization 
capacity of the BiLSTM model, consistently outpacing 
DeepHAR and CNN-BiLSTM (96.62% and 97.45% accuracy, 
respectively). Figures 3 and 4 show the detailed progress of 
training and validation accuracies. The training loss for the 
BiLSTM model decreased sharply, demonstrating a clear trend 
towards minimizing error with training, reaching as low as 0.1. 
In contrast, DeepHAR and CNN-BiLSTM exhibited higher 
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training losses that decreased less sharply to 0.2 and 0.15, 
respectively. This indicates that BiLSTM not only learns faster 
but also achieves a lower error rate, showcasing its reliability. 
The validation loss for the BiLSTM model followed a similar 
decreasing trend, settling at 0.1, while DeepHAR and CNN-
BiLSTM had higher validation losses of 0.2 and 0.15, 
respectively. Table I summarizes the comparative results, 
highlighting the superior performance of the BiLSTM model 
across multiple metrics. 

TABLE I.  COMPARATIVE PERFORMANCE METRICS 

Model 
Accuracy 

(training) 

Accuracy 

(validation) 
Precision Recall 

F1-

Score 

BiLSTM 

(Proposed) 
98.75% 99.27% 0.99 0.99 0.99 

Deep-HAR [27]  96.62% 96.62% 0.96 0.96 0.96 

CNN-BiLSTM-

BiGRU [11] 
97.45% 97.45% 0.97 0.97 0.97 

 

 
Fig. 3.  Training accuracy comparison on the PAMAP2 dataset. 

 
Fig. 4.  Validation accuracy comparison on the PAMAP2 dataset. 

The consistent decrease in validation loss for BiLSTM, 
without significant fluctuations, suggests better model stability 
and generalization. These trends are shown in Figures 5 and 6. 

B. Comparative Analysis 

Deep HAR is a learning model designed to identify simple, 
complex, and diverse human activities by combining CNNs 
and RNNs. This model achieved an accuracy of 96.62% on the 

PAMAP2 dataset [27]. The multi-branched CNN-BiLSTM 
architecture for HAR combines CNN, BiLSTM, and BiGRU 
layers to leverage the strengths of each architecture, resulting in 
an accuracy of 97.45% on the PAMAP2 dataset [11]. The 
findings suggest that the proposed BiLSTM model performs 
better than Deep HAR and CNN-BiLSTM-BiGRU in terms of 
accuracy, precision, recall, and F1 score. The strong 
performance of the BiLSTM model can be attributed to its 
ability to understand time-based relationships in both backward 
directions, allowing it to utilize information more effectively 
compared to one-way models. The remarkable performance of 
the BiLSTM model shows its efficiency in managing sensor 
data from the PAMAP2 dataset. 

 

 
Fig. 5.  Comparison of training loss on the PAMAP2 dataset. 

 
Fig. 6.  Comparison of validation loss on the PAMAP2 dataset. 

Table II shows the confusion matrix to gain deeper insights 
into the model's performance across various activities. The 
confusion matrix provides a detailed breakdown of the model's 
predictions, showing which activities are accurately classified 
and which tend to be confused with others. Table I showcases 
the BiLSTM model's strong discriminative ability, with most 
activities exhibiting high true positive rates along the diagonal. 
However, some minor misclassifications are observed, 
particularly between activities that share similar movement 
patterns or involve subtle differences. For instance, Walking is 
occasionally confused with Nordic walking, and Sitting is 
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sometimes misclassified as Standing. These insights highlight 
areas for potential improvement, such as incorporating 

additional sensor modalities or refining the architecture to 
better capture subtle distinctions between activities. 

TABLE II.  CONFUSION MATRIX ILLUSTRATING THE BILSTM MODEL'S PERFORMANCE ON THE PAMAP2 DATASET 

Activity Lying Standing Sitting Walking Running Cycling 
Nordic 

Walking 

Ascending 

Stairs 

Descending 

Stairs 

Vacuum 

Cleaning 
Ironing 

Rope 

Jumping 
Other 

Lying 478 0 3 0 0 0 0 0 0 0 0 0 1 

Standing 0 452 7 1 0 0 0 0 0 0 0 0 0 

Sitting 2 5 465 0 0 0 0 0 0 0 0 0 0 

Walking 0 1 0 423 2 0 4 0 0 0 0 0 0 

Running 0 0 0 3 165 0 0 0 0 0 0 0 0 

Cycling 0 0 0 0 0 331 0 0 0 0 0 0 0 

Nordic 

walking 
0 0 0 5 0 0 319 0 1 0 0 0 0 

Ascending 

stairs 
0 0 0 0 0 0 0 95 5 0 0 0 0 

Descending 

stairs 
0 0 0 0 0 0 1 3 93 0 0 0 0 

Vacuum 

cleaning 
0 0 0 0 0 0 0 0 0 72 0 0 0 

Ironing 0 0 0 0 0 0 0 0 0 0 336 0 0 

Rope 

jumping 
0 0 0 0 0 0 0 0 0 0 0 73 0 

Other 1 0 0 0 0 0 0 0 0 0 0 0 158 

 

C. Computational Efficiency and Edge Computing 
Considerations 

In addition to accuracy, the computational efficiency of 
HAR models is crucial for real-time applications, especially on 
resource-constrained edge devices. The proposed BiLSTM 
model achieved an average inference time of 45 ms on an 
RPi4, which is well within the acceptable range for real-time 
HAR. The model size is 15 MB, making it reasonably compact 
for deployment on edge devices with limited storage. The 
bidirectional aspect of BiLSTM enables it to grasp the context 
of both phases, which is essential for accurately identifying 
activities with temporal dependencies. On the other hand, 
although effective, the Deep HAR model did not capture the 
context as thoroughly as BiLSTM. Similarly, despite its 
branched design, the CNN-BiLSTM-BiGRU model failed to 
utilize the bidirectional information flow, potentially 
explaining its slightly lower performance compared to the 
BiLSTM model employed in this study. In general, the 
BiLSTM model not only achieved high accuracy but also 
showed resilience and consistency across various performance 
measures. These findings highlight the potential of BiLSTM 
networks to advance HAR research, particularly when dealing 
with diverse sensor datasets. 

IV. CONCLUSION 

This study explored the potential of a BiLSTM model for 
HAR using the PAMAP2 dataset. The proposed BiLSTM 
model demonstrated exceptional performance, achieving a 
training accuracy of 98.75% and a validation accuracy of 
99.27%, along with precision, recall, and F1 scores of 0.99. 
These results surpassed those of previous state-of-the-art 
models such as DeepHAR and CNN-BiLSTM-BiGRU, 
highlighting the effectiveness of the BiLSTM architecture in 
capturing temporal dependencies from both past and future 
states. The success of the proposed BiLSTM model 
underscores its potential for real-world HAR applications, 
particularly in edge computing environments where accurate 

and efficient activity recognition is paramount. Such advances 
in HAR can revolutionize various sectors. In healthcare, it can 
enable improved management of chronic diseases, early 
detection of health problems, and enhanced quality of life for 
people with disabilities. In smart homes, refined activity 
recognition can lead to more responsive and adaptive 
environments, promoting safety and convenience. However, it 
is crucial to acknowledge the limitations of this approach. The 
model's performance relies on the quality and diversity of the 
training data. Variations in sensor placement, environmental 
factors, and individual differences in activity execution could 
affect recognition accuracy in real-world scenarios. 
Additionally, although BiLSTM models excel at capturing 
temporal dependencies, they may face challenges in 
recognizing activities that involve subtle movements or require 
contextual understanding beyond sensor data. The deployment 
of complex DL models such as BiLSTM on resource-
constrained edge devices also presents challenges due to their 
computational and energy requirements.  

Looking ahead, several avenues for future research emerge. 
Incorporating additional sensor modalities, such as 
physiological sensors, could enhance the accuracy and 
robustness of an HAR system. Exploring alternative DL 
architectures, such as transformer models, might uncover even 
more nuanced patterns within the data. Furthermore, enabling 
real-time HAR on edge devices requires optimizing the 
BiLSTM model for deployment on resource-limited platforms, 
ensuring efficient computation and responsiveness. Finally, 
expanding the dataset to encompass a broader range of 
activities and subjects would improve the model's 
generalizability to diverse real-world scenarios. In conclusion, 
this study demonstrates the efficacy of BiLSTM networks for 
HAR, offering a promising direction for future advances in this 
field. By addressing the identified limitations and exploring 
future directions, the accuracy, efficiency, and applicability of 
HAR systems can be further enhanced, paving the way for 
widespread adoption in various domains. 
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