

Article 1

Hardware Optimization for Effective Switching Power 2

Reduction during Data Compression in GOLOMB Rice Coding 3

G. Neelima1, T. Srinivas Reddy2, Sakthivel R3,*, Vanitha M4 , Srete Nikolovski5 and Hossam Kotb6 4

1 Department of CSE, Vignan Institute of Information Technology, Visakhapatnam, India; 5

 gullipalli.neelima@gmail.com 6
2 Department of ECE, Malla Reddy Engineering College, Maisammaguda, Secunderabad, 500100, India.; 7

srinivasreddy.thumu@gmail.com 8
3 Vellore Institute of Technology, School of Electronics Engineering, Vellore, Tamil Nadu, India; 9

rsakthivel@vit.ac.in / dhillsakthi@gmail.com 10
4 Vellore Institute of Technology, School of Information and Technology, Vellore, Tamil Nadu, India; 11

mvanitha@vit.ac.in 12
5 Power Engineering Department, Faculty of Electrical Engineering Computing and Information Technology, 13

31000 Osijek, Croatia; srete.nikolovski@ferit.hr 14

 6 Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 15

 Egypt; hossam.kotb@alexu.edu.eg 16

 17

 18

* Correspondence: srete.nikolovski@ferit.hr; rsakthivel@vit.ac.in 19

 20

Abstract: Loss-less data compression becomes the need of the hour for effective data 21

compression and computation in VLSI test vector generation and testing in addition to hardware 22

AI/ML computations. Golomb code is one of the effective technique for lossless data compression 23

and it becomes valid only when the divisor can be expressed as power of two. This work aims to 24

increase compression ratio by further encoding the unary part of the Golomb Rice (GR) code so as 25

to decrease the amount of bits used.The algorithm was developed and coded in Verilog and 26

simulated using Modelsim. This code was then synthesized in Cadence Encounter RTL 27

Synthesizer. The modifications carried out show around 6% to 19% reduction in bits used for a 28

linearly distributed data set. Worst-case delays have been reduced by 3% to 8%. Area reduction 29

varies from 22% to 36% for different methods. Simulation for Power consumption shows nearly 30

7% reduction in switching power. This ideally suggest the usage of Golomb Rice coding technique 31

for test vector compression and data computation for multiple data types, which should ideally 32

have a geometrical distribution. 33

Keywords: Golomb, compression, Electrocardiogram, Test, Data Compression, Encoding scheme, 34

area, power, delay. 35

 36

1. Introduction 37

Data compression refers to use of any particular technique that reduces the 38

number of bits used to represent the same amount of data. This is done using a variety of 39

techniques that have been vastly explored in recent decades. Often, it can be found that 40

the type of compression technique used, usually pertains to the specific application 41

where the said compression technique is intended for. 42

Golomb Rice coding has been used in data compression for a long time. Image 43

compression seems to be its earliest uses [1]. This technique has been prevalently used 44

for image compression in medical field [2]. This particular compression technique has 45

been fairly popular among researchers working with ECG data.Electrocardiogram (ECG) 46

data is a recording of electrical motion of a living heart over a period of time which is 47

produced using electrodes placed on the patient's body. Different ECG compression 48

Citation: Lastname, F.; Lastname, F.;

Lastname, F. Title. Energies 2022, 15,

x. https://doi.org/10.3390/xxxxx

Academic Editor: Firstname Last-

name

Received: date

Accepted: date

Published: date

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright:© 2022by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

mailto:gullipalli.neelima@gmail.com
mailto:srinivasreddy.thumu@gmail.com
mailto:rsakthivel@vit.ac.in/dhillsakthi@gmail.com
mailto:dhillsakthi@gmail.com
mailto:mvanitha@vit.ac.in
mailto:srete.nikolovski@ferit.hr
mailto:hossam.kotb@alexu.edu.eg
mailto:srete.nikolovski@ferit.hr
mailto:rsakthivel@vit.ac.in

 2 of 17

techniques like TURNING POINT, AZTEC, CORTES, FFT and DCT have been 49

implemented and studied [3-5]. Several other research works have focussed on 50

Dictionary based ECG data compression [6]. 51

Golomb Rice coding has also been used for ECG data compression using 52

asynchronous time encoding analog to digital converter [7]. While several other 53

researchers have used adaptive linear prediction with adaptive GR coding to improve 54

results [8]. 55

There have been researches in wavelet based methods for ECG compression and 56

their VLSI implementation [9]. Researchers Nicky H. Bellani & Payal Ghutke have used 57

GR codes to implement their own test vector compression in VLSI. [10]. Several others 58

have implemented GR encoding methods for test data compression [11-14]. 59

Beamforming algorithm architectures are used for medical ultrasound imaging [15] [21]. 60

A 15:4 Approximate Compressor based multiplier is used for image processing [16] -22]. 61

Low power low complexity based lossless data compression were proposed and 62

discussed in [17][23] and [18] [24]. IC design algorithm used in the backend require data 63

compression for thermal aware computing and for test data response compaction as 64

discussed in [19] [25]. 65

2. Literature Survey 66

There are huge volumes of works which have reported on image and signal compression 67

but there are very few works which are being reported on the hardware development for 68

the compression algorithms for test data compression, ECG signal compression etc. 69

In addition there are works reported on sensitive date lossless compression. Dominik 70

Rzepka [20] discuss about the lossless data compression for an ECG signal using selective 71

linear prediction methodology and it proves to be more effective for the asymmetrical 72

numerical systems. It also well suit for the multichannel signal. 73

Hang Wang et al. [21] developed an efficient compression based hardware for reducing 74

the on chip memory area requirement by proposing a line buffer architecture. The 75

proposed structure for the compression algorithm provides a good signal to noise ratio. It 76

increases the throughput with reasonable reduction in the hardware cost. 77

Seongmoon Wang et al. [22] improves the test data compression ratio to a great extent 78

and thereby increases the fault coverage for the Circuit under Test (CUT) in the 79

Automatic Test Engine (ATE). This works aims for compression in test vectors and its 80

response generated in the Linear Feedback shift Register (LFSR) and the ATE 81

respectively. 82

Xiaoke Qin et al. [23] worked on bitstream compression technique. Bitstream 83

compression is important in reconfigurable system design since it reduces the bitstream 84

size and the memory requirement. It also improves the communication bandwidth and 85

thereby decreases the reconfiguration time. 86

Wei Jhih Wang et al. [24] worked on modified version of dictionary-based code 87

compression. Memory is a key factor in embedded system design. Code compression is a 88

technique used in embedded systems to reduce the memory usage. Bit Mask-based code 89

compression is applied in this work to increase the compression ratio without increase in 90

the hardware cost. 91

HarisLekatsas et al. [25] presents a suitable algorithm that will combine approximate 92

compression techniques with bit-toggling reduction and it explores the various tradeoffs. 93

We take advantage of the approximations introduced to modify codes and reduce bit-94

toggling, while maintaining the compression performance and decoding speed. 95

 96

2.1. Existing Golomb Rice Coding Technique 97

 3 of 17

The Golomb-Rice (GR) encoding technique is a part of a larger family of prefix 98

codes formed by S.W. Golomb around 1966 as an alternative to the Huffman coding [26] . 99

Golomb Rice coding takes its name from S.W. Golomb and R. F. Rice. Rice described his 100

own modification of the original GR encoding technique where the divisors are a power 101

of two[27].GR codes are optimally suited for encoding symbols from a data set where the 102

probability distribution is exponential (for some parameters of the exponential 103

distribution). However, for a finite alphabet GR codes are neither optimal nor complete. 104

The GR family of codes is characterised by an important parameter ‘M’. This parameter is 105

a non-negative integer.In order to encode any input (non-negative integers), the encoded 106

output is framed in two parts namely unary and different code. First, the unary part is 107

calculated and then the different part is calculated. These two parts are then concatenated 108

to form a single line of code, which is then known as GR code. Table 1 illustrate the GR 109

encoding scheme for M=4. Table 1 illustrate the GR encoding scheme for M=4. 110

Table 1: GR encoding example for M=4 [2] 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

 122

 123

2.2. Algorithm 124

The GR code algorithm is well explained by figure.1. The code assigned for unary 125

and Golomb code based on the value of M with appropriate bit assignment and the same 126

is being explained below. 127

 128

Step 1 Fix parameter M to an integer value.

Step 2

For input N to be encoded, find

 Quotient, q= int[N/M]

 Remainder, r = N modulo M

Step 3
Code word generation:

 Code format = <Unary Code><remainder code>

Step 4
Unary code: Represent quotient in unary coding i.e. “q” strings of 1’s

followed by 0.

Step 5 Remainder Code:

If (M is power of 2)

M[n] Quotient Remainder Bit stream

0 0 0 0_00

1 0 1 0_01

2 0 2 0_10

3 0 3 0_11

4 1 0 10_00

5 1 1 10_01

6 1 2 10_10

7 1 3 10_11

8 2 0 110_00

9 2 1 110_01

10 2 2 110_10

11 2 3 110_11

12 3 0 1110_00

13 3 1 1110_01

14 3 2 1110_10

15 3 3 1110_11

16 4 0 11110_00

 4 of 17

 Remainder is coded as binary format using log2(M) bits.

Else if (M is not a power of 2)

Set x = $ceiling{log2 (M)}

 If (r < 2x – M)

 Code remainder as plain binary using x-1 bits.

 Else if (r >=2x – M)

Code the number (remainder + 2x – M) in binary representation using x

bits.

Figure 1. Algorithm 129

2.3. Technical Gaps with the existing system Architecture 130

In Golomb-Rice code, the M -parameter greatly affects the encoding efficiency. In 131

order to efficiently encode the data, the distribution of the data needs to be studied and 132

accordingly the M - parameter needs to be selected. In this case, the value of M is assumed 133

to be 128 and the input data to be encoded is assumed to be 10-bit in size. This setup 134

enables the ‘q’ value to vary from as low as zero to as high as 7. The variable ‘q’ holding 135

the value 7 means that the unary code will be 8 bits at its maximum length. This method 136

does allow a certain compromise on data compression by decreasing the bit length of most 137

used input symbols. However, it also increases the length of lesser-used symbols to a very 138

large extent. This makes GR code unsuitable for use when the data is not completely 139

geometrically distributed. This is well illustrated in Figure.2 with an input bit size of 10. 140

 141

Figure 2. Architecture for 10-bit input 142

 3. Proposed Methodology 143

 This work aims to reduce the bit length used for unary code. The selected 144

value of M as 128 allows us an ideal case to show various types of methods to reduce the 145

length of unary code while not being too large to handle in the scope of this paper. The 146

implementation of a normal GR encoding scheme was carried out using Verilog coding. 147

The outputs were observed and matched with expected results in order to verify whether 148

the code worked with all possible 10-bit inputs. Further, an encoding method was 149

applied which converted all the possible unary codes to fixed length 3 bit code. This 150

helped in reducing the complexity of the code but the bit-length of the output was back to 151

10-bits for all the inputs, which meant there was no compression in the end. The input 152

was 10 bits and the output was 10 bits as shown in figure.3. 153

 However, this allowed another modification where there was a separate encoding 154

scheme for unary codes. Next, the algorithm was modelled using Verilog, simulated 155

using modelsim and synthesized using Cadence Encounter RTL compiler.This meant 156

 5 of 17

including an entire division module and a loop to find the log values for different values 157

of parameter M. These codes were then synthesised. Various reports like timing, area, 158

delay and power were obtained for all proposed 3 schemes and the original GR encoding 159

scheme as shown in figure .4. Comparison of all the data was visualised using graphs. 160

Final conclusion was drawn as to which method was better for which data distribution. 161

Figure 3. Flowchart for GR codes 162

 163

 6 of 17

Objective :
To Design an efficient hardware

for Modified Golomb Rice
coding

Modeling the Proposed Architecture
using Verilog HDL

Challenges

:

Maintaining the accuracy

Reduce the area

Develop FPGA and ASIC architecture

Synthesis

Analysis of Area, Power and Speed

Tech Lib
:

DE1 Board

Is
 D

es
ig

n

Effi
ci

en
t ?Existing Design

Parameter
Spec Met

 CAD Tools

HDL

Editor

RTL Compiler/

Quartus-II

Synthesis

YES

NO

M
e
th

o
d

o
lo

g
y

 Functional SimulationModelsim

Backend
SoC

Encounter

FPGA Based ASIC Based

164
 165

Figure.4. Design methodology followed for the hardware. 166

3.1. Proposed schemes 167

This scheme tries to reduce the three largest bit sized unary codes by encoding them 168

using 2 bits. This allowed the unary part of the code to shorten its bit length. The codes 169

which were 6,7,8 bit in size were 2 bit each now. The maximum possible bit length of the 170

unary code was 5 bits now. This further led to another two schemes, which used 171

encoding scheme to fix their lengths. In order to decode this code, the bit length needs to 172

determined and accordingly further steps are taken. The possible lengths of unary codes 173

are 1,2,3,4,5 bits. This means that the final combined GR code will be 8,9,10,11,12 bit long. 174

This means whenever the codes are 8,10,11,12 bit long , normal GR decoding will take 175

place which involves finding the leading 0. Whereas for 9 bit long codes the first 2 bits 176

will always determine their unary codes and the remaining 7 bits will correspond to the 177

respective remainder. Similarly for schemes 2 and 3, their unary codes were changed to 178

reduce the bits used. 179

 7 of 17

3.2. High speed Golomb Rice Code (HSCRC) Proposed scheme-1 180

 181

The unary part of the code is modified to decrease the amount of bits used. Here, 182

we have taken the example of a 10-bit input. The value of M is 128. This gives us a q value 183

ranging from [0,7]. The maximum bit size of output will be 15 bits [8 unary bits + 7 184

remainder bits]. In this, 7 remainder bits are definite in size and are not changed. The 185

unary representation according to GR code will be as shown in Table.2. 186

Table 2. (HSCRC) Encoding Scheme 187

 188

 T189

h190

i191

r192

d193

 194

b195

u196

l 197

Use of this encoding technique reduces the number of bits used but it also 198

neutralizes the effect of GR coding. Since, the input was 10 bits in size and the output also 199

remains 10 bit in size, there was no actual compression. This is nothing but just a direct 200

binary representation of the input albeit in a different way. 201

We needed to encode the input in such a way that the reduction in bit used is 202

significant even in comparison to direct binary representation.Here, we propose a new 203

method to encode the unary part. The last 3 unary codes are represented using two bits 204

instead of their original codes in Table 3. As a result, the concatenated string will be 205

smaller in size as compared to the original as shown in figure 5. 206

Table 3. (HSCRC)Scheme- 1 Encoding 207

Value of “q” Unary representation Further encoding Bits saved

0 0 0 0

1 10 10 0

2 110 110 0

3 1110 1110 0

4 11110 11110 0

5 111110 00 4

6 1111110 01 5

7 11111110 11 6

 208

 209

 210

 211

 212

 213

 214

 215

 216

 217

Value of “q” Unary representation Further encoding Bits saved

0 0 000 -2

1 10 001 -1

2 110 010 0

3 1110 011 1

4 11110 100 2

5 111110 101 3

6 1111110 110 4

7 11111110 111 5

 8 of 17

 218

 219

 220

 221

Figure 5. Architecture for (HSCRC)Scheme-1 taking in a 10-bit input 222

3.3. Low Power Golomb Rice Code (LPCRC) Proposed Scheme-2 223

Also, we can use the representation according to our needs as the data distribution 224

differs. If the data distribution is linear, then the above method saves most bits. However, 225

if the data distribution is geometric in nature the distribution below is better. The modified 226

encoding scheme is shown in Table 4. 227

Table 4. LPCRC-Scheme- 2 Encoding 228

Value of “q” Unary representation Further encoding Bits saved

0 0 0 0

1 10 10 0

2 110 00 1

3 1110 01 2

4 11110 11 3

5 111110 111110 0

6 1111110 1111110 0

7 11111110 11111110 0

 229

 230

As a result, the architecture of the encoding scheme changes and is shown in the figure 6 231

 232

 9 of 17

 233

Figure 6. Architecture for LPCRC-Scheme- 2 taking in a 10-bit input 234

3.4. Efficient bit Reduction Golomb Code (EBRGC)-Proposed Scheme-3 235

Further, we can make use of different sized registers by encoding the inputs even 236

more judiciously. If the output registers are defined for 3 different bit sizes i.e. 8,9,10 bits, 237

we can effectively use as shown in Table 5. 238

 239

Table 5. (EBRGC)-Scheme- 3 Encoding 240

 241

 242

 243

 244

 245

 246

 247

 248

 249

As a result, the architecture of the encoding scheme changes and is shown in the 250

figure 7. 251

 252

 253
 254

Figure 7. Architecture for (EBRGC)Scheme- 3 taking in a 10 bit input 255

Value of “q” Unary representation Scheme-3 encoding Bits saved

0 0 0 0

1 10 10 0

2 110 00 1

3 1110 01 2

4 11110 11 3

5 111110 000 3

6 1111110 001 4

7 11111110 010 5

 10 of 17

The output is taken through 5 registers of defined bit length. The registers are of 256

12,11,10,9,8 bits in size respectively. This makes sure that during decoding, it’s possible 257

to decode the value without any error. 258

4. Performance Analysis 259

The proposed system is mathematically worked out to verify the validity of the changes 260

which we have made and the same was designed for its hardware architecture. The hard-261

ware modelling was done using Verilog and the same was simulated using Modelsim. In 262

order to get better optimization with design metrics like area, power and timing, the pro-263

posed design was synthesized using 45nm TSMC design lib with cadence RTL compiler. 264

The synthesized results are compared with the existing architecture in terms of area, power 265

and timing and the same has been shown in table and graphs. 266

4.1. Bit Reduction 267

This bit reduction is for linear test input. Total bits used were calculated while 268

keeping in mind that every data has same occurring frequency and comes once. A total 269

of 1024 different inputs are considered to fed into the system one by one. All the other 270

methods use the same inputs but with a different way to encode unary part of the 271

code.Table 6 shows the percentage of bit reduction for the three methods proposed. 272

Figure 10 shows the graphical display of bit usage for the conventional and proposed 273

GR coding techniques. 274

 275

Table 6. Data showing number of bits used 276

 277

 278

 279

 280

 281

Figure 8. Comparative graph depicting bit usage. 282

 283

Method Used Bits Used Bits saved % Reduction

Original GR coding 11776 - -

HSGRC(Scheme- 1) 9856 1920 16.30 %

LPCGRC(Scheme- 2) 11008 768 6.52 %

EBRGRC(Scheme- 3) 9472 2304 19.56 %

 11 of 17

4.2. Timing Report 284

The synthesized report gives the shows the worst case delay for original 285

algorithm and the proposed methods .Table 7 compares the worst case timing for 286

all 3 modified ways of encoding the same input data. Figure.9 shows the graphical 287

representation of the same. 288

 289

Table 7. Data showing change in worst case delay 290

 291

Method Used Worst Case

Time Delay(ps)

Time reduction

(ps)

% Reduction

Original GR coding 1486 - -

(HSGRC)Scheme- 1 1260 151 10.16%

(LPCGRC)Scheme- 2 1428 58 3.9%

(EBRGRC)Scheme- 3 1353 133 8.95%

 292

Figure9. Comparative graph depicting worst case delay 293

4.3. Area Report 294

Area analysis is being made on the area report obtained on the 90nm TSMC 295

synthesis. Table 8 shows the total area used for synthesizing the original algorithm 296

and compares the data for all 3 modified ways of encoding the same input data. 297

Figure 10 shows the graphical representation of the same. 298

 299

Table 8. Data showing change in area 300

 301

Method Used Area(nm) Area reduction

(nm)

% Reduction

Original GR coding 909.2 - -

HSGRC(Scheme- 1) 707.2 202 22.21%

LPCGRC(Scheme- 2) 689 220.2 24.21%

EBRGRC(Scheme- 3) 577 332.2 36.53%

 12 of 17

 302

 303

Figure 10. Comparative graph depicting area used 304

4.4. Power report 305

Table 9 shows the total power consumed by the proposed circuits made with the 306

original algorithm and compares the data for all 3 modified ways of encoding the same 307

input data. Figure 11 shows the graphical representation of the same. Figure 12 shows a 308

comparative bar graph diagram for the proposed methods. 309

Table 9. Data showing reduction in power usage 310

 311

 312

 313

 314

 315

 316

Figure 11. Comparative graph depicting power consumption 317

Method Used Power

consumed(nW)

Power

saved(nW)

% Reduction

Original GR coding 12904.65 - -

HSGRC(Scheme- 1) 12054 850.65 6.59%

LPCGRC(Scheme- 2) 11899 1005.65 7.79%

EBRGRC(Scheme- 3) 12838.5 521.15 4.03%

 13 of 17

 318

 319

 320

Figure 12. Comparative bar graph depicting difference between the methods. 321

 322

Figure 13. Comparative line graph depicting variations in the proposed methods 323

 324

Then, we have a different way altogether to show this data where we compare the 325

relative improvement in terms of percentage. Figures 13 and 14 shows a line graph 326

comparison of different methods and metrics used respectively. This is a relative 327

comparison because of which all the readings are compared relatively to each other on 328

ascale of 100 where 100% is the reading for original GR encoding algorithm. 329

 330

 14 of 17

 331

 332

Figure 14. Comparative line graph depicting improvements in proposed parameters 333

 334

The readings for original GR encoding algorithm is considered as the benchmark 335

and hence it is shown as 100% while others are compared relatively to the 100% value. 336

To benchmark our results with the existing state of art design we made a 337

comparative analysis with those existing hardware design for data compression. The 338

comparison is made in the aspect of hardware metrics like area, power, frequency of 339

operation with the original GR coding and our proposed designs and also with state of 340

art design with other researchers. Table.10 shows the comparative results. 341

Table 10. Comparative results with state of art design 342

Method Used Area Power

consumed(nW)

Bits used Speed(MHz)

Original GR coding 909.2 nm2 12904.65 11776 672

HSGRC(Scheme -1) 707.2 nm2 12054 9856 793

LPCGRC(Scheme -2) 689 nm2 11899 11008 700

EBRGRC(Scheme -3) 577 nm2 12838.5 9472 739

Wei Jhih et al.[33] 6.26mm2 405900000 * 255

Xiaoke Qin [32] 250 slices * * 195

Hang wang et al.[30] 13.5 Logic gates * * 600

 343

5. Application and Future scope 344

The synthesized results of the proposed design shows an appreciable improvement 345

of around 15% reduction in bit size, around 25% reduction in area, 6 % reduction in 346

power consumption and 9% increase in speed. Since there is a reasonable amount of bit 347

reduction it finds a great application in test vector compression and response compaction 348

of VLSI testing. It immensely reduces the testing power because the switching power get 349

reduced due to the bit reduction followed for coding [27 - 28] . The wide application of AI 350

and IoT requires a huge data manipulation and storage which essentially demands an 351

effective hardware architecture for lossless data compression coding and decoding [29-352

30]. 353

Biomedical applications and neuromorphic computing require huge data 354

computation and lossless compression for analysis, prediction and classification. This 355

majorly demands a dedicated efficient hardware’s for data compression [31-32]. 356

 15 of 17

This work can be further extended by applying signal statistics based modified GR 357

codes architecture for Machine learning algorithms and this could also be optimized 358

based on stochastic computing based architecture which could be applied in robotics and 359

brain computing. 360

6. Conclusion 361

In this work we try to come up with three different algorithmic level modification 362

in GR coding and its corresponding hardware architecture was designed, simulated and 363

synthesized. The synthesized results were compared which shows an effective increase 364

of metrics compared with GR compression algorithm. These modifications offered some 365

significant improvements. These improvements have been quantified and summed up 366

below: 367

HSGRC (Scheme -1) displays 16.30 % reduction in bit usage for linearly spread 368

data. Worst-case delay has been reduced by 10.16%, while area has been reduced by 369

22.21%. In addition, power consumption is down by 6.59%. 370

LPCGRC (Scheme -2) displays 6.52 % reduction in bit usage for linearly spread 371

data. Worst-case delay has been reduced by 3.9%, while area has been reduced by 24.21%. 372

In addition, power consumption is down by 7.79%. 373

EBRGRC (Scheme -3) displays 19.56 % reduction in bit usage for linearly spread 374

data. Worst-case delay has been reduced by 8.95%, while area has been reduced by 375

36.53%. In addition, power consumption is down by 4.03%. 376

Based on the comparison it suggest for the usage in test vector compression, biomedical 377

image compression and in AI with IoT applications. 378

 379

Author Contributions: Conceptualization, G.N, T.S, S.R, V.M.; data curation, V.M.; 380

formal analysis, H.K, S.N.; funding acquisition, S.N, H.K.; investigation, S.R.; 381

methodology, G.N.; project administration, V.M.; resources, V.M.; software, G.N.; 382

supervision, S.N, H.K.; validation, S.N. and A.F.; visualization, H.K.; writing–original 383

draft, G.N.; writing–review and editing, G.N, S.R, V.M. All authors have read and 384

agreed to the published version of the manuscript. 385

 386

Funding: Please add: This research received no external funding. 387

Conflicts of Interest: The authors declare no conflict of interest to declare. 388

References 389

1. Howard PG, Vitter JS. Fast and efficient lossless image compression. In[Proceedings] DCC93: Data Compression Conference 390

1993 Mar 30 (pp. 351-360). IEEE. 391

2. Starosolski R, Skarbek W. Modified Golomb-Rice codes for lossless compression of medical images. InProceedings of 392

International Conference on E-health in Common Europe, Cracow, Poland 2003 Jun (pp. 423-37). 393

3. Malik A, Kumar R. Compression Techniques for ECG Signal: A Review. Int. J. Modern Electron. Commun. Eng.. 2016;4(4):1-4. 394

4. Singh B, Kaur A, Singh J. A review of ECG data compression techniques. International journal of computer applications. 2015 395

Jan 1;116(11). 396

5. Batista LV, Carvalho LC, Melcher EU. Compression of ECG signals based on optimum quantization of discrete cosine 397

transform coefficients and Golomb-Rice coding. InProceedings of the 25th Annual International Conference of the IEEE 398

Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439) 2003 Sep 17 (Vol. 3, pp. 2647-2650). IEEE. 399

6. Brito M, Henriques J, Carvalho P, Ribeiro B, Antunes M. An ECG compression approach based on a segment dictionary and 400

bezier approximations. In2007 15th European Signal Processing Conference 2007 Sep 3 (pp. 2504-2508). IEEE. 401

 16 of 17

7. Marisa T, Niederhauser T, Haeberlin A, Goette J, Jacomet M, Vogel R. Asynchronous ECG time sampling: Saving bits with 402

Golomb-Rice encoding. In2012 Computing in Cardiology 2012 Sep 9 (pp. 61-64). IEEE. 403

8. Tsai TH, Kuo WT. An efficient ECG lossless compression system for embedded platforms with telemedicine applications. 404

IEEE Access. 2018 Jul 23;6:42207-15. 405

9. Chan HL, Chiu YC, Kao YA, Wang CL. VLSI implementation of wavelet-based electrocardiogram compression and 406

decompression. Journal of Medical and Biological Engineering. 2011 Oct 1;31(5):331-8. 407

10. Bellani NH, Ghutke P. A Modified GOLUMB Encoder and Decoder for Test Vector Compression. 408

11. Balakrishnan KJ, Touba NA. Improving linear test data compression. IEEE transactions on very large scale integration (VLSI) 409

systems. 2006 Dec 4;14(11):1227-37. 410

12. Kalode P, Khandelwal R. Test data compression based on Golomb coding and two-value Golomb coding. Signal & Image 411

Processing. 2012 Apr 1;3(2):171. 412

13. Karthik B, Kumar TV, Selvaraj A. Test data compression architecture for low power VLSI testing. World Applied Sciences 413

Journal. 2014 Jan;29(8):1035-8. 414

14. Volkerink EH, Khoche A, Mitra S. Packet-based input test data compression techniques. In Proceedings. International Test 415

Conference 2002 Oct 10 (pp. 154-163). IEEE. 416

15. Sreejeesh SG, J. U Kidav, Sakthivel R. Beam forming Algorithm Architectures for Medical Ultrasound. International 417

Journal of Innovative Technology and Exploring Engineering 2019 Oct ; 8(12):2452-2459. 418

16. Krishna TS, Riyas KS, Premson Y, Sakthivel R. 15–4 Approximate Compressor based multiplier for image processing. 419

In2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI) 2018 May 11 (pp. 671-675). IEEE. 420

17. Şimşek C, Kaya İ, Albayrak C. Low complexity, losless ECG data compression algorthims for Wireless Sensor Network. 421

In2013 21st Signal Processing and Communications Applications Conference (SIU) 2013 Apr 24 (pp. 1-4). IEEE. 422

18. Joseph B, Acharyya A, Rajalakshmi P. A low complexity on-chip ECG data compression methodology targeting remote 423

health-care applications. In2014 36th annual international conference of the IEEE engineering in medicine and biology society 424

2014 Aug 26 (pp. 5944-5947). IEEE. 425

19. Karmakar R, Chattopadhyay S. Thermal-aware test data compression using dictionary based oding. In2015 28th International 426

Conference on VLSI Design 2015 Jan 3 (pp. 53-58). IEEE. 427

20. Rzepka D. Low-complexity lossless multichannel ECG compression based on selective linear prediction. Biomedical Signal 428

Processing and Control. 2020 Mar 1;57:101705. 429

21. Wang H, Wang T, Liu L, Sun H, Zheng N. Efficient compression-based line buffer design for image/video processing circuits. 430

IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2019 Jun 26;27(10):2423-33. 431

22. Wang S, Wei W, Wang Z. A Low Overhead High Test Compression Technique Using Pattern Clustering With $ n $-Detection 432

Test Support. IEEE transactions on very large scale integration (VLSI) systems. 2009 Nov 10;18(12):1672-85. 433

23. Qin X, Muthry C, Mishra P. Decoding-aware compression of FPGA bitstreams. IEEE Transactions on Very Large Scale 434

Integration (VLSI) Systems. 2009 Dec 8;19(3):411-9. 435

24. Wang WJ, Lin CH. Code compression for embedded systems using separated dictionaries. IEEE Transactions on Very Large 436

Scale Integration (VLSI) Systems. 2015 Feb 4;24(1):266-75. 437

25. Lekatsas H, Henkel J, Wolf W. Approximate arithmetic coding for bus transition reduction in low power designs. IEEE 438

transactions on very large scale integration (VLSI) systems. 2005 Jun 27;13(6):696-707. 439

26. Golomb and Rice coding Juan Francisco Rodríguez Herrera Vicente González Ruiz 440

{https://w3.ual.es/~vruiz/Docencia/Apuntes/Coding/Text/03-symbol_encoding/09-Golomb_coding/index.html} 441

27. Golomb-Rice Coding {https://urchin.earth.li/~twic/Golomb-Rice_Coding.html}. 442

28. Data Compression https://searchstorage.techtarget.com/definition/compression 443

https://searchstorage.techtarget.com/definition/compression

 17 of 17

29. Granberg T. Handbook of digital techniques for high-speed design. Pearson India; 2004. 444

30. Khalgui M, Hanisch HM, editors. Reconfigurable Embedded Control Systems: Applications for Flexibility and Agility: 445

Applications for Flexibility and Agility. IGI Global; 2010 Nov 30. 446

31. Akhter S. Digital Hardware Design. Laxmi Publications, Ltd.; 2008. 447

32. Domnic S. A new method for Golomb-Rice parameter estimation. In2017 IEEE International Conference on Microwaves, 448

Antennas, Communications and Electronic Systems (COMCAS) 2017 Nov 13 (pp. 1-5). IEEE. 449

