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A B S T R A C T

Plastic waste in the environment has increased rapidly in recent years, amounting to nearly 4 
million metric tons per annum globally. This waste comprises materials such as low-density 
polyethylene, high-density polyethylene, polyethylene terephthalate, polystyrene, and more. 
The current research focuses on the use of plastic waste as a biofuel for diesel engines. The 
properties of waste plastic oil blended fuels were calibrated to meet ASTM standards. Various 
blended mixtures of waste plastic biofuels were prepared and labelled as WPO10, WPO20, and 
WPO30. These mixtures were tested in a diesel engine under standard conditions. Based on the 
initial results, the optimized blend was further examined with fuel additives, such as the alcohol 
additive 1-butanol and alumina oxide nanoparticles, at lower concentrations. This was done to 
evaluate the engine’s performance, combustion, and emission characteristics. The addition of 5 % 
1-butanol reduced CO and HC emissions by 9 % and 18.6 %, respectively, compared to 
WPOME20. Similarly, the inclusion of 100 ppm of Al2O3 nanoparticles decreased CO and HC 
emissions by 12.5 % and 18.5 %, respectively, compared to WPOME20. Further, the application 
of RSM-ML approach, the various characteristics of diesel engine is optimized further the WPO20 
operated with 1-Butanol and Al2O3 nanoparticles.
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Abbreviations:
BTE Brake thermal efficiency WPO 20 1-Butanol 5 % 5 % addition of 1-Butanol to WPO 20

BSFC Brake specific fuel consumption WPO 20 1-Butanol 10 % 10 % addition of 1-Butanol to WPO 20
CO Carbon monoxide WPO 20 Al2O3 50ppm 50 ppm of Al2O3 addition to WPO 20
HC Hydrocarbons WPO 20 Al2O3 100ppm 100 ppm of Al2O3 addition to WPO 20
NOx Nitrogen oxides RSM Response Surface Methodology
SO Smoke Opacity ML Machine Learning
WPO Waste plastic oil GBR Gradient Boosting Regression
WPO 10 10 % waste plastic oil +90 % Diesel RF Random Forest
WPO 20 20 % waste plastic oil +80 % Diesel DT Decision Tree
WPO 30 30 % waste plastic oil +70 % Diesel ANOVA Analysis of Variance

1. Introduction

Plastic is a kind of flexible and synthetic substance so easily mould into various shapes. It is formed by various organic polymers like 
polyethylene, nylon etc. Plastic is strong and deteriorates gradually because of chemical linkages that also make it resistant to dete
rioration caused by natural processes. Plastics can be classified into two sorts; those are thermosets and thermoplastics. When heated, a 
thermoset solidifies or “sets” permanently. Because of their strength and other favorable properties, these can be used in various 
applications like automotive and construction applications etc. Polyethylene, Polypropylene, Polyamide, Poly-oxymethylene, and Poly 
Tetra-fluoro-ethylene are examples of these plastics. When heated, a thermoplastic softens, and when it cools to room temperature, it 
resumes its original shape. It is simple to shape and mould thermoplastics into items like milk jugs etc. With the growth in the pop
ulation of global and the growing need for food and additional necessities, there has been a spike in the quantity of waste being 
produced everyday by every home, as per to new statistics, plastics may remain unmodified up to 4500 years on climate [1]. Nearly 5 
% of municipal solid trash is discovered to be harmful plastic in various forms. Frequently, in everywhere plastic things like empty bags 
are appeared. Due to its biodegradability, it causes water to stagnate and the resulting hygienic issues. Experiments have been con
ducted to determine whether this waste plastic may be utilized profitably to contain this issue.

Plastics are not created equal. There are numerous varieties of plastic in addition to a wide range of colors and shapes. Each one is 
unique and serves a particular purpose. Because of the chemicals they contain, some forms of plastic, like some that can be recycled, 
are reusable while others must be disposed of in a different way. Today, we’ll go through the seven various varieties of plastic to help 
you make better judgments about the items you purchase. The various types of plastic materials are presented in Fig. 1.

Biodiesel made from various ways is currently more feasible than solar and wind power for immediate energy needs, as it can be 
easily produced, stored, and used in existing engines without the need for extensive infrastructure or weather-dependent conditions [3,
4]. Numerous researchers have investigated biodiesel at varying concentrations to evaluate its performance and emission charac
teristics [5,6]. Prabhu [7] Performed test on diesel engine with nanoparticles additive and Jatropha blended fuel. This work concluded 
that BTE improved 12 % with the aid of nanoparticles also HC, CO and smoke was reduced by 44 % 60 % and 38 % correspondingly for 
B20A30C30 when compared with B100. Jeryrajkumar et al. [8] analyzed the performance and discharge parameters engine charged 
with calophyllum bio-fuel. This work identified that the Colphyllum inophyllim bio-fuel (B100) containing closer kinematic viscosity 
and heating value hen associated with diesel. The HC with the additive of cobalt oxide indicated 80 % drop at peak conditions. Ti
tanium dioxide gave that 70 % drop in 75 % load. And the BSFC was reduced in the nano-additives blends. Dhana Raju and Harish 
Venu [9] performed the experiment on influences of Zr2O3 additive in jatropha blended mixture at several loads. In that they 
concluded the B20 + 20ppm Zr2O3 blended mixture gave in 70.90 % greater BTE and 4.870 % dropped BSFC associated to B20, also 
COs, HCs, opacity and NOx discharges stood lesser than B20 by 11.360 %, 5.870 %, 6.871 %, and 9.563 %, correspondingly, when peak 
conditions. Swamy et al. [10] performed the test with tamarind seed oil blends at several proportions of butanol like 5 %, 10 % and 15 
%. In that result they concluded that 5 % butanol biodiesel has revealed 3.21 % improvement in BTE when likened to TSME 20 at peak 

Fig. 1. Different types of plastic [2].
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conditions. Also, the BSFC for the TSME 20 + 5 % butanol was smaller value when associated to remaining mixtures of butanol. It was 
shown that 2.01 % drop in BSFC for the TSME 20 + 5 % butanol blended mixture when related to the TSME 20.

Prabhu and Anand [11] investigated on influence of Alumina and Cerium oxide nanoparticles as additive in jatropha bio-oil and 
observed 5 % development in BTE for test oils. Mohan et al. [12] Performed test on engine charged with nanoparticles added bio-fuel 
blended mixtures and understood that HP of bio-oil was 10–20 % greater related to diesel. Bio-fuel-CNG at 20 % formed higher torque 
related to remaining combinations. Bio-fuel sufficiently increased the CO (15–32 %) and nitric oxides (6.67–7.03 %) but reduced the 
HC (5.76–6.25 %) and CO (0.47–0.58 %) discharges range. Abbulfatah Abdu Yusuf et al. [13] explored on the impact of waste plastic 
oil, with Al₂O₃ and TiO₂ additives on engine when study-state mode. Observed that the WPO contained 64.25 % of alkanes which are 
noticeable amount which 28 % aromatics. Compared to EFs of EC, which approximately reduced 89.470 % across the Hy40 fuels. The 
decrease of ECs thru total blended combinations might be endorsed because of the increased in Al₂O₃ and TiO₂ proportions. Sajith et al. 
[14] experimentally investigated upon the impact of the mixing of cerium oxide with biodiesel. Found that the flash-point of bio-fuel, it 
was a sign of volatility was increased with the aid of the additive and the viscidness of the bio-oil was observed to be increased with 
cerium oxide. Which was also observed that cerium oxide helped in reduction of NOX. Dhana Raju et al. [15] Performed test with 
diesel, MSME10, MSME20 and MSME30 at varying applications of load. They found that among those blended combinations MSME20 
displayed well performance, emission and combustion possessions. Test result revealed that 200ppm mixing of Al₂O₃ to the MSME20 
has given substantial augment of 1.390 % BTE and significant drops of HC and CO discharges by 35.480 % and 13.10 % respectively at 
peak conditions.

JaiKumar et al. [16] Studied about the analysis of burning, vibration, and noise features of engine charged with methyl ester of 
Mesua Ferra oil (MFOME) blended mixtures. The blended mixtures were B10, B20, and B40. They executed test on IPs of 180 bar, 200 
bar and 220 bar. They found that at greater IPs of 220 bar, the CP, NIRR, CHRR and RoPR were enriched by 4.981 %, 9.233 %, 5.45 %, 
and 11.580 % correspondingly while the R.M.S velocity and R.M.S noise were decreased by 14.76 % and 3.54 % correspondingly for 
B20. Junshuai et al. [17] researched on added nano-additives CuO, Al₂O₃, MWCNT, CeO₂, GO, CNT, TiO₂, to diesel-bio-oil blended 
mixtures and had attained extraordinary fallouts. By means of engine performance, CeO₂ was the superior influence in reduced BSFC 
by a minor as 30 % and MWCNT was the improved BTE by 36.810 %. By means of discharge, TiO₂ had better outcome in decreasing of 
NOx by 22.570 %, GNPs had the better impact in falling CO, with a decrement of 65.10 %, GO had the good effect in reduced HCs, with 
a decrement of 70 %.

Maneesh et al. [18] explored the production of crude oil from water hyacinth biomass and its conversion into biodiesel. To enhance 
fuel performance, the alcohol additive n-pentanol was blended with the biodiesel. Their experimental findings showed that for the 
WHB20D75P5 blend at maximum load, the brake-specific BSFC decreased to 0.26 kg/kW-h, and BTE increased by reached 29.5 %. 
There was reduction in emissions. Ahmad et al. (2016) directed an investigation on an engine charged by adding ethanol to diesel. In 
this experiment ethanol was mixed to diesel with 2 %, 4 %, 6 %, 8 %, 10 % and 12 %. The attained outcomes displayed torque and 
power augmented by 3.8 % blend with 6 % ethanol as related to diesel. Sarthak et al. [19] Researched on hydrogen diesel fueled with 
hydrogen to know combustion, vibration, and noise analysis. In this experiment 25 % 50 % and 75 % of loads of hydrogen. The 
obtained results were, decrease of vibration and noise level. Vibrations were increased due to active participate of hydrogen in the 
combustion, but this obtained at higher loads. Dueso et al. [20] directed test on engine fueled sunflower biodiesel with antioxidant 
additive. It can be detailed that substantial variances in amid of bio-fuel of sunflower seed and the same biodiesel mixed additive. 
Outcomes were concluded that instead of conventional fuels, this bio-oil with additive can be utilized.

Sathish Kumar Nagaraj et al. [21] investigated on emissions in engine by biofuel of combined neem and pongamia using 3-hole and 
4-hole nozzle. NOx rises by rising the load, 3-hole nozzle discharges was identified that poorer with 4-hole nozzle. Ultimately, four-hole 
nozzles were suggested for engines for required needs to protect the climate from the gases. Gad et al. [22] executed a test on an engine 
performance, emissions and combustion features by carbon nanoparticles. The biodiesel extracted from waste cooking oil enhanced by 
carbon nanotubes. The blended mixture of biodiesel B20 mixed with different ranges of CNT and graphene nano-sheets. The results 
showed that BTE for B20CNT100 and B20CNS100 were 8 and 19 % about B20. Biofuel with CNT and graphene nanosheets of 100ppm 
attained considerable decrease in opacity by 28 % and 52 % respectively. Manoj Kumar et al. [23] inspected the impact of TiO2 
nano-additive on performance and emission features of engine fueled with Karanja biodiesel blend. In this experiment Karanja oil was 
added with anhydrous methanol and KOH as catalyst at 65 ◦C. Outcomes revealed that increased of BSFC to 7.14 %–10.71 %, increased 
of BTE to 1.72 %, abatement of COs and HCs and rise of NOx were the outcomes from it. Jayaraman, J., & Reddy, S [24] accompanied a 
test on effect of IP on performance & emission features with graphene oxide additive in bio-oil blend. Sapota seed oil were used as 
biodiesel. The outcomes where NOx emissions for entire blends were lowered than diesel at high load of B10GO50 and higher emission 
than pure biodiesel. Gavhane and Kate [25] examined the impact of soybean biodiesel (SB)–diesel blends containing 1 % 
strontium-doped zinc oxide (Sr/ZnO) nanoparticles on the performance and emissions of a VCR engine. A 25 % soybean biodiesel 
blend (SB25) was enhanced with Sr/ZnO nanoparticles at concentrations of 50 and 75 ppm, using ultrasonication and a surfactant for 
stability. They found that the addition of 50 ppm Sr/ZnO to SB25 significantly improved engine performance, increasing BTE by 10.37 
% and reducing BSFC by 16.76 %. Mourad et al. [26] directed a test on an engine for augmenting the performance and emission 
appearances. By employment of exhaust gas recirculation (EGR) and pre heated biodiesel on anl engine with a percentage was 
decreased to 25 % of EGR and preheated biodiesel. There was a clear reduction of emitted gases by using these biofuels. Rastogi et al. 
[27] assessed the performance of an engine characteristics and emission parameters using jojoba biodiesel blend (JB20). The nano
particles of CuO were added at 25, 50 and 75ppm into the JB20 fuel. The results shown that BTE for JB20CN50 oil was greater than 
remaining jojoba bio-fuel blends. Emissions of engine HCs, COs and opacity discharges were observed lower when CuO nano-particles 
mingled to JB20 and at peak load NOx were enlarged by 0.4, 0.7, 1.8 % for JB20CN50, JB20CN50 and JB20CN75 fuels 
correspondingly.
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Mitchell et al. [28] studied the engine -bowl with oxygenated fuel at cold and hot conditions and the authors found better lubricity 
and lower viscosity of oxygenated fuels enhanced the performance of diesel engine during cold start operation. Hossain et al.[29 [][][] 
examined the microalgae HTL fuel effects on diesel engine performance and exhaust emissions using surrogate fuels and they revealed 
that Major emissions including PM, PN and CO were reduced significantly with increasing of NOx emission. Hedayat et al. [30] 
presented about the oxygen content of few biodiesels on particulate oxidative potential and they noticed that increase in ROS pro
duction, the oxygen content of the fuel also increased.

From the detailed review of existing literature, it is evident that waste plastic oil can be effectively extracted from plastic waste and 
utilized in diesel engine applications. Furthermore, blending waste plastic oil with fuel additives has demonstrated significant im
provements in engine performance, including enhanced efficiency and reduced exhaust emissions.

This experimental research investigates the impact of using 1-Butanol and alumina oxide (Al₂O₃) as fuel additives in a blend 
containing 20 % waste plastic fuel. The study evaluates the performance, combustion, and emission characteristics of this blend under 
varying load conditions. This combination capitalizes on the high calorific value of waste plastic fuel (WPF), the oxygenation prop
erties of 1-Butanol to enhance combustion efficiency, and the catalytic properties of Al₂O₃ nanoparticles to achieve cleaner combustion 
and minimize pollutant formation. As an oxygenated fuel, 1-butanol improves the oxygen availability during combustion, leading to 
better fuel-air mixing and more complete combustion. This reduces the formation of pollutants like carbon monoxide and unburned 
hydrocarbons. Additionally, 1-butanol has a higher energy density and miscibility with hydrocarbons, making it compatible with WPO 
while improving engine performance and stability. Its renewable nature also supports sustainability goals in alternative fuel 
applications.

In addition, the application of Response Surface Methodology (RSM) integrated with machine learning (ML) introduces a novel 
approach to optimizing key engine parameters, such as brake thermal efficiency, fuel consumption, and emissions. By combining 
experimental data with advanced computational techniques, this study provides a robust, predictive framework for achieving sus
tainable and efficient diesel engine performance. The findings pave the way for environmentally friendly fuel alternatives and 
contribute to addressing global challenges in energy sustainability and emission reduction.

2. Materials and methods

Waste plastic, a major environmental challenge due to its non-biodegradability and widespread availability, can be effectively 
managed through pyrolysis, a process that converts it into waste plastic oil (WPO), a hydrocarbon-rich fuel alternative to diesel. To 
optimize engine performance and emissions using such alternative fuels, Response Surface Methodology (RSM) and Machine Learning 
(ML) play a crucial role. RSM designs experiments evaluates factor interactions, while ML provides predictive models for optimizing 
parameters like brake thermal efficiency, fuel consumption, and emissions, ensuring efficient and sustainable fuel utilization.

2.1. Pyrolysis of waste plastic oil

Pyrolysis is defined as thermal degradation of plastic at superior temperatures and in an inert atmosphere. Which is an irreversible 
process and plastics transformed to hydrocarbon particles. The usage of the pyrolysis method is that it can be applied to convert wasted 
plastic into valuable oils.

The layout of pyrolysis setup is shown in Fig. 2. The oil formed through the pyrolysis method has a superior heating value and can 
be applied as substitute fuel. So, wasted plastic can be heated in pyrolysis with the absence of oxygen to form an oil. For transportation 
oils, which can be purified if required further. Its suitability as a good alternate fuel because it’s extensive properties. The various fuel 
properties of diesel and waste plastic oil blends are presented in Table 1.

An economic analysis for waste plastic oil (WPO) to this study will provide insight into the feasibility and benefits of using it as a 
biofuel alternative. The economic analysis of WPO is presented in Table 2.

Fig. 2. Pyrolysis set-up [31].
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2.2. Nanoparticles

In recent years, various nano additives such as cerium oxide, manganese oxide, alumina oxide, copper oxide, titanium oxide, 
zirconium oxide, zinc oxide, magnesium oxide, ferric oxide, and others have been utilized as fuel catalysts to improve combustion 
efficiency. Extensive research on these additives has been documented in numerous review papers. Experimental results from previous 
studies indicate a notable improvement in brake thermal efficiency along with a reduction in harmful engine emissions. In this study, a 
waste plastic oil biodiesel blend (WPO 20) is enhanced with alumina oxide as a nano fuel catalyst to evaluate its engine performance 
compared to standard fuel.

Alumina nanoparticles acts as a combustion catalysts due to its high thermal conductivity and surface area, promoting efficient heat 
transfer and improved oxidation during combustion. This results in better energy release and reduced formation of harmful emissions, 
such as carbon monoxide and particulate matter. Additionally, Al₂O₃ nanoparticles contribute to stabilizing the fuel mixture, 
enhancing atomization, and improving the overall combustion process, making the WPO20 blend more efficient and environmentally 
friendly for diesel engine applications Jin et al. [32].

The properties of alumina nanoparticles are presented in below Table 3.
A novel method for enhancing the characteristics of biodiesel involves the dispersion of metallic nanoparticles. By utilizing a 

Magnetic stirrer and an Ultrasonicator (Model: larsbo5200, 120W, 40 kHz), aluminium oxide (Al2O3) nanoparticles along with span 20 
are combined with WPO20 blend to get a uniform nano additive blend. These are conducted at the research facilities of Nano wings 
private limited. The nano additives, with accurately measured mass fractions of 50 ppm and 100 ppm, were evenly distributed in the 
WPO20 blend using an Ultrasonicator operating at a frequency of 40 kHz and 120 W for 30 min. This process ensured the creation of 
consistent nanoparticles within the waste plastic oil.

2.3. Response surface methodology

Response Surface Methodology (RSM) is a set of statistical and mathematical approaches aimed at modeling and analyzing issues in 
which numerous factors affect a response of interest. This approach is particularly helpful for the optimization of processes aiming at 
the identification of the ideal circumstances for desired results. Historically, RMS became a potent instrument for industrial research in 
the 1950s mostly due to the pioneering efforts of George Box and others. Box’s creative ideas prepared the way for the methodical 

Table 1 
Properties of diesel and WPO with blended mixtures.

Parameters Diesel WPO WPO10 WPO20 WPO30

Calorific Value (kJ/kg) 42,500 37,120 41,962 37,712 40,886
Sp. gravity 0.830 0.875 0.835 0.839 0.844
Kinematic viscosity (mm2/sec) 3.05 5.5 3.3 3.54 3.79
Flash point (◦C) 56 42 54.6 53.2 51.8
Cetane number 43 51 43.8 44.6 45.4

Table 2 
Economic analysis of waste plastic oil (WPO).

Parameter Cost (Rs.) Remarks

Cost of plastic collection Rs.5000 per ton Waste plastic collected from the local and private organization
Waste plastic pyrolysis Rs.18000 per ton It includes electricity, fuel, labour and maintenance
Yield of waste plastic oil 60 % by weight 600 L of WPO per ton
Total production cost of WPO Rs. 50 per Liter Include all the costs like collection, processing and production.

Table 3 
Properties of AL2O3 nanoparticles.

Nano additive AL2O3

Physical appearance

Phase alpha (α) phase
Crystallite size 20 nm
BET surface area 20 m2/g
Shape Spherical
Purity 99.9 %
Form Powder
APS 50–200 nm
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investigation of multi-dimensional response surfaces, therefore allowing researchers and engineers to efficiently probe difficult in
teractions among variables. RSM is used in historical data context to leverage already acquired data to increase the effectiveness and 
efficiency of experimental designs. This method helps one to find important elements and interactions affecting the answer variable. 
Analyzing past data helps researchers create prediction models that reflect the fundamental trends and connections in the data, 
therefore offering insightful information that can direct the next studies or process improvements.

Usually starting with the gathering of historical data on the factors of interest and their respective reactions, the process starts Data 
of this kind can come from observational research, historical experiments, or manufacturing runs. After the data is collected, statistical 
methods including regression analysis are used to fit the response variable to the independent factors. Usually approximating the 
response surface, the produced model forms a Polyn equation. Using historical data in RMS is one of the main benefits in terms of time 
and experimental expense savings. Using already available data helps researchers avoid pointless experiments and concentrate on 
improving the models depending on past observations. Moreover, historical data can offer a larger background that enables re
searchers to spot trends and patterns possibly not clear in small-scale studies. This can improve knowledge of varying interactions and 
result in more accurate responses under diverse situations predictions. Furthermore, RSM using past data helps to perform sensitivity 
analysis, therefore enabling researchers to evaluate how variations in input factors affect output response. This study helps to identify 
important thresholds and ideal operating conditions, therefore supporting decision-making procedures. Simulating several scenarios 
depending on historical data improves the validity of the results and finally helps to develop better optimization plans.

Finally, RSM’s historical data method marks a major progress in experimental design and process improvement. Integration of 
historical data into the modeling process helps researchers create more accurate and dependable predictive models, simplify exper
imental efforts, and thereby increase process efficiency. This approach not only clarifies difficult systems but also provides a useful 
instrument for promoting creativity and ongoing development in many sectors [33].

2.4. Machine learning

Machine learning (ML) was used to develop predictive models for optimizing diesel engine performance with waste plastic oil 
blended with 1-butanol and alumina oxide nanoparticles. Trained on experimental data, ML accurately predicted key parameters like 
efficiency, fuel consumption, and emissions, enabling efficient optimization for improved performance and sustainability.

2.5. Random Forest

An ensemble learning method called Random Forest (RF) creates several decision trees and aggregates them to generate a more 
accurate and steady prediction. RF is fundamentally based on the idea of bagging, in which a subset of training data is randomly 
selected such that every tree may learn from many variants of the dataset. By averaging out the predictions of several trees to obtain a 
more generalized model, this approach lowers the risk of overfitting—a major problem experienced by individual decision trees. Every 
decision tree in the forest generates a forecast for every data point utilizing a sequence of binary splits depending on feature values. RF 
power comes from its capacity to efficiently manage both classification and regression problems. To guarantee diversity in the trees, it 
chooses at random a subset of features for splitting at every node during training. This variety adds to greater robustness and accuracy. 
Random Forest uses a majority vote in classification tasks or averages the outputs in regression tasks to make predictions, therefore 
lowering variance and improving performance [34].

RF’s capacity to gauge feature relevance is another clear benefit. Examining the degree of each feature’s contribution to the model’s 
accuracy helps one to understand which variables most affect the predictions. In fields where knowledge of feature correlations is vital, 
this quality is especially helpful. Furthermore, Random Forest is rather simple to tweak; factors like the number of trees and maximum 
depth allow for variation in model complexity.

2.5.1. Gradient Boosting regression
Gradient Boosting Regression (GBR) is a powerful ML technique that builds predictive models in a stage-wise manner, combining 

the predictions of multiple weak learners to create a robust overall model. This method is based on the boosting idea, in which the next 
model is taught to fix mistakes produced by its previous. Gradient Boosting in the context of regression emphasizes reducing the 
residual errors of the past models, so iteratively improving predictions. Fundamentally, Gradient Boosting uses decision trees as the 
basic learners; usually utilizing shallow trees that capture patterns without overfitting, the approach starts with an initial pre
diction—usually a straightforward mean value—then adds later trees to the ensemble based on the gradients of the loss function. 
Gradient Boosting learns from its errors and progressively increases accuracy by matching a new tree to the residual mistakes of the 
current model. A key factor influencing the weight assigned to every new tree is the learning rate, hence balancing the convergence 
speed and stability of the model.

GBR’s adaptability in managing many kinds of data and loss functions is among its main benefits. From financial forecasting to 
natural language processing, its versatility lets it be used in many different settings. Gradient Boosting is also fit for real-world datasets 
since it effectively handles missing values and categorical variables. To avoid overfitting, though, hyperparameter tuning—including 
tree depth and the number of boosting iterations—must be done. Furthermore, used to improve model generalization are regularizing 
methods. These properties taken together make GBR a preferred tool for creating very accurate predictive models among data scientists 
[35].
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2.5.2. Decision tree
Based on a tree-like model of actions and their possible repercussions, Decision Tree Machine Learning is a generally applied 

method for both classification and regression problems. The method starts with a dataset having a target variable—which the model 
seeks to forecast—along with characteristics. Operating by recursively splitting the dataset according to the values of input attributes, 
decision trees generate branches leading to outcomes, or leaves, which reflect predictions. A fundamental element of decision tree 
building, the splitting criterion controls dataset division at every node. For regression, MSE is employed for model development. The 
aim is to choose splits that produce the most homogeneous groups thereby raising the predicted accuracy. The tree develops until it 
reaches a designated depth or until more splits have no appreciable effect on prediction quality. One of the main benefits of decision 
trees is their interpretability; the resultant model is accessible even to non-experts since it can be simply seen and understood. 
Following the journey from the root to the leaves lets users follow the decision-making process. However, as decision trees may collect 
noise in the training data rather than generalizable patterns, they are prone to overfitting especially when left to develop deep. Pruning 
and other methods can help to remove branches with minimal predictive value to solve this. Moreover, decision trees are quite flexible 
since they can manage numerical and categorical data without any preparation required. More sophisticated ensemble techniques, 
including Random Forest and Gradient Boosting, which seek to combine several decision trees to increase performance, also find roots 
in them. Due in great part to their simplicity and efficiency, decision tree algorithms are basic techniques in machine learning used 
extensively in many fields [36].

3. Experimental setup

The investigational unit is revealed in Fig. 3. The features of the engine are depicted in Table 4. The experimentation was performed 
on blended mixtures of WPOME and diesel. Performance, combustion and emission outcomes were analyzed in this study. The test rig 
is related with AVL burning study software. For emissions study AVL DI-Gas 444 gas analyzer and AVL 437 opacity calibration in
strument are utilized. Experimental setup comprises of a diesel engine. The unit contain other panel which include fuel tank, air box, 
manometers, burette and temperature pointers. Oil intake is calibrated utilizing burette instrument. The air flow level is calculated by 
means of mass-air flow instrument. The dissipate gas is analyzed using the AVL gas analyzer.

4. Statistical results

Analysis of Variance (ANOVA) is a statistical tool widely used to evaluate the significance of multiple factors and their interactions 
on diesel engine characteristics. By partitioning the total variability in experimental data, ANOVA identifies the contributions of in
dividual variables, such as fuel composition, engine load, or additives, to performance metrics like thermal efficiency, fuel con
sumption, and emissions. This analysis helps determine which factors significantly influence engine behaviour, ensuring a focused 
optimization process. ANOVA’s ability to provide statistical validation makes it an essential tool for understanding and improving 
engine performance with alternative fuels. The results of ANOVA are presented in Table 5.

4.1. BTE model

Using the BTE model (Table 5), the analysis of variance (ANOVA) for the response surface quadratic model shows that the model is 
significant with a model F-value of 104.33, so reflecting an extremely low likelihood (0.01 %) of this outcome occurring owing to 
noise. The surface diagram and contour plot for BTE model is depicted in Fig. 4. With five degrees of freedom, the model’s sum of 
squares comes out to be 407.94, yielding a mean square of 81.59. Significant model terms comprise A (p-value = 0.0001), B (p-value =
0.00291), and A2 (p-value = 0.0001). Terms having a “Prob > F″ value higher than 0.1000, such AB and B2, are not important and 
might be eliminated to increase the fit of the model. With a mean square of 0.78 and a residual sum of squares of 10.95, the fit is really 
good. While the adjusted R2 is 0.9645, meaning the model is well-adjusted for the number of predictors, the R2 value of 0.9739 

Fig. 3. Experimental set-up [15].
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indicates that the model explains around 97.39 % of the variance in the data. The model’s dependability is supported by the expected 
R2 (0.9544), which agrees rather well with the adjusted value. Strong signal-to-noise ratio indicated by the appropriate precision ratio 
of 26.563 indicates that the model is fit for negotiating the design space well beyond the intended value of 4.

4.2. BSFC model

The surface diagram and contour plot for BSFC model is depicted in Fig. 5. With an F-value of 74.21, the analysis of variance 
(ANOVA) for the response surface quadratic model in the BSFC (Brake Specific Fuel Consumption) model shows that the model is 
statistically significant—that is, with a very low likelihood—of this outcome occurring by random chance (Table 5). Spread across five 
degrees of freedom, the model sum of squares is 0.082, producing a mean square of 0.016. Significant are key elements including A (p- 
value 0.0001) and A2 (p-value 0.0001). Given their larger p-values, terms like B (p-value = 0.2852) and AB (p-value = 0.8237) are 
judged negligible, though. If not necessary for the model hierarchy, such words could be eliminated to improve the model still more. 
With a mean square error of 0.0002215 and a residual sum of squares of 0.0031, the model fit is really good. While the adjusted R2 

value of 0.9507 tests the robustness of the model when considering the number of predictors, the R2 value of 0.9636 indicates that 
96.36 % of the variability in the data is explained by the model. Reiterating the model’s predictive power, the expected R2 (0.9336) is 
near to the adjusted value. Exceeding the criterion of 4 with an appropriate precision ratio of 21.375, the model shows a strong signal- 
to-noise ratio, so a dependable instrument for efficiently investigating the design space.

4.3. HC emission model

With an F-value of 21.29, the ANOVA for the response surface quadratic model evaluating hydrocarbon (HC) emissions shows that 
the model is statistically significant and implies a very low likelihood (0.01 %) that the results happened by coincidence. The surface 
diagram and contour plot for HC model is depicted in Fig. 6. With a mean square of 533.67, the model’s sum of squares—which spans 
five degrees of freedom—is 2668.35 Notable influence on HC emissions is shown by A (p-value = 0.0001) and A2 (p-value = 0.0074). 
Conversely, factors like B (p-value = 0.2691) and AB (p-value = 0.9969) are not statistically significant and could be excluded to help 
to improve the model. With a standard deviation of 5.01, the residual sum of squares is 350.85, signifying somewhat modest data 
variability. Whereas the corrected R2 of 0.8423 shows the model’s performance following term adjustment, the R2 value of 0.8838 
indicates the model accounts for 88.38 % of the variability in HC emissions. Good predictive accuracy is shown by the projected R2 of 
0.7913, which is rather in line with the adjusted R2. Moreover, the strong signal-to-noise ratio of the model is confirmed by the suitable 
precision ratio of 12.101, considerably over the minimum necessary value of 4, so providing a trustworthy instrument for design space 
navigation.

4.4. CO emission model

The surface diagram and contour plot for HC model is depicted in Fig. 7. Having an F-value of 24.20, suggesting an extremely low 
probability (0.01 %), the ANOVA for the response surface quadratic model analyzing carbon monoxide (CO) emissions demonstrates 
that the model is statistically significant. Spaced over five degrees of freedom, the total sum of squares for the model is 0.010, yielding a 
mean square of 0.002095. A (p-value 0.0001) and A2 (p-value 0.0001) are important variables affecting CO emissions. But terms like B 
(p-value = 0.9189) and AB (p-value = 0.8131) are not significant, so their absence might improve the model’s efficiency. With a 
standard deviation of 0.009302 and a residual sum of squares of 0.001212, the data shows a modest degree of fluctuation. While the 
modified R2 of 0.8593 strengthens the validity of the model, an R2 value of 0.8963 shows that the model explains 89.63 % of the 
variability in CO emissions. Reflecting the predictive ability of the model, the projected R2 of 0.8167 fits the adjusted value rather 
nicely. Furthermore, the strong signal-to-noise ratio of the model, significantly higher than the required value of 4, is confirmed by its 
suitable precision ratio of 12.317, which makes it a useful instrument for investigating the design space.

4.5. NOx emission model

In the case of NOx emission model, the F-value of 516.31 obtained through ANOVA of NOx emission data shows that the model is 
quite significant and indicates almost no likelihood (0.01 %) of the results being impacted by noise. The surface diagram and contour 

Table 4 
Engine specifications.

Engine category Kirloskar

Power and speed 5.2 kW 1500 rpm
Bore(D) 87.5 mm
Stroke(L) 110 mm
Displacement-volume(V) 661.45cc
Compression-ratio (CR) 17.5:1
No. Of cylinders 01
Orifice diameter 20 mm
Type of cooling Water cooled
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Table 5 
ANOVA analysis.

BTE BSFC CO HC NOx Smoke

F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value

Model 104.33 <0.0001 74.21 <0.0001 21.29 <0.0001 24.20 <0.0001 516.31 <0.0001 199.74 <0.0001
L 367.27 <0.0001 218.64 <0.0001 75.46 <0.0001 64.09 <0.0001 1955.77 <0.0001 732.17 <0.0001
C 5.91 0.0291 1.23 0.2852 1.32 0.2691 0.01 0.9189 0.45 0.5123 0.01 0.9363
LC 0.79 0.3894 0.05 0.8237 0.00 0.9969 0.06 0.8131 0.00 0.9665 0.10 0.7579
L^2 71.55 <0.0001 90.46 <0.0001 9.78 0.0074 42.27 <0.0001 97.42 <0.0001 84.17 <0.0001
C^2 0.76 0.3992 0.26 0.6193 0.03 0.8725 0.13 0.7233 17.49 0.0009 1.61 0.2256
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plot for NOx model is depicted in Fig. 8. Computed from five degrees of freedom, the model’s sum of squares is 5.327E+006, yielding a 
mean square of 1.065E+006. While B (p-value = 0.5123) and AB (p-value = 0.965) are not statistically significant, suggesting that they 
may be eliminated for model improvement, significant factors influencing NOx emissions include A (p-value = 0.0001), A2 (p-value =
0.0001), and B2 (p-value = 0.0009). With a standard deviation of 45.42 and a residual sum of squares of 28886.81, the data shows little 
variability. While the modified R2 of 0.9927 further validates the model’s resilience, its R2 value of 0.9946 reveals that 99.46 % of the 
variance in NOx emissions is explained by the model. The model’s predictive power is reinforced by the expected R2 of 0.9899, which 
fits very precisely the adjusted value. Furthermore, the strong signal-to——noise ratio of the model, which far above the intended 
value of 4, is confirmed by the suitable precision ratio of 59.049, so providing a trustworthy instrument for negotiating the design 
space.

4.6. Smoke opacity model

With an F-value of 199.74, the ANOVA for the response surface quadratic model assessing smoke opacity reveals a very significant 

Fig. 4. BTE model LCV vs load (a) 3-d response surface (b) contour plots.

Fig. 5. BSFC model LCV vs load (a) 3-d response surface (b) contour plots.
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model with a robust model fit with just a 0.01 % possibility that the results are attributable to noise. The surface diagram and contour 
plot for smoke opacity model is depicted in Fig. 9. With a mean square for the model being 2473.87, the total sum of squares is 
12369.35. While terms B (p-value = 0.9363), AB (p-value = 0.7579), and B2 (p-value = 0.2256) are not statistically significant and 
might be eliminated to maximize the model, key factors influencing smoke opacity include factor A (p-value = 0.0001) and A2 (p- 
value = 0.7579). With a standard deviation of 3.52 and a residual sum of squares of 173.40, the residuals exhibit very little variability. 
While the modified R2 of 0.9812 confirms the dependability of the model, the R2 value of 0.9862 shows that the model explains 98.62 
% of the variance in smoke opacity. Further confirming the model’s predictive ability, the expected R2 of 0.9776 fits quite precisely the 
modified R2. Furthermore, the suitable precision ratio of 34.664 greatly surpasses the target value of 4, so verifying the strong signal- 
to-noise ratio of the model and enabling efficient use of it to traverse the design space.

4.7. Optimization

RSM uses desirability-based optimization to find ideal settings in multi response system. Models including BTE, BSFC, HC, CO, NOx, 

Fig. 6. HC model LCV vs load (a) 3-d response surface (b) contour plots.

Fig. 7. CO model LCV vs load (a) 3-d response surface (b) contour plots.
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and Smoke Opacity were subjected in this work for optimization. Verified by ANOVA, the models displayed notable F-values and high 
R-squared values suggesting most of the response variability was effectively captured. A group optimization was done by balancing 
several criteria including pollutants and engine efficiency using desire functions. For every model, individual desirability values were 
computed, therefore aggregating several goals into a single composite desirability index. To attain the best overall performance, this 
method let one adjust the input variables—such as load and LCV values of blended fuel.

A desirability-based optimization method yielded the best outcomes for the engine performance criteria. The engine load fell 
between 25 and 100 at 64.56, ideal. The fuel’s lower calorific value (LCV) was optimized near its maximum limit at 41961.98. Brake 

Fig. 8. NOx model LCV vs load (a) 3-d response surface (b) contour plots.

Fig. 9. Smoke emission model LCV vs load (a) 3-d response surface (b) contour plots.
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specific fuel consumption (BSFC) was lowest at 0.2679 while brake thermal efficiency (BTE) was increased to 30.39. Emissions of 
carbon monoxide (CO) and hydrocarbons (HC) were much lowered to 19.39 and 0.012 respectively. Smoke opacity dropped to 23.14 
while nitrogen oxides (NOx) were lowest at 1343.02. The desirability levels for individual as well as total desirability is shown in 
Fig. 10. With an overall desirability of 0.776, the optimization revealed a well-balanced solution over all the parameters and these are 
shown in Table 6.

5. Machine learning-based model development

Machine learning (ML) was employed to develop predictive models for optimizing diesel engine performance using waste plastic oil 
blended with 1-butanol and alumina oxide nanoparticles. Experimental data were used to train and validate the models, focusing on 
key engine parameters such as brake thermal efficiency, specific fuel consumption, and emissions. The ML models provided accurate 
predictions and insights, enabling efficient tuning of operating conditions for improved performance and reduced emissions, 
demonstrating the potential of ML in sustainable fuel applications.

5.1. Data pre-analysis based on correlation values

Using a correlation heat map and correlation matrix, data pre-analysis examined variable interactions. Whereas the correlation 
matrix gave numerical correlation values, the correlation heat map graphically showed the strength and direction of relationships. This 
method directed feature selection for the next analysis in the modelling phase and helped find important variables, and perhaps 
multicollinearity problems. The correlation heat map is depicted in Fig. 11a while correlation pair plots are illustrated in Fig. 11b.

The correlation matrix is listed in Table 7. The correlation matrix offers an entire picture of the connections among several factors 
influencing engine performance. Every item in the matrix shows, between − 1 and 1, the correlation coefficient between two variables. 
A score of 1 indicates a perfect positive correlation—that is, the other variable increases too as one variable does. On the other hand, a 
value of − 1 denotes a perfect negative correlation—that is, where a rise in one measure results in a fall in the other. For engine load and 
NOx emissions (0.97), for example, the matrix shows a high positive association; for brake thermal efficiency (BTE) and brake specific 
fuel consumption (BSFC), it displays a substantial negative correlation. This implies that while improved efficiency results in lower fuel 
consumption, more NOx usually results from higher engine loads. Moreover, HC emissions are favourably linked with CO (0.93) and 
HCU (0.95), meaning that CO and unburned hydrocarbons increase together as HC emissions grow. Maximizing engine performance 
and emissions depends on an awareness of these relationships since it enables one to choose which factors can be changed to get 
desired results in fuel economy and pollutant emissions. In thermal engineering, this matrix is a useful instrument for data analysis 
generally.

5.2. Engine performance and emission models

5.2.1. Brake thermal efficiency
The BTE prediction model was prepared using the data collected from lab-based testing results. In both training and testing sets, the 

performance measures of several models—including Random Forest (RF), Decision Tree, and Gradient Boosting Regression (GBR)— 
indicate differing degrees of efficacy (Table 6). The models are compared in Fig. 12(a–c). Reflecting great accuracy, the Random Forest 
model obtained a mean squared error (MSE) of 0.12 during training; its testing MSE was substantially higher at 1.63. At 0.9936 for the 
training set, the coefficient of determination, R2, was good; nevertheless, it dropped to 0.9276 for the test set, indicating considerable 
over fitting. Though it exhibited a testing MSE of 1.60, leading to an R2 value of 1.0000 in training and 0.9291 in testing, the Decision 

Fig. 10. Desirability levels.
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Tree model displayed an amazing training MSE of 0.00, suggesting a perfect match. With R2 values of 0.9997 and 0.9180 for training 
and testing respectively, the GBR model reported a training MSE of 0.01 and a test MSE of 1.85. Furthermore, the Mean Absolute 
Percentage Error (MAPE) values for all models were rather low; RF showed 1.04 % for training and 5.23 % for testing; nevertheless, 
Decision Tree and GBR showed MAPE values of 0.00 % and 0.22 % respectively. These findings show generally the good performance 
of the models as well as the need to strike a balance between fit between training and testing sets. Given its almost perfect match to the 
training data, the Decision Tree model turned up as the best-performing method overall in this situation. ML prediction results are 
shown in Table 8.

5.2.2. Brake-specific fuel consumption
Data gathered from lab-based testing findings helped to create the BSFC prediction model. The performance evaluations of 

numerous models including RF, DT, and GBR show different degrees of efficacy in both training and testing sets, as listed in Table 8. 
Focusing on mean squared error (MSE), (R^2), and mean absolute percentage error (MAPE), three machine learning models—Random 
Forest (RF), Decision Tree (DT), and Gradient Boosting Regression (GBR)—can have their performance compared based on their 
training and testing metrics. With a train MSE of 0 and (R^2) of 1.0000 the Decision Tree attained flawless training outcomes, therefore 
suggesting a perfect fit to the training data. Its performance was greatly reduced during testing, therefore its test MSE of 0.000335 and 
test (R2) of 0.9230 points to overfitting. With a higher test MAPE of 4.48, however, with a train MSE of 5.00E-05 and test MSE of 
0.000167, RF displayed more balanced outcomes while keeping an amazing train (R2) of 0.9875 and test (R^2) of 0.9616, thereby 
performing strongly in both training and testing stages. It likewise got modest MAPE values—1.84 for training and 3.82 for testing. 
With 0 MSE and an almost perfect (R2) of 0.9995, GBR produced outstanding training performance. Its test MSE of 0.000182 and test 

Table 6 
Optimized results.

Name Goal Lower value limit Upper value limit Optimized value

Load within range 25 100 64.56
LCV within range 37120 41962 41961.98
BTE maximize 18.76 32.25 30.3877
BSFC minimize 0.259 0.45 0.267877
HC minimize 9 50 19.38586
CO minimize 0.007 0.086 0.012012
NOx minimize 418 1843 1343.024
Smoke Opacity minimize 3.6 71.2 23.14293
Total desirability ​ ​ ​ 0.776

Fig. 11 (a). Heat map of correlation.
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Fig. 11 (b). Correlation pair plot.

Table 7 
Matrix of correlation.

Eng. Load, (%) LCV, KJ/kg BTE, (%) BSFC, kg/kWh HC, ppm CO, vol% NOx, ppm HCU, (%)

Eng. Load, % 1 0 0.91 − 0.85 0.89 0.76 0.97 0.95
LCV, KJ/kg 0 1 0.1 − 0.05 − 0.12 0 − 0.02 0.01
BTE, % 0.91 0.1 1 − 0.98 0.7 0.5 0.96 0.76
BSFC, kg/kWh − 0.85 − 0.05 − 0.98 1 − 0.59 − 0.37 − 0.92 − 0.66
HC, ppm 0.89 − 0.12 0.7 − 0.59 1 0.93 0.8 0.95
CO, vol% 0.76 0 0.5 − 0.37 0.93 1 0.62 0.91
NOx, ppm 0.97 − 0.02 0.96 − 0.92 0.8 0.62 1 0.86
HCU, % 0.95 0.01 0.76 − 0.66 0.95 0.91 0.86 1

Fig. 12. BTE model comparison using (a) RF.
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(R^2) of 0.9581 showed just a minor decline in performance during testing. The models are compared in Fig. 13(a–c). With a test MAPE 
of 3.80, GBR also achieved the best accuracy in forecasting unprocessed data. With great accuracy and low error rates in both stages, 
Random Forest offered the most balanced performance overall across training and testing, therefore indicating it is the best model 
among the three.

5.2.3. HC emission model
In the case of the HC emission model again, using their respective measures, the performance comparison of three models Random 

Forest (RF), Decision Tree (DT), and Gradient Boosting Regression (GBR) for estimating HC emissions is listed in Table 8. With an MSE 
of 0.00 and a (R2) of 1 the Decision Tree model demonstrated flawless accuracy in training. With a high test MAPE of 23.63, its test MSE 
of 18.75 and test (R2) of 0.8917 indicate overfitting, nevertheless, since it performs noticeably worse on the test data. The models are 
compared in Fig. 14(a–c). Conversely, the RF model fared well balancing training and testing. Its test MSE was 10.77 and its train MSE 
was 4.14; its train (R2) was 0.9710 and its test (R2) was 0.9 Dharma. Although it still shows space for development, its test MAPE of 
19.20 is modest relative to DT. The GBR model offered generally the most accurate forecasts. It obtained a test (R2) of 0.9903 and a 

Fig. 12. BTE model comparison using (b) GBR.

Fig. 12. BTE model comparison using (c) DT.
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nearly flawless train (R2). Among the three models, its test MSE of 1.69 and test MAPE of 7.26 were also much lower than those of the 
other models, so it was the most accurate and dependable for HC emission prediction. GBR therefore shows the lowest mistakes and 
best test accuracy among the models for HC emissions (Fig. 14).

5.2.4. CO emission model
In the case of the CO emission prediction model, with both the training and testing MSE being zero, showing no error in those 

Table 8 
ML prediction results.

Model MSE MSE R2 R2 MAPE, % MAPE, %

Training/test Training Test Training Test Training Test
RF 0.12 1.63 0.9936 0.9276 1.04 5.23
Decision Tree 0.00 1.60 1.0000 0.9291 0.00 5.36
GBR 0.01 1.85 0.9997 0.9180 0.22 5.37
RF 5.00E-05 0.000167 0.9875 0.9616 1.84 3.82
DT 0.00 0.000335 1.0000 0.9230 0.00 4.48
GBR 0.00 0.000182 0.9995 0.9581 0.36 3.80
RF 4.14 10.77 0.9710 0.9378 8.54 19.20
DT 0.00 18.75 1.0000 0.8917 0.00 23.63
GBR 0.12 1.69 0.9992 0.9903 0.82 7.26
RF 0.00 0.00 0.98 0.82 10.96 45.52
DT 0.00 0.00 1.00 0.91 0.00 14.56
GBR 0.00 0.00 1.00 0.94 1.63 22.60

Fig. 13. BSFC model comparison using (a) RF.

Fig. 13. BSFC model comparison using (b) GBR and (c) DT.
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datasets, the RF model demonstrated outstanding training performance. The statistical results of model evaluation are listed in Table 8. 
The comparative performance of the model is shown in Fig. 15(a–c). In the case of the RF model, its test R2 value, 0.82, indicated a 
minor decline in prediction accuracy on the test data relative to the DT and GBR models, though. Furthermore, showing notable 
variations in test predictions was the model’s rather high test mean absolute percentage error (MAPE), at 45.52 %. With an R2 score of 
1.00 for training and 0.91 for testing, the DT model dominated both the training and testing stages. For both datasets, its MSE was zero; 
thus, it obtained a low test MAPE of 14.56 %, which makes it rather dependable for CO emissions projections. With a test R-squared 
value of 0.94 and 0 % MSE for both training and testing, the Gradient Boosting Regression model likewise fared rather well. Its test 
MAPE, however, was 22.60 %, more than DT even if it was less than RF. Given its general accuracy and low error rates, the Decision 

Fig. 14. HC emission model comparison using (a) RF.

Fig. 14. HC emission model comparison using z(b) GBR (c) DT.

Fig. 15. CO emission model comparison using (a) RF.
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Tree model thus stands out as the best for estimating CO emissions.

5.2.5. NOx emission model
Table 8 contains the statistical findings of the model evaluation. Fig. 16(a–c) displays the model’s respective performance in 

comparison. With both the training and testing mean squared error (MSE) being zero, therefore showing no error in those datasets, the 
Random Forest model demonstrated outstanding training performance. Its test R-squared value, 0.82, indicated a minor decline in 
prediction accuracy on the test data relative to the Decision Tree and GBR models, though. Furthermore showing notable variations in 
test predictions was the model’s rather high test mean absolute percentage error (MAPE), at 45.52 %. With an R-squared score of 1.00 
for training and 0.91 for testing, the Decision Tree model dominated both the training and testing stages. For both datasets, its MSE was 
zero; thus, it obtained a low test MAPE of 14.56 %, which makes it rather dependable for CO emissions projections. With a test R- 
squared value of 0.94 and 0 % MSE for both training and testing, the Gradient Boosting Regression model likewise fared rather well. Its 
test MAPE, however, was 22.60 %, more than DT even if it was less than RF. Given its general accuracy and low error rates, the Decision 
Tree model thus stands out as the best for estimating CO emissions.

5.2.6. Smoke opacity model
In the case of smoke opacity also similar trends were observed. The statistical results of the model evaluation are presented in 

Table 8. Fig. 17a-c shows the corresponding performance of the model in respect. With a training mean squared error (MSE) of 2.23 
and a testing MSE of 26.99 the RF model showed an excellent match on the training data but a modest degree of error when tested on 
the test data. Whereas the testing R2 of 0.94 shows a high predicting ability on unknown data, its R-squared score of 1.00 for training 
reveals a perfect fit to the training data. However, the test mean absolute percentage error (MAPE) of 12.02 % shows some variations in 
its forecasts, especially concerning size. With an MSE of 0.00 and an R2 of 1, the DT model proved to have a faultless training per
formance, thereby precisely reflecting the training data. Though having a rather bigger error than RF, its testing MSE of 20.33 and R- 
squared of 0.96 also show good performance. Although the test MAPE of 11.03 % shows that it performs rather well, its forecasts still 
show some errors. With a training MSE of 0.01 the GBR model fit the training data very exactly. Its MSE of 28.08, however, reveals a 
notable rise in inaccuracy when used on fresh data. While the testing R2 dropped to 0.94, same to RF, the training R2 was 1. Especially, 
the test MAPE of 44.07 % shows that GBR struggled with generalization despite its great training performance since its forecasts 
showed more substantial deviations than those of RF and DT. Overall, although all three models did well on the training set, the 
Random Forest model offered a balanced approach displaying competitive testing performance. Although the Decision Tree showed 
somewhat higher mistake in testing, it was outstanding in training accuracy. Although the Gradient Boosting model had great training 
accuracy, it suffered with generalisation and produced higher MAPE values in its forecasts.

6. Results and discussion on engine performance and emission features

6.1. Brake thermal efficiency

The brake thermal efficiency (BTE) of waste plastic oil-diesel blends, blend treated with 1-Butanol, Al2O3 and diesel fuel is 
evaluated and observed the effect of 1-Butanol and Al2O3. The disparity of BTE with load is shown in Fig. 18. The BTE of diesel is 
higher followed by WPO20 1-Butanol 5 %, WPO20 Al2O3 100ppm, WPOME20, WPO20 1- Butanol 10 % and WPO20 Al2O3 50ppm. As 
the load rises BTE of entire tested oils also rises. BTE of Diesel fuel is 33.58 %, WPO20 1-Butanol 5 % having 32.25 %, WPO20 Al2O3 
100ppm having 31.58 %, WPOME20 having 31.49 %, WPO20 1-Butanol 10 % having 31.3 % and WPO20 Al2O3 50ppm having 30.6 %. 

Fig. 15. CO emission model comparison using (b) GBR (c) DT.
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Butanol has a higher cetane number, which indicates better ignition quality, and it also has a lower latent heat of vaporization. These 
properties lead to more efficient combustion, resulting in better thermal efficiency for Butanol added WPO20 blend compared to WPO 
20 blend at all load conditions. The addition of butanol to diesel fuel offers several advantages that can contribute to increased brake 
thermal efficiency in diesel engines, including higher energy content, improved combustion characteristics, better miscibility, reduced 
emissions, and sustainability. Aluminum oxide nanoparticles can exhibit catalytic properties, facilitating the breakdown of hydro
carbon molecules and promoting more complete combustion. This catalytic effect can enhance combustion efficiency and contribute to 
higher thermal efficiency in diesel engines. The presence of nanoparticles in the fuel can improve heat transfer characteristics within 
the combustion chamber. This can lead to more complete combustion of the fuel-air mixture and better utilization of the energy 
released during combustion, thereby increasing thermal efficiency. The applications of fuel additives have shown increased engine 
performance reported by Ref. [37].

6.2. Brake specific fuel consumption

BSFC represents the amount of fuel consumed by an engine to produce a unit of power output. Specifically, BSFC is defined as the 
mass of fuel consumed per unit of power produced. BSFC is commonly used in the automotive industry and is an essential parameter for 
evaluating the efficiency of internal combustion engines, including diesel and gasoline engines. BSFC is commonly used in the 
automotive industry and is an essential parameter for evaluating the efficiency of internal combustion engines, including diesel and 
gasoline engines. From observation of experimental results, diesel brake specific fuel consumption (BSFC) is low on comparison with 

Fig. 16. NOx emission model comparison using (a) RF (b) GBR (c) DT.
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other tested fuels. The disparity of BSFC with engine load is exposed in Fig. 19. BSFC of diesel is about 0.25kg/kWh followed by WPO20 
1-Butanol 5 % having 0.27kg/kWh, WPO20 Al2O3 100ppm having 0.28kg/kWh, WPOME20 having 0.28kg/kWh, WPO20 Al2O3 
50ppm having 0.29kg/kWh and WPO20 1-Butanol 10 % having 0.30kg/kWh at peak load. The main reason for the lower BSFC for the 
diesel fuel is due to higher calorific value when compared to the waste plastic oil as well as butanol added WPO20 blend. The addition 
of fuel additives like butanol and Al2O3 to the WPO20 is shown lower BSFC when compared to the WPO20 at full load. The present 
results were close confirmed with the results inferred by Ref. [38].

6.3. Exhaust gas temperature

EGT indicates the quality of combustion. Higher temperatures typically suggest complete combustion, whereas lower temperatures 
may indicate incomplete combustion, leading to higher emissions of unburned hydrocarbons and carbon monoxide. Exhaust Gas 
Temperature (EGT) refers to the temperature of the gases released during the combustion process. It is an important parameter in 
engine performance and monitoring because it reflects the efficiency of the combustion process and the load on the engine. The gas 
temperature at the time of exhaust stroke must be as high as possible for an engine which resembles the large power production, it is 
noticed that WPOME20, WPO20 1-Butanol 5 %, WPO20 1-Butanol 10 %, WPO20 Al2O3 50ppm and WPO20 Al2O3 100ppm has 
385.25 ◦C,389.25 ◦C, 382.9 ◦C, 384 ◦C, 387.16 ◦C respectively. Compared to diesel, waste plastic oil blends have less exhaust gas 
temperature as presented in Fig. 20. Overall, it serves as a key indicator of engine health, combustion quality, and environmental 

Fig. 17. Smoke Opacity emission model comparison using (a) RF (b) GBR (c) DT.
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Fig. 18. BTE with engine load.

Fig. 19. BSFC with engine load.

Fig. 20. EGT with engine load.
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compliance.

6.4. Carbon monoxide

The variation of CO emissions with engine load for the examined fuels are delineated in Fig. 21. At full condition WPO20 Al2O3 
100ppm having lower carbon monoxide emissions with 0.077 % followed by WPO20 1-Butanol 5 % with 0.08 %, WPO20 Al2O3 50ppm 
with 0.085 %, WPOME20 with 0.088 %, WPO20 1-Butanol 10 % with 0.089 % and diesel fuel with 0.09 %. based on the load rises, CO 
decreases. Butanol has a higher cetane number than conventional diesel fuel, which indicates better ignition quality. This can result in 
more stable combustion, reducing the likelihood of incomplete combustion events that produce CO. The presence of oxygen facilitates 
the oxidation of hydrocarbon molecules, leading to lower emissions of CO and other incomplete combustion byproducts. Overall, the 
use of butanol in biodiesel or diesel blends can contribute to the reduction of CO emissions by promoting more complete combustion, 
improving combustion stability, increasing oxygen content, lowering exhaust gas temperatures, and reducing engine deposits. Engine 
exhaust emissions were reduced with the applications of fuel additives reported by Sanjesh and Geetesh [39].

6.5. Hydrocarbons

Incomplete combustion can occur if the air-fuel mixture is not properly atomized or if combustion conditions are suboptimal. This 
can result in the release of unburned hydrocarbons into the exhaust. The properties of the fuel used can influence HC emissions. Factors 
such as fuel volatility, cetane number, and sulfur content can affect combustion efficiency and the likelihood of incomplete com
bustion, leading to higher HC emissions. From the experimental assessment, it is detected that the addition of 1-Butanol and Al2O3 
causes decrease in hydrocarbons emissions (HC). The disparity of hydrocarbon discharges of 1- Butanol and Al2O3 fuel blended 
mixtures with engine load is shown in Fig. 22. WPO20 Al2O3 100ppm possesses low hydrocarbon emissions compared to all tested 
fuels with 45ppm at full load followed by WPO20 1-Butanol-5% with 48ppm, WPO20 1-Butanol-10 % with 50ppm, WPO20 Al2O3 
50ppm with 53ppm, WPOME20 with 59ppm and Diesel fuel with 60ppm. As the load rises emissions of HC also rises. At higher loads, 
the fuel injected into the engine increases to meet the power demand. However, the air-fuel mixture may become richer, leading to 
zones with insufficient oxygen, resulting in incomplete combustion and higher HC emissions. At higher loads, the increased fuel in
jection rate may lead to poor atomization and uneven mixing of fuel and air, contributing to localized pockets of unburned fuel [40].

6.6. Nitrogen oxide

Nitrogen oxides (NOx), including nitrogen oxide (NO) and nitrogen dioxide (NO2), are produced in diesel engines due to the high 
temperatures and pressures in the combustion chamber, as well as the presence of nitrogen and oxygen in the air. Diesel engines 
operate at high compression ratios, leading to high temperatures in the combustion chamber during the combustion process. These 
high temperatures can cause nitrogen and oxygen from the air to react, forming NOx compounds. The excess air used in diesel engine 
combustion contributes to the formation of NOx. Oxygen present in the air combines with nitrogen from the combustion air to form 
NOx compounds. By the experimentation, addition of 1-Butanol and Al2O3 causes increase in NOx. The disparity of NOX emissions 
with load of 1-Butanol and Al2O3 blended fuels is presented in Fig. 23. As the amount of 1-Butanol and Al2O3 increases NOX increases. 
At zero load, WPO20 Al2O3 100ppm having 107ppm of NOX followed by WPO20 1-Butanol-5% with 100ppm, WPO20 Al2O3 50ppm 
with 93ppm, WPOME20 with 80 ppm, WPO20 1-Butanol-10 % with 66ppm and Diesel Fuel with 62ppm. At full load condition, 
WPO20 Al2O3 100ppm having 2121ppm of oxides of nitrogen emissions followed by WPO20 1-Butanol-5% with 2092 ppm, WPO20 1- 
Butanol-10 % with 2087 ppm, WPO20 Al2O3 50ppm with 2059 ppm, WPOME20 with 2036 ppm, and Diesel Fuel with 1909 ppm. As 
the load rises NOX also rises. The presence of oxygen improves the combustion process, leading to more complete combustion and 

Fig. 21. CO with engine load.
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lower peak combustion temperatures. Since NOx formation is highly temperature-dependent (it forms at high temperatures), the 
reduction in peak temperature due to better combustion helps lower NOx emissions.

6.7. Smoke opacity

Diesel engines may experience incomplete combustion due to factors such as poor fuel atomization, inadequate mixing of fuel and 

Fig. 22. HO with engine load.

Fig. 23. NOx with engine load.

Fig. 24. Smoke with engine load.
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air, insufficient combustion chamber temperatures, or incorrect fuel injection timing. When combustion is incomplete, unburned 
hydrocarbons and particulate matter are released into the exhaust as smoke. The quality of the diesel fuel used can affect smoke 
emissions. Low-quality or contaminated diesel fuel may contain impurities or higher levels of aromatics that contribute to incomplete 
combustion and increased smoke emissions. Excessive fuel injection or over fueling can lead to rich air-fuel mixtures, resulting in 
incomplete combustion and increased smoke emissions. This can occur due to factors such as incorrect fuel injection timing, worn 
injectors, or engine tuning issues. The addition of 1-Butanol and Al2O3 to WPOME20 opacity percentage increases but within 
acceptable limits. The disparity of opacity with load is exposed in Fig. 24. Opacity rises with rise in load on engine. At no load, 
WPOME20 having 4.6 % opacity of exhaust gases followed by WPOME20 Al2O3 50ppm with 4 %, WPO20 1-Butanol-10 % with 3.8 %, 
WPOME20 Al2O3 100ppm WITH 3.6 %, WPO20 1-Butanol-5% with 3.4 % and Diesel Fuel with 3.2 %. At full load condition, 
WPOME20 having 63.2 % opacity of exhaust gases followed by WPOME20 Al2O3 50ppm with 62.4 %, WPO20 1-Butanol-10 % with 
60.9 %, WPOME20 Al2O3 100ppm WITH 58.1 %, WPO20 1-Butanol-5% with 56.3 % and Diesel Fuel with 55.8 %.1-butanol is an 
oxygenated fuel, meaning it contains oxygen within its chemical structure. This improves the fuel’s combustion process by providing 
additional oxygen to the reaction. Better mixing and faster flame propagation reduce incomplete combustion, which is a primary cause 
of smoke emissions. Overall, the synergy between WPO20 and 1-butanol’s properties enhances combustion efficiency and reduces soot 
formation, leading to lower smoke emissions compared to other blends. These results were in agreement with the reports presented by 
Ref. [41].

6.8. Cylinder pressure

Investigation of disparity of cylinder pressure (CP) with crank angle (CA) on engine fueled with diesel fuel, WPOME20, WPOME20 
with addition of 1-Butanol and Al2O3 is plotted in Fig. 25. Fuel additives can influence the thermodynamics of combustion by altering 
the energy released during the process. Some additives enhance the energy density of the fuel, leading to higher combustion tem
peratures and pressures, while others may reduce energy losses through improved combustion efficiency. It is observed that the 
addition of 1-Butanol and Al2O3 causes increase in cylinder pressure. Lower cylinder pressures result in smaller ignition delay periods. 
At full load condition WPOME20 having lesser cylinder pressure compared to all tested fuels with 70.53 bar, WPO20 Al2O3 50ppm 
having cylinder pressure of 70.76 bar at 11 degrees of crank angle, diesel having 72.44 bar CP at 8 degrees of CA, WPO20 1-Butanol 10 
% having cylinder pressure of 72.86 bar, WPO20 Al2O3 100ppm having cylinder pressure of 73.36 bar and WPO20 1-Butanol 5 % 
having higher cylinder pressure compared to all tested fuels with 74.94 bar at 9 degrees of CA.

6.9. Heat release rate

Experimental investigation on addition of 1-Butanol and Al2O3 to WPOME20 is observed and heat release rate is plotted as Fig. 26
along with CA at peak load condition. From the observation of Fig. 26, we can say that Additives can increase the heat release profile 
during combustion, affecting factors such as flame propagation speed and combustion stability. This can result in smoother and more 
controlled combustion, reducing the likelihood of engine knock or detonation. Fuel additives may influence the temperature distri
bution within the combustion chamber. By altering combustion kinetics, they can affect peak temperatures and temperature gradients, 
which in turn impact emission levels and engine performance. Due to lower CP the heat release rate (HRR) is reduced in WPO20 Al2O3 
50ppm and WPOME20 blends. However, lower cylinder pressure triggers low ignition delay periods. At full load condition, WPO20 1- 
Butanol 5 % having greater HRR of 54.45 J/deg followed by WPO20 Al2O3 100ppm having 49 J/deg at − 4 degrees of crank angle, 
Diesel Fuel with 45.24 J/deg of heat release rate WPO20 1- Butanol 5 % having 43.32 J/deg of heat release rate, WPO20 Al2O3 50ppm 
having 42.32 J/deg of heat release rate and WPOME20 having 41.32 J/deg of heat release rate at − 2 degrees of crank angle.

Fig. 25. Cylinder pressure with crank angle.
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7. Conclusion

This current experimentally tested work analyzes that, engine’s performance, and emission parameters fueled with diesel, waste 
plastic oil, 1-Butanol and Al2O3 blended bio-fuel trials were executed at 5 loads of 0 %–100 %. Fuel additive 1-Butanol and nano
particle Al2O3 is added to the waste plastic biodiesel at 5 %, 10 % and 50ppm, 100ppm on volume basis.

From this experimental investigation the following conclusions are made. 

❖ The test results disclosed that WPOME20 has presented enhanced burning parameters like HRR and cylinder pressure related to the 
mixing of 1-Butanol and Al2O3 to the WPOME 20 blended mixture at peak load.

❖ Addition of 1-Butanol 5 % caused decrease in COs and HCs decreased by 9 % and 18.6 % correspondingly compared to WPOME20.
❖ Addition of nanoparticle Al2O3 100 ppm caused decrement in COs and HCs reduced by 12.5 % and 18.5 % correspondingly 

compared to WPOME20.
❖ Addition of 1-Butanol 5 % and Al2O3 100 ppm to WPOME20 resulted in slightly increase of oxides of nitrogen with acceptable limit.
❖ Optimized engine characteristics are found with the RSM-ML approach.

Ultimately, the novel 20 % waste plastic oil blend is suggested for diesel engine. Furthermore, the addition of 1-Butanol 5 % and 
Al2O3 100 ppm shown enhanced performance, combustion, and emission parameters.
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