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Abstract: Diagnosing brain tumors is a time-consuming process requiring radiologist expertise.
With the growing patient population and increased data volume, conventional procedures have
become expensive and ineffective. Scholars have explored algorithms for detecting and classifying
brain tumors, focusing on precision and efficiency. Deep learning methodologies are being used to
create automated systems that can diagnose or segment brain tumors with precision and efficiency,
particularly in brain cancer classification. This approach facilitates transfer learning models in
medical imaging. The present study undertakes an evaluation of three foundational models in the
domain of computer vision, namely AlexNet, VGG16, and ResNet-50. The VGG16 and ResNet-50
models demonstrated praiseworthy performance, thereby instigating the amalgamation of these
models into a groundbreaking hybrid VGG16–ResNet-50 model. The amalgamated model was
subsequently implemented on the dataset, yielding a remarkable accuracy of 99.98%, sensitivity of
99.98%, and specificity of 99.98% with an F1 score of 99.98%. Based on a comparative analysis with
alternative models, it can be deduced that the suggested framework exhibits a commendable level of
dependability in facilitating the timely identification of diverse cerebral neoplasms.
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1. Introduction

The brain and spinal cord make up the central nervous system of Homo sapiens [1].
The brain controls most biological activities, such as analyzing, integrating, organizing,
determining, and issuing directions to the body. The structural complexity of the human
brain is remarkable [2]. Certain CNC problems, including stroke, infection, brain tumors,
and headaches, are difficult to diagnose, analyze, and cure [3].

Brain tumors are abnormal cell growths in the rigid skull that encloses the brain [4,5].
Any growth in a small space might cause problems. Any skull tumor may cause brain
damage, posing a significant danger to the brain [6,7]. Brain tumors are the tenth leading
cause of mortality in both adults and children [8]. Various tumor kinds have poor survival
rates dependent on texture, location, and shape [9,10]. Brain tumors affect 700,000 people,
with 80% benign and 20% malignant [11]. According to 2021 American Cancer Society
projections, 78,980 persons were diagnosed with brain tumors, including 55,150 noncancer-
ous and 24,530 malignant tumors (13,840 men and 10,690 females) [12]. Research indicates
that brain tumors are the primary cause of cancer mortality in both children and adults
globally [13].
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Many disorders need digital medical images for diagnosis, which are also useful
for training and research. The need for digitised medical images is rising. In 2002, the
University Hospital of Geneva Radiology Department produced 12,000–15,000 pictures
daily [14]. Medical reports and image studies need a reliable computer-aided diagnostic
system. Manual medical ageing assessment is time-consuming, inaccurate, and error-
prone [15]. Machine and deep learning are essential for medical diagnosis and treatment.
Multiple algorithms for brain tumor identification and classification have shown strong
performance and low error [16]. DL provides brain tumor classification using pre-trained
CNN models for medical pictures such as GoogLeNet, AlexNet, and ResNet-34 [15,16]. DL
employs multi-layered deep neural networks.

2. Related Work

This section discusses advanced deep learning (DL)-based brain tumor classification
methods, including deep learning, machine learning, and hybrid approaches.

2.1. Deep Learning Methods

Mahmud et al. [15] compared a CNN architecture to ResNet-50, VGG16, and Inception
V3 models, finding it performs better with 93.3% accuracy, 98.43% AUC, 91.19% recall, and
0.25 loss on 3264 MR images. ZainEldin et al. [16] used an adaptive dynamic sine–cosine
fitness grey wolf optimizer technique to optimize CNN hyperparameters. The ADSCFGWO
algorithm combines sine–cosine and grey wolf algorithms, achieving 99.98% accuracy on
the BRaTS 2021 Task 1 dataset. Srikanth et al. [17] developed a 16-layer VGG-16 deep NN
for brain tumor MR image multi-classification, achieving 98% accuracy after 20 training
cycles. Musallam et al. [18] developed a DCNN brain tumor detection model using an MRI
dataset, achieving 97.72% accuracy in glioma diagnosis, 98.26% in meningioma detection,
95.95% in pituitary identification, and 97.14% in normal image detection. Wozniak et al. [19]
developed a new correlation learning technique (CLM) for deep neural networks, achieving
96% accuracy, precision, and recall in a study on 3064 brain malignancies.

2.2. Machine Learning Methods

Garg et al. [20] tested various machine learning models for brain tumor detection using
2556 photos. Their technique showed 97.305% accuracy, 97.73% precision, 97.60% specificity,
97.04% sensitivity, and 97.41% dependability. Pareek et al. [21] developed a technique for
identifying and classifying brain tumors using KSVM, which accurately classifies them
with 97% accuracy on 150 T1-weighted MRI brain images. The suggested approach in [22]
improves MRI quality by using normalization, densely accelerated features, and gradient
methods. Tested on a large dataset, it achieved a 90% higher accuracy than current methods.
The Quantum Fully Self-Supervised Neural Network (QFS-Net) uses qubits/three-quantum
states for brain lesion segmentation, replacing supervised QINN networks with a qutrit-
based counter-propagating technique [23].

2.3. Hybrid Methods

Stadlbauer et al. [24] detected brain tumors early using physiological MRI and nine
machine learning models. An automated technique employing MR images by Aamir
et al. enhanced classification accuracy to 98.95%. For better brain tumor detection in
BRATS MR images, Sajid et al. [25] created a hybrid CNN model with two- and three-
path networks. The model has 86% dice, 86% sensitivity, and 91% specificity. Lotlikar
et al. [26] presented a KNN classifier for early foetal brain abnormality identification with
95.6% accuracy and 99% AUC. A deep learning-based architecture for early embryonic
neurodevelopmental disease identification by Attallah et al. [27] showed promising results.
Khairandish et al. [20] used CNN, SVM, and threshold-based segmentation to create a
hybrid classification approach with 98.4959 % accuracy. The research extracts tumor and
tissue properties using pre-trained AlexNet, GoogLeNet, ShuffleNet, and ResNet-18 [28].
The article proposes a deep learning-based multimodal [29] brain tumor classification
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technique with 97.8%, 96.9%, and 92.5% accuracy on three datasets. Using ISLES2015 and
BRATS2015 datasets, VGG19 with SVM-Cubic identifies brain tumors 96% more accurately
than previous approaches [30]. For brain tumor identification, Irmak et al. [25] offer three
CNN designs with 99.33, 92.66, and 98.14 percent accuracy. The suggested CNN models
determine parameters via grid search optimization.

3. Materials and Methods

The method includes multiple stages. We pre-processed the dataset from Kaggle data.
For validation, we used holdout validation. We trained our images using machine learning.
The dataset was split by 80% training, 10% testing, and 10% validation. We checked four
brain images: glioma, meningioma, no tumor, and pituitary tumors. To verify our findings,
we checked accuracy, specificity, and sensitivity.

3.1. Experimental Setup

The proposed architectures are implemented using Python 3.12 software on a computer
with an Intel Core i7-2.8 GHz CPU and 16 GB of RAM.

3.2. Dataset

The brain tumor detection dataset, sourced from kaggle.com, was analyzed using
3264 MRI images, as in Table 1, from four types of brain tumors: meningioma, no tumor,
pituitary tumor, and gliomas (as shown in Figure 1).

Table 1. A comprehensive overview of the dataset’s structure.

Type of Brain Tumor No. of Images

Glioma 936
Meningioma 937

Pituitary 901
No Tumor 500

Total 3264
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Figure 1. MR images (a) Glioma, (b) Meningioma, (c) Pituitary and (d) No Tumor. Figure 1. MR images (a) Glioma, (b) Meningioma, (c) Pituitary and (d) No Tumor.
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3.3. Propose Methodology

Recent advancements in deep learning, especially in medical image classification, offer
promising opportunities for various CNN frameworks. Transfer learning methodologies
accelerate data training and reduce sample quantity, allowing newly trained models to
effectively utilize pre-existing information. The study evaluates three baseline models in
computer vision, including AlexNet, VGG16, and ResNet-50 using transfer learning models
which are shown in Figure 2. The models’ efficacy was assessed through adjustments to
the output layer, ensuring alignment with the number of classes used.
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3.3.1. AlexNet

The AlexNet architecture is a groundbreaking deep convolutional neural network
model known for its efficacy in image classification and recognition tasks. It overcomes
hardware constraints by using two NVIDIA GTX 580 GPUs for training. The model has
five convolutional layers, three pooling layers, and three fully connected layers, with
approximately 60 million trainable parameters.

3.3.2. VGG16

The VGG Net, a deep convolutional neural network architecture from the University
of Oxford, demonstrated exceptional performance in the ILSVRC 2014 object localization
and classification competitions. Its design aims to enhance the depth of convolutional
neural network architectures by using multiple diminutive kernels, potentially improving
precision. The VGG Net is widely used in computer vision applications, particularly in
medical imaging.

3.3.3. ResNet-50

ResNet frameworks mitigate network performance degradation by stacking convo-
lutional and pooling layers and using identity shortcut connections. These connections
bypass layers, maintaining identity relationships within residual blocks and reducing
training errors in deep architectures.
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3.4. Confusion Metrics

The system model’s effectiveness was evaluated using confusion metrics, which cate-
gorize accurate and erroneous prognostications into four distinct classifications (Figure 3):

• True positive (TP) occurs when both the predicted and actual outcomes are positive;
• False positive (FP) occurs when a forecast predicts a positive outcome, but the actual

outcome is negative;
• True negative (TN) occurs when both the observed outcome and prognostications

are negative;
• False negative (FN) occurs when a prediction incorrectly predicts a negative outcome,

despite the actual result being positive.
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3.5. Classification Metrics

The performance of the model was assessed through the utilization of three distinct
metrics, as enumerated below:

• Accuracy is the ratio of accurate predictions to the total number of predictions made;

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

• Specificity refers to a model’s inherent capacity to accurately identify and classify
negative samples within a specific dataset;

Speci f icity =
TN

TN + FP
(2)

• Sensitivity is a model’s ability to identify positive samples.

Sensitivity =
TP

TP + FN
(3)

4. Results and Discussion

The analysis pertains to the outcomes derived from diverse categories of sophisticated
deep learning models, namely AlexNet, VGG16, ResNet-50, and hybrid VGG16–ResNet-
50 classification algorithms, when applied to the dataset comprising brain tumor MR
images. The evaluation is conducted by considering performance metrics such as accuracy,
specificity, and sensitivity, which are presented in Table 2 and juxtaposed in Figure 4 for
comparative purposes. Based on the analysis conducted, it was duly noted that the AlexNet
model demonstrated a commendable level of performance. Specifically, it achieved an
impressive accuracy rate of 95.60%, indicating its ability to correctly classify instances with
a high degree of precision. Furthermore, the model exhibited a sensitivity rate of 94.79%,
signifying its proficiency in accurately identifying positive instances. Additionally, the
model showcased a specificity rate of 96.15%, highlighting its capability to correctly classify
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negative instances with an F1 score of 94.68%. These findings underscore the effectiveness
and reliability of the AlexNet model in the context of the analyzed task. In contrast, the
VGG16 model demonstrated a remarkable level of performance, attaining an accuracy rate
of 97.66%. Additionally, it exhibited a sensitivity rate of 97.56% and a specificity rate of
97.72% with an F1 score of 97.62%. The ResNet-50 model has demonstrated a remarkable
level of performance, attaining an accuracy rate of 96.90%. Additionally, it has exhibited
a sensitivity of 96.69%, indicating its ability to correctly identify positive instances, and
a specificity of 97.06%, highlighting its proficiency in accurately recognizing negative
instances with an F1 score of 96.51%.

Table 2. Performance Evaluation of Various Transfer Learning Models.

Architecture Accuracy (%) Sensitivity (%) Specificity (%) F1 Score

AlexNet 95.60 94.79 96.15 94.68
VGG16 97.66 97.56 97.72 97.62

ResNet-50 96.90 96.69 97.09 96.51
Hybrid VGG16 & ResNet 50 99.98 99.98 99.98 99.98
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The VGG16 and ResNet-50 models exhibited commendable performance, prompting
the integration of both models into a novel hybrid VGG16–ResNet50 model. This amal-
gamated model was subsequently deployed on the dataset, resulting in an impressive
accuracy of 99.98%, sensitivity of 99.98%, and specificity of 99.98% with an F1 score of
99.98%. Based on the meticulous examination of the accuracy graph analysis, it has been
discerned that the hybrid VGG16–ResNet50 models have exhibited superior performance
in comparison to the remaining models.

5. Conclusions and Future Works

The study aims to improve the early detection of brain tumors using magnetic res-
onance imaging (MRI) images and deep learning models. The researchers developed a
hybrid model that uses a large number of MRI images for timely identification. The study
used various indicators to evaluate the effectiveness of the machine learning models, and
considered several other models to evaluate the results. The goal is to reduce global fatality
rates and improve clinical diagnosis and therapeutic decision-making for brain tumor
patients. This study aimed to scrutinize transfer learning models but did not conduct
empirical investigations. Future research will focus on refining these models and under-
standing their inner workings. The absence of elucidation tools hindered the visualization
of crucial brain tumor regions.
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