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Abstract: The aging of PV cells reduces their electrical performance i.e., the parasitic parameters are
introduced in the solar panel. The shunt resistance (RSh), series resistance (RS), photo current (IPh),
diode current (Id), and diffusion constant (a1) are known as parasitic or extraction parameters. Cracks
and hotspots reduce the performance of PV cells and result in poor V–I characteristics. Certain tests
are carried out over a long period of time to determine the quality of solar cells; for example, 1000 h
of testing is comparable to 20 years of operation. The extraction of solar parameters is important for
PV modules. The Tabu Search Optimization (TSO) algorithm is a robust meta-heuristic algorithm that
was employed in this study for the extraction of parasitic parameters. Particle Swarm Optimization
(PSO) and a Genetic lgorithm (GA), as well as other well-known optimization methods, were used to
test the proposed method’s correctness. The other approaches included the lightning search algorithm
(LSA), gravitational search algorithm (GSA), and pattern search (PS). It can be concluded that the
TSO approach extracts all six parameters in a reasonably short period of time. The work presented in
this paper was developed and analyzed using a MATLAB-Simulink software environment.

Keywords: synthetic data (SD); pattern search (PS); absolute error; optimization technique; solar cell
(SC); tabu list (TL)

1. Introduction

Photovoltaic (PV) systems are ecologically benign, cost-effective, and simple to incor-
porate into traditional electricity grids [1]. To diminish power lopsidedness, sunlight-based
chargers are not straightforwardly connected to the load [2]. A panel-to-load power track-
ing strategy is recommended to avoid this problem [3]. Another major area of study is
the extraction of parasitic features from the solar cell [4]. In this article, the use of the TSO
approach to extract solar properties is reported.

PV systems with one diode were studied mathematically by Villalva et al. [5]. The
suggested modelling is easily accessible, quick, meticulous, and emulation-friendly. Series
and shunt protections, as well as how the continuous functional cluster thinks about as far
as most extreme power [6], are considered in the plan. Three aspects are focused to modify
the nonlinear condition contingent upon the I–V bend in an experimental manner [7].

On a solitary-diode model of a sunlight-based cell, X. Mama et al. [8] recommended
an information-driven I–V strategy that was surveyed on three boundaries (short circuit
current (ISC), RSh, and open-circuited voltage, VOC). For finding plan boundaries, such
as ideally consistent RS, RP, photon initiation current, and dull current, Saleem et al. [9]
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proposed a four-point extraction procedure [9]. Using GaAsP and SiGe tandem structures
with a three-terminal assessment [10], the authors were able to derive sub-cell features.
An analysis of the potential difference between the two reference cells was used to derive
individual voltages in the proposed method.

Predicting the losses of sub-passive cells also alters I–V curves. Consequently, different,
but similar, conditions at various input bands [11] govern the multi-performance junction’s
performance. Particle swarm optimization (PSO) was laid out by Wei et al. [12] to segregate
the exhibition attributes of natural sun-oriented cells, combined with three-diode lumped
boundaries. Muralidhar et al. [13] proposed a technique that assists with overcoming
the deficiency to avoid the drifting of local optimum issues. Diab et al. [14] researched
and proposed a quick and precise method for separating obscure sun-oriented properties
involving tree growth algorithm for assorted sun-powered PV modules. This strategy
guarantees that all recovered boundaries are processed under ideal circumstances, bringing
about optimal outcomes. In the future extension for this, PV systems will be able to make
use of this method in partially shaded conditions [15].

In Raba et al. [16], a definite Markov chain Monte Carlo approach was used to prove that
2-dimensional organic solar cells were devoid of uncontrolled events. Caracciolo et al. [17]
developed a single-variable optimization technique for constant environmental conditions.
It was found that the majority of the features, such as the RSh, IO, and panel range, were
resolved when tested under extreme environmental conditions. Therefore, the proposed
method is successful in all challenging circumstances.

Cervellini et al. [18] and Semero et al. [19] suggested a novel genetic algorithm (GA)
that can be applied to a wide range of kelvins and irradiation (G) zones [20]. The simple
and easy expression of the I–V curve and accompanying equations is achieved using the
recommended GA approach [20]. This simplifies the assessment process. For single-,
double-, and multi-diode plans, Liao et al. [21] developed difference vector in differential
evolution with adaptive mutation. DVADE’s goal is to quickly determine the extricated
limits of a broad range of PV models. Each individual vector is used and reused in the
mutation technique, which employs a differential evolution process and, therefore, may be
reused many times. Toledo et al. proposed the two-step linear-least-square technique [22].
There is a vital benefit to the recommended approach, which is that it can gather information
whether it is obtained from an I–V curve, i.e., it does not need any previous assessments and
does not request information on past examinations or data about the boundaries [23,24]. It
is feasible to eliminate the inherent potential (Vbi) from cells by utilizing a material-science-
based model and an observational method considering I–V attributes [25,26].

The following is a summary of the remaining portion of the paper. Following the
introduction, Section 2 presents a mathematical depiction of a solar panel. Section 3
illustrates the ageing effect of the solar panel. In Section 4, proposed methods are presented.
Section 5 provides a comparison of the suggested method’s findings and performance
with those of existing meta-heuristics. Conclusions and recommendations are provided in
Section 6.

2. Mathematical Modeling of PV Cell Based on Single Diode

The current produced by the sunlight is parallelized utilizing the current source from
a single-diode-modeled solar cell (SC), with the diode acting as a half-wave rectifier. The
model is easy to implement due to its simplest form. However, this model does not give
the required information regarding the solar cell’s parameters [27]. Figure 1 shows the
equivalent circuit of a single-diode-modeled SC.



Energies 2022, 15, 4515 3 of 12Energies 2022, 15, x FOR PEER REVIEW 3 of 13 
 

 

 
Figure 1. Circuit diagram of a single-diode-modeled solar cell. 

The PV current obtained from the sunlight-based charger was determined as follows: 

dPhPV III −=  (1) 

where IPV is the photovoltaic current, IPh is the photo current, and Id is the diode current. 
The Id was obtained based on Shockley equation, which is represented as: 












−







 +
= 1(exp

kb

SPVPV
Sd TK

RIVqII
η

 (2) 

The output current of the PV cell is represented as follows: 

−











−







 +
−= 1)(exp

kb

SPVPV
SPhPV TK

RIVqIII
η

 (3) 

The following implicit form simplifies the PV cell’s output characteristics: 

[ ] 11),,,( βα −−−= SPVPhKPVPV IIIGTVIF  (4) 










+
=

−






 +
=

P

SPVPV

kb

SPVPV

R
RIV

TK
RIVqwhere

1

1 1)(exp

β

η
α

 (5) 

3. Aging Effect of Solar Panels 
The aging of the PV module depends on the type of photovoltaic technology em-

ployed for the design of the solar cell and the environmental conditions in which it is 
installed. The PV panel performance is degraded due to the formation of cracks and bub-
bles on the panel surface. The performance of solar panels is reduced due to aging, which 
is mainly due to dust accumulation, humidity, UV radiation, wind speed, temperature, 
and certain other external factors, such as rain, snow, hail, and mechanical shocks. 

Impact of Aging on Solar Cell 
The aging of the PV cell reduces the electrical performance, i.e., the parasitic param-

eters are introduced in the solar panel. The shunt resistance (RSh), series resistance (RS), 
photo current (IPh), diode current (Id), and diffusion constant (a1) are known as parasitic or 

Figure 1. Circuit diagram of a single-diode-modeled solar cell.

The PV current obtained from the sunlight-based charger was determined as follows:

IPV = IPh − Id (1)

where IPV is the photovoltaic current, IPh is the photo current, and Id is the diode current.
The Id was obtained based on Shockley equation, which is represented as:

Id = IS

[
exp

(
q(VPV + IPV RS

ηKbTk

)
− 1
]

(2)

The output current of the PV cell is represented as follows:

IPV = IPh − IS

[
exp

(
q(VPV + IPV RS)

ηKbTk

)
− 1
]
− VPV + IPV RS

RP
(3)

The following implicit form simplifies the PV cell’s output characteristics:

F(IPV , VPV , TK, G) = IPh − IPV − IS[α1]− β1 (4)

where α1 = exp
(

q(VPV+IPV RS)
ηKbTk

)
− 1

β1 = VPV+IPV RS
RP

}
(5)

3. Aging Effect of Solar Panels

The aging of the PV module depends on the type of photovoltaic technology employed
for the design of the solar cell and the environmental conditions in which it is installed.
The PV panel performance is degraded due to the formation of cracks and bubbles on the
panel surface. The performance of solar panels is reduced due to aging, which is mainly
due to dust accumulation, humidity, UV radiation, wind speed, temperature, and certain
other external factors, such as rain, snow, hail, and mechanical shocks.

Impact of Aging on Solar Cell

The aging of the PV cell reduces the electrical performance, i.e., the parasitic param-
eters are introduced in the solar panel. The shunt resistance (RSh), series resistance (RS),
photo current (IPh), diode current (Id), and diffusion constant (a1) are known as parasitic
or extraction parameters. Cracks and hotspots reduce the performance of solar panel V–I
characteristics. Certain tests are carried out over a span of time to determine the quality of
solar cells; for example, 1000 h of testing is comparable to 20 years of operation [28].

The aging of the PV panel is described using aging laws, which are represented
as follows:

τ1(T) = τ0
(
−αopt·T + 100%

)
(6)
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RS(T) = RS0 +(αRS·T + 100%) (7)

where αopt represents the degradation rates of the transmissivity (glass optical losses and
encapsulating losses) and the αRS of the series resistance (the deterioration of the electrical
parts) are defined with accelerated test results. The degradation laws, the reduction in the
transmissivity, and the augmentation of the series resistance according to time are given by
expressions (6) and (7). The obtained degradation coefficients are αopt = 0.6% per year and
αRS = 0.23% per year. τ is the transmissivity and T is the time in years.

4. Proposed Tabu Search Optimization (TSO) Algorithm

To address the state of the issue of numerous optimizations, the meta-heuristic method
is applied. During optimization, the lowest value is chosen initially, followed by a more
extensive search. The tabu list (TL) memory utilitarian strategy obtains the information
and stores the past arrangement while directing the following stage. For forestalling
nearby improvements, irrelevant information is limited, and ideal information is isolated
in aspiration criteria (AC). It is feasible to involve nearby heuristic examination tasks to
concentrate on the outcome space in front of the neighborhood ideal through the TSO
approach, which utilizes TL to help achieve developmental memory with appropriate
limitations and goal levels.

To solve finite-solution set optimization problems, dynamic properties research is
preferred because of the flexible memory consumption in tabu motions. Repeated solutions
are out of the question, since these are unrepeatable activities. There are three varieties
of TSO: the forbidding strategy, the freeing strategy system, and the short-term strategy
(STS). By performing approximated solutions, the STS maintains a link between the FS
and the FSS, while the FSS takes care of what remains after the optimization process, and
the FS controls which data reach the operational zone. Figure 2 portrays the forbidden
development, which depends on non-improved and nonlinear arrangements, as well as
memory and neighborhood arrangements.
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The TL should not contain any of these options. The tabu classification may be
discarded if new tabu motions are introduced.
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The new set of T(S) solutions is as follows:

SI ∈ N(S) = {N(S)− T(S)}+ A(S) (8)

TSO integrates goal programming and evaluates the solutions in more than one
dimension, i.e., comparing the most important value with the first, second, third, and so on.
The TSO framework is depicted in Figure 3.
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Basic TSO

The algorithm (Algorithm 1) for Basic Tabu Search Optimation is detailed step wise below.

Algorithm 1 Basic TSO

STEP 1 Select a primary result io in S. Set i0* = 0 and k = 0.

STEP 2 Fix k = k + 1 and produce a subset V* of outcomes in N (i0, k) in such a way that
either one of the tabu circumstances is infringed, or even one of the aspiration
conditions is clutched.

STEP 3 Select the best j in V* and put i0 = j.

STEP 4 If f (i0) < f (i0*) arrange i0* = i0.

STEP 5 Update tabu and aspirational conditions.

STEP 6 Stop if a stopping condition is reached. Otherwise, go to STEP 2.

STEP 7 The stopping criteria of TS are as follows:
N (i, k + 1) = 0. i.e., no possible resolution in the vicinity of result i0.
Here, k is largest than the highest numbers of rearrangements that are
accepted.
The number of repetitions since the last advancement of i0* is higher than the
corresponding number. There is confirmation that an optimal result has
been obtained.

The upper-band and lower-band areas are described by feasible and unfeasible pa-
rameters. The number of generations is determined by the feasibility, as indicated in
Figure 4a,b.
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5. Results and Analysis

The numerical re-enactments of the proposed strategy were simulated in MATLAB/
Simulink along with existing methods such as LSA and GSA. The obtained numerical
findings and synthetic data (SD) had a significant connection. A comparison of the proposed
TSO algorithm’s performance on two different solar-panel wattage ranges was drawn. On
Windows XP, with a 1.2 GHz Mobile Intel CPU, all of the algorithms ran on a single platform
with distinct basic data. The proficiency of the boundary extraction strategy was assessed
utilizing the assembly, I–V information bend, and calculation execution.

In this work, to extract the parameters, real measured V–I data of the solar cell and PV
module were used in the simulation. A commercial silicon solar cell 57 mm in diameter
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was taken as the prototype and V–I measurements were taken under one sun (100 W/m2)
at 33 ◦C. This prototype is the same as that used by AlRashidi et al. (2011) and AlHajri et al.
(2012). The adjustable parameters in this simulation, determined by trial, were given
by: population size (parallel number) N = 100, maximum iteration number kmax = 2500,
crossover operation rate Pc = 0:5, and merging operation rate Pm = 0:5.

The information examination of a 40-watt PV board is displayed in Table 1. The values
derived using the GA algorithm for the parameters IPh, I01, I02, RS, RP, and a1 were 2.69 A,
9.51 × 10−9 A, 32 × 10−7 A, 0.0794 Ω, 878.95 Ω, and 1.28. In addition, the suggested TSO
method extracted 1.94 A (IPh), 6.35 × 10−9 A (I01), 11.92 × 10−7 A (I02), 0.0782 Ω (RS),
762.68 Ω (RP), and 1.29 A (IPh) (a1). The analysis of the pre-existing synthetic data with the
numerical values gathered by the various instruments used in this study clearly yielded a
statistically significant difference. When compared to other current algorithms, the TSO
algorithm requires substantially less time to compute, taking just 112 s.

Table 1. Comparison of fata for a 40-watt PV panel using GA, LSA, GSA, PS, PSO, and proposed
TSO algorithms.

S.NO Parameter Synthetic Data GA LSA GSA PS PSO TSO

1 Iph 1.967 A 2.69 A 2.55 A 2.162 A 2.189 A 2.01 A 1.94 A
2 I01 6.23 × 10−9 A 9.51 × 10−9 A 8.2 × 10−9 A 8.6 × 10−9 A 7.65 × 10−9 A 5.65 × 10−9 A 6.35 × 10−9 A
3 I02 20.9 × 10−7 A 32.6 × 10−7 A 25.9 × 10−7 A 26.28 × 10−7 A 26.76 × 10−7 A 23.32 × 10−7 A 11.92 × 10−7 A
4 Rs 0.0775 Ω 0.0794 Ω 0.0975 Ω 0.097 Ω 0.0969 Ω 0.0954 Ω 0.0782 Ω
5 Rp 712.65 Ω 878.95 Ω 862.65 Ω 858.53 Ω 816.76 Ω 782.65 Ω 762.68 Ω
6 a1 1.45 1.28 1.19 1.32 1.47 1.38 1.29
7 Time (s) . . . 779 682 395 362 237 112

Table 2 shows that the suggested TSO method produced numerical results that were
similar to the synthetic data, namely 5.41 A (IPh), 8.7 × 10−9 A (I01), 9.29 × 10−5 A (I02),
0.942 Ω (RS), 1281.98 Ω (RP), and 1.01 A (IPh) (a1). When compared to current techniques,
the TSO algorithm takes less time to compute (228 s). Accordingly, the proposed TSO
calculation was demonstrated to be better than that of current metaheuristic calculations.
Figure 5a–d shows the I–V charts of the S75, S115, SM55, and SQ150PC modules utilizing
the TSO technique and test information, respectively.

Table 2. Comparison of data for a 200-watt PV panel using Ga, Lsa, Gsa, Ps, Pso, and proposed
TSO algorithms.

S.No. Parameter Synthetic Data GA LSA GSA PS PSO TSO

1 Iph 5.300 A 7.45 A 7.21 A 6.95 A 6.45 A 6.06 A 5.41 A
2 I01 8.97 × 10−9 A 9.48 × 10−9 A 9.27 × 10−9 A 9.27 × 10−9 A 9.027 × 10−9 A 9.17 × 10−9 A 8.7 × 10−9 A
3 I02 9.29 × 10−7 A 10.88 × 10−7 A 10.49 × 10−7 A 9.87 × 10−7 A 10.22 × 10−7 A 10.98 × 10−7 A 9.29 × 10−7 A
4 Rs 0.896 Ω 1.12 Ω 1.176 Ω 1.0968 Ω 1.796 Ω 1.016 Ω 0.942 Ω
5 Rp 1298.18 Ω 1498.58 Ω 1545.08 Ω 1434.78 Ω 1398.18 Ω 1386.08 Ω 1281.98 Ω
6 a1 1 1.88 1.76 1.63 1.43 1.19 1.01
7 Time (s) . . . 898 731 676 487 341 228

At various irradiance levels, including 1000 W/m2 and 600 W/m2, the TSO approach
was utilized to inspect the effects of a few PV modules, including multi-glasslike (S75 and
S115) and mono-translucent (SM55 and SQ150PC). The S75 multi-crystalline panel takes
0.5 s to compute at 1000 W/m2 to retrieve the parameters. Different modules, such as S115,
SM55, and SQ 150PC, require 0.43, 0.41, and 0.39 s, respectively. Data extracted is tabulated
in Table 3. The extra boundaries of the S75 PV module, IPh, I01, I02, RS, RP, and a1, are
5.420 A, 9.97 × 10−9 A, 6.29 × 10−7 A, 0.696 Ω, 416.18 Ω, and 1.15. At G = 600 W/m2. The
situation is therefore similar. The S75 modules take up a significant amount of processing
time, whereas the SM55 takes up the least. However, the S75 multi-crystalline module’s
total numerical values are noticeable under any irradiance levels.
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4 Rs 0.896 Ω 1.12 Ω 1.176 Ω 1.0968 Ω 1.796 Ω 1.016 Ω 0.942 Ω 
5 Rp 1298.18 Ω 1498.58 Ω 1545.08 Ω 1434.78 Ω 1398.18 Ω 1386.08 Ω 1281.98 Ω 
6 a1 1 1.88 1.76 1.63 1.43 1.19 1.01 
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Figure 5. I–V qualities obtained by utilizing TSO calculation and trial information. (a) S75, (b) S115,
(c) SM55, and (d) SQ150PC.

Table 3. Data extracted at different irradiance levels from multi-crystalline and mono-crystalline.

S. NO Parameter Multi-Crystalline Mono-Crystalline

G = 1000 W/m2 S75 S115 SM55 SQ150PC

1 IPh (A) 5.420 5.457 3.876 4.046
2 I01 (A) 9.97 × 10−9 10.87 × 10−9 1.68 × 10−9 2.47 × 10−9

3 I02 (A) 6.29 × 10−7 6.37 × 10−7 2.98 × 10−7 3.049 × 10−7

4 Rs (Ω) 0.696 0.968 0.32 0.876
5 Rp (kΩ) 416.18 434.78 598.58 345.08
6 a1 1.15 1.23 1.08 1.76
7 Time (min) 0.5 0.43 0.41 0.39

G = 600 W/m2

1 IPh (A) 3.420 3.457 3.876 2.546
2 I01 (A) 10.09 × 10−9 8.87 × 10−9 3.68 × 10−9 8.47 × 10−9

3 I02 (A) 8.29 × 10−7 6.37 × 10−7 2.98 × 10−7 3.029 × 10−7

4 Rs (Ω) 0.596 0.698 0.52 0.976
5 Rp (kΩ) 426.18 464.38 698.58 1345.08
6 a1 1.15 1.13 1.28 1.36
7 Time (min) 0.41 0.36 0.36 0.39

The combination time for the TSO technique corresponds to the level of emphasis
performed. As the quantity of cycles rises, so do the execution time and the rate at which
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the results increase. Instances of the combination reaction of PV modules with 40-watt and
200-watt appraisals are displayed in Figure 6a,b.
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6. Conclusions

Under a variety of environmental conditions, the parasitic limits of PV modules may
be extricated using a TSO-based approach. On an assortment of PV modules, including
40-watt and 200-watt PV modules, multi-glass-like mono clear, and small-film modules, the
proposed TSO algorithm was compared with existing computation algorithms, such as the
genetic algorithm, lightning search algorithm, gravitational search algorithm, pattern search
algorithm (PS), and particle swarm optimization (PSO). The proposed approach is different
from the other current optimization algorithms, and showed a superior calculation ability
proving that the TSO calculation has superior qualities, with less intricacy and quicker
combination, as displayed in Tables 1 and 2.
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Nomenclature

IPV photovoltaic current (A)
IS diode reverse-saturation current (A)
Id diode currents (A)
Iph photocurrent (A)
q charge (C)
α number of iterations for each simplex
β number of offspring
Rs series resistance (Ω)
Rsh shunt resistance (Ω)
Kb Boltzmann constant (1.3806503 × 10−23 J/K)
η empirical constant 1 for Ge, 2 for Si
TK cell temperature in kelvin

References
1. Bhukya, M.N.; Kumar, M.; Mohan, V.C.J. Design and Development of a Low-Cost Grid Connected Solar Inverter for Maximum

Solar Power Utilization. In Recent Advances in Power Electronics and Drives; Lecture Notes in Electrical Engineering; Springer:
Singapore, 2021; Volume 707. [CrossRef]

2. Bae, Y.; Vu, T.; Kim, R. Implemental Control Strategy for Grid Stabilization of Grid-Connected PV System Based on German Grid
Code in Symmetrical Low-to-Medium Voltage Network. IEEE Trans. Energy Convers. 2013, 28, 619–631. [CrossRef]

3. Ali, A.; Almutairi, K.; Padmanaban, S.; Tirth, V.; Algarni, S.; Irshad, K.; Islam, S.; Zahir, M.H.; Shafiullah, M.; Malik, M.Z.
Investigation of MPPT Techniques Under Uniform and Non-Uniform Solar Irradiation Condition–A Retrospection. IEEE Access
2020, 8, 127368–127392. [CrossRef]

4. Ahmad, W.; Liu, D.; Wu, J.; Ahmad, W.; Wang, Y.; Zhang, P.; Zhang, T.; Zheng, H.; Chen, L.; Chen, Z.D.; et al. Enhanced Electrons
Extraction of Lithium-Doped SnO2Nanoparticles for Efficient Planar Perovskite Solar Cells. IEEE J. Photovolt. 2019, 9, 1273–1279.
[CrossRef]

5. Villalva, M.G.; Gazoli, J.R.; Filho, E.R. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Trans.
Power Electron. 2009, 24, 1198–1208. [CrossRef]

6. Arefifar, S.A.; Paz, F.; Ordonez, M. Improving Solar Power PV Plants Using Multivariate Design Optimization. IEEE J. Emerg. Sel.
Top. Power Electron. 2017, 5, 638–650. [CrossRef]

7. Kumar, N.; Saha, T.K.; Dey, J. Sliding-Mode Control of PWM Dual Inverter-Based Grid-Connected PV System: Modeling and
Performance Analysis. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 4, 435–444. [CrossRef]

8. Ma, X.; Huang, W.-H.; Schnabel, E.; Kohl, M.; Brynjarsdottir, J.; Braid, J.L.; French, R.H. Data-Driven II–VV Feature Extraction for
Photovoltaic Modules. IEEE J. Photovolt. 2019, 9, 1405–1412. [CrossRef]

9. Saleem, H.; Karmalkar, S. An Analytical Method to Extract the Physical Parameters of a Solar Cell from Four Points on the
Illuminated J-V Curve. IEEE Electron Device Lett. 2009, 30, 349–352. [CrossRef]

10. Soeriyadi, A.H.; Wang, L.; Conrad, B.; Li, D.; Lochtefeld, A.; Gerger, A.; Barnett, A.; Perez-Wurfl, I. Extraction of Essential Solar
Cell Parameters of Subcells in a Tandem Structure With a Novel Three-Terminal Measurement Technique. IEEE J. Photovolt. 2017,
8, 327–332. [CrossRef]

11. Mintairov, M.; Kalyuzhnyy, N.A.; Evstropov, V.V.; Lantratov, V.M.; Mintairov, S.A.; Shvarts, M.Z.; Andreev, V.M.; Luque, A. The
Segmental Approximation in Multijunction Solar Cells. IEEE J. Photovolt. 2015, 5, 1229–1236. [CrossRef]

12. Wei, T.; Yu, F.; Huang, G.; Xu, C. A Particle-Swarm-Optimization-Based Parameter Extraction Routine for Three-Diode Lumped
Parameter Model of Organic Solar Cells. IEEE Electron Device Lett. 2019, 40, 1511–1514. [CrossRef]

13. Bhukya, M.N.; Kumar, M.; Depuru, S.R. A Simple Approach to Enhance the Performance of Traditional P&O Scheme under Partial
Shaded Condition by Employing Second Stage to the Existing Algorithm. In Modeling, Simulation and Optimization; Springer:
Singapore, 2021. [CrossRef]

14. Diab, A.A.Z.; Sultan, H.M.; Aljendy, R.; Al-Sumaiti, A.S.; Shoyama, M.; Ali, Z.M. Tree Growth Based Optimization Algorithm for
Parameter Extraction of Different Models of Photovoltaic Cells and Modules. IEEE Access 2020, 8, 119668–119687. [CrossRef]

15. Bhukya, M.N.; Kota, V.R.; Depuru, S.R. A Simple, Efficient, and Novel Standalone Photovoltaic Inverter Configuration with
Reduced Harmonic Distortion. IEEE Access 2019, 7, 43831–43845. [CrossRef]

http://doi.org/10.1007/978-981-15-8586-9_37
http://doi.org/10.1109/TEC.2013.2263885
http://doi.org/10.1109/ACCESS.2020.3007710
http://doi.org/10.1109/JPHOTOV.2019.2924734
http://doi.org/10.1109/TPEL.2009.2013862
http://doi.org/10.1109/JESTPE.2017.2670500
http://doi.org/10.1109/JESTPE.2015.2497900
http://doi.org/10.1109/JPHOTOV.2019.2928477
http://doi.org/10.1109/LED.2009.2013882
http://doi.org/10.1109/JPHOTOV.2017.2762596
http://doi.org/10.1109/JPHOTOV.2015.2416006
http://doi.org/10.1109/LED.2019.2926315
http://doi.org/10.1007/978-981-15-9829-6_43
http://doi.org/10.1109/ACCESS.2020.3005236
http://doi.org/10.1109/ACCESS.2019.2902979


Energies 2022, 15, 4515 12 of 12

16. Raba, A.; Leroy, Y.; Kohlstädt, M.; Würfel, U.; Cordan, A. Organic Solar Cells: Extraction of Physical Parameters by Means of
Markov Chain Monte Carlo Techniques. IEEE J. Photovolt. 2017, 7, 1098–1104. [CrossRef]

17. Caracciolo, F.; Dallago, E.; Finarelli, D.G.; Liberale, A.; Merhej, P. Single-Variable Optimization Method for Evaluating Solar Cell
and Solar Module Parameters. IEEE J. Photovolt. 2012, 2, 173–180. [CrossRef]

18. Cervellini, M.P.; Echeverria, N.I.; Antoszczuk, P.D.; Retegui, R.A.G.; Funes, M.A.; Gonzalez, S.A. Optimized Parameter Extraction
Method for Photovoltaic Devices Model. IEEE Lat. Am. Trans. 2016, 14, 1959–1965. [CrossRef]

19. Semero, Y.K.; Zhang, J.; Zheng, D. PV power forecasting using an integrated GA-PSO-ANFIS approach and Gaussian process
regression based feature selection strategy. CSEE J. Power Energy Syst. 2018, 4, 210–218. [CrossRef]

20. Bhukya, M.N.; Kumar, M. Factors Affecting the Efficiency of Solar Cell and Technical Possible Solutions to Improve the
Performance. In Modeling, Simulation and Optimization; Springer: Singapore, 2021; pp. 623–634. [CrossRef]

21. Liao, Z.; Gu, Q.; Li, S.; Hu, Z.; Ning, B. An Improved Differential Evolution to Extract Photovoltaic Cell Parameters. IEEE Access
2020, 8, 177838–177850. [CrossRef]

22. Toledo, F.J.; Blanes, J.M.; Galiano, V. Two-Step Linear Least-Squares Method for Photovoltaic Single-Diode Model Parameters
Extraction. IEEE Trans. Ind. Electron. 2018, 65, 6301–6308. [CrossRef]

23. Rossmo, K.; Harries, K. A novel P&OT-Neville’s interpolation MPPT scheme for maximum PV sytem energy extraction. Int. J.
Renew. Energy Dev. 2021, 7, 251–260. [CrossRef]

24. AlShabi, M.; Ghenai, C.; Bettayeb, M.; Ahmad, F.F.; Assad, M.E.H. Multi-group grey wolf optimizer (MG-GWO) for estimating
photovoltaic solar cell model. J. Therm. Anal. 2020, 144, 1655–1670. [CrossRef]

25. Manda, P.K.; Ramaswamy, S.; Dutta, S. Extraction of the Built-in Potential for Organic Solar Cells from Current–Voltage
Characteristics. IEEE Trans. Electron Devices 2017, 65, 184–190. [CrossRef]

26. Kota, V.R.; Bhukya, M.N. A simple and efficient MPPT scheme for PV module using 2-Dimensional Lookup Table. In Proceedings
of the 2016 IEEE Power and Energy Conference at Illinois (PECI), Urbana, IL, USA, 19–20 February 2016; pp. 1–7. [CrossRef]

27. Bauer, A.; Hanisch, J.; Ahlswede, E. An Effective Single Solar Cell Equivalent Circuit Model for Two or More Solar Cells Connected
in Series. IEEE J. Photovolt. 2013, 4, 340–347. [CrossRef]

28. Azizi, A.; Logerais, P.-O.; Omeiri, A.; Amiar, A.; Charki, A.; Riou, O.; Delaleux, F.; Durastanti, J.-F. Effect of the maturing of a
photovoltaic module on the presentation of a framework associated framework. Sol. Energy 2018, 174, 445–454. [CrossRef]

http://doi.org/10.1109/JPHOTOV.2017.2690876
http://doi.org/10.1109/JPHOTOV.2011.2182181
http://doi.org/10.1109/TLA.2016.7483540
http://doi.org/10.17775/CSEEJPES.2016.01920
http://doi.org/10.1007/978-981-15-9829-6_49
http://doi.org/10.1109/ACCESS.2020.3024975
http://doi.org/10.1109/TIE.2018.2793216
http://doi.org/10.14710/ijred.7.3.251-262
http://doi.org/10.1007/s10973-020-09895-2
http://doi.org/10.1109/TED.2017.2773708
http://doi.org/10.1109/PECI.2016.7459226
http://doi.org/10.1109/JPHOTOV.2013.2283056
http://doi.org/10.1016/j.solener.2018.09.022

	Introduction 
	Mathematical Modeling of PV Cell Based on Single Diode 
	Aging Effect of Solar Panels 
	Proposed Tabu Search Optimization (TSO) Algorithm 
	Results and Analysis 
	Conclusions 
	References

