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Abstract 

 

In this chapter MHD peristaltic flow of an incompressible viscous fluid in an 
inclined asymmetric channel is investigated under long wavelength and low 
Reynolds number assumptions. The expressions for velocity distribution and the 
pressure rise are obtained. The effects of phase shift and Hartmann number on the 
pumping characteristics are discussed. 
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Introduction: The word peristalsis stems from the Greek word Peristaltikos, 
which means clasping and compressing. Peristaltic pumping is a form of fluid 
transport generated in the fluid contained in a distensible tube when a progressive 
wave travels along the wall of the tube. It is an inherent property of many syncytial 
smooth muscle tubes, stimulation at any point can cause a contractile ring to appear  
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in the circular muscle of the gut, and this ring then spreads along the tube. In such a 
way, peristalsis occurs in the gastrointestinal tract, the bile ducts, other glandular 
ducts throughout the body, the ureters, and many other smooth muscle tubes of the 
body, Guyton and Hall (7).  

The first attempt to study the fluid dynamics aspects of peristaltic transport with an 
experimental investigation was done by Latham (11). The earliest models of 
peristaltic pumping are based on the assumption of trains of periodic sinusoidal 
waves in infinitely long two-dimensional channels or axisymmetric tubes 
(Shapiro(18); Fung & Yih (5)). These models which were applied primarily to 
characterize the basic fluid mechanics of pumping process, fall into two classes: (1) 
the model developed by Fung & Yih which is restricted to small peristaltic wave 
amplitudes but has no restrictions on Reynolds number; and (2) the lubrication-
theory model introduced by Shapiro et al., (19) in which effects of fluid inertial and 
wall curvature are neglected but no restrictions are placed on wave amplitude. A 
complete review of peristaltic transport is given by Jaffrin and Shapiro (9). The 
lubrication-theory model is applicable globally in the limit of totally including 
peristaltic waves and is found to be a reasonably accurate approximation of global 
pumping characteristics at a small Reynolds number and wall curvature, Jaffrin (10); 
Takabatake & Ayukawa (23). Several authors extended the classical lubrication-
theory model of peristaltic pumping to non-Newtonian fluid flows (Shukla etal., 
(20); Shukla & Gupta (20); Bohme and Friedrich (3)) and different cross-sectional 
shapes ( Rath (17)).  

 The effect of moving magnetic field on blood flow was studied by Sud et al., 
(22) and they have observed that the effect of suitable moving magnetic filed accelerates 
the speed of blood. Srivastava and Agrawal (21) and Prasad and Ramacharyulu (16) 
have observed that by considering the blood as an electrically conducting fluid 
constitutes a suspension of red cell in plasma. Agrawal and Anwaruddin (1) also 
studied the effect of magnetic field on the peristaltic flow of blood using long 
wavelength approximation method and observed for the flow of blood in arteries 
with arterial stenosis or arteriosclerosis, that the influence of magnetic field may be 
utilized as blood pump in carrying out cardiac operations. Li et al., (12) have studied 
an impulsive magnetic filed in the combined therapy of patients with stone 
fragments in the upper urinary tract. It was found that the Impulsive Magnetic Field 
activates the impulsive activity of the uretaral smooth muscles in 100% of cases. 
Mekheimer and Al-Arabi (15) investigated the non – linear peristaltic transport of 
MHD flow through a porous medium was studied in non – uniform channels. The 
peristaltic transport of blood under effect of a magnetic field in non uniform 
channels was studied by Mekheimer (14). 

 Most of the contributions in the study of peristaltic transport deal with the 
peristaltic flow in symmetric channels. Although a wide range of understanding 
about peristaltic pumping is possible by considering a channel to be a symmetric 
one, there are some physiological systems such as uterus in which asymmetry plays 
an important role in transporting the uterine (Eytan and Elad (4)). Mekheimer (13) 
studied non-linear peristaltic transport through a porous medium in an inclined 
channel considering the effect of gravity.  Recently, Baber (2) has investigated the 
peristaltic transport of MHD flow through an asymmetric channel. 
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               Therefore, the objective of the present paper is to investigate the effects of 
MHD   on peristaltic flow of an incompressible viscous fluid in an inclined 
asymmetric channel under long wavelength and low Reynolds number assumptions.  

 
 
Mathematical formulation and Solution 

 

We consider the peristaltic transport of a conducting viscous fluid in an inclined 
asymmetric channel with an inclination angleα  induced by sinusoidal wave trains 
propagating with same speed but with different amplitudes and phases along the 
channel walls. We assume that a uniform magnetic field strength 0B  is applied in 
the transverse direction to the direction of the flow (i. e., along the direction of the y-
axis) and the induced magnetic field is assumed to be negligible. Fig 1.1 shows the 
physical model of the asymmetric channel.  

 

We introduce a wave frame of reference ( ),  x y moving with velocity c  in which the 
motion becomes independent of time when the channel length is an integral multiple of 
the wavelength and the pressure difference at the ends of the channel is a constant 
(Shapiro et al. 1969). The transformation from the fixed frame of reference ( ),  X Y  to 

the wave frame of reference ( ),  x y  is given by 

   -   ,    ,      - ,       x X c t y Y u U c v V= = = = and 1 1( )  ( ,  ),p x P X t= where 

( ),  u v and ( ),  U V  are the velocity components,  1p   and  1P   are pressures in the 
wave and fixed frames of reference, respectively. 

 

The channel walls are given by 

 

1 1 1
2( , ) cos ( )Y H X t a b X ctπ
λ

= = + −      (upper wall)             (1.1a) 

 

2 2 2
2( , ) cos ( )Y H X t a b X ctπ θ
λ

⎛ ⎞= = − − − +⎜ ⎟
⎝ ⎠

  (lower wall)     (1.1b) 
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Fig 1.1.  Physical Model 
 

 

where b 1 , b 2  are amplitudes of the waves, λ is the wavelength, 21 aa + is the width 
of the channel, θ is the phase difference (0≤θ≤π) and t is the time.  

 

The equations governing the flow in wave frame of reference are given by  

0u v
x y
∂ ∂

+ =
∂ ∂

,         (1.2) 

21 2 2
0

2 2

1 sin ,eBu u p u uu v u g
x y x x y

σμ α
ρ ρ ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − + + − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

  (1.3) 

1 2 2

2 2

1 cos .v v p v vu v g
x y y x y

μ α
ρ ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − + + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

   (1.4) 

where eσ  is the electrical conductivity of the fluid, ρ  is the density and μ  is the 
viscosity of the fluid. 

 The corresponding boundary conditions are 
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1 2     at       and   u c y h y h= − = =    (1.5) 

Introducing the following non-dimensional variables  

1 2

1 1
1 2

1 1 1 2 1 2
1 2 1 2

1 1 1 1

, , , , ,

, , , , .

x y u v a ax y u v d
a c c a

p a H H b bp h h
c a a a a

δ
λ δ λ

φ φ
μ λ

= = = = = =

= = = = =
        

in the governing equations (1.1-1.4), and dropping the bars, we get  

( )1 1 2 21 cos 2 ,  cos 2h x h d xφ π φ π θ= + = − − +     (1.6) 

0u v
x y
∂ ∂

+ =
∂ ∂

,         (1.7) 

1 2 2
2 2

2 2Re sin ,u u p u uu v M u
x y x x y

δ δ η α
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + + − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
  (1.8) 

1 2 2
3 2 2

12 2Re cos .v v p v vu v
x y y x y

δ δ δ η α
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
  (1.9) 

where 1Re a cρ
μ

=  is the Reynolds number,  
2
1a g
c

η
ν

= , 
3
1

1
a g
c

η
ν λ

= , g is the 

acceleration due to gravity 0 1
eM B a σ
μ

=  is the Hartmann number and 
μν
ρ

=  is 

the kinematic viscosity of the fluid. 

Using long wavelength (i.e., 1δ << ) and negligible inertia (i.e., Re 0→ ) 
approximations, we have 

1

1 cosp
y

η α∂
= −

∂
,              

2 1
2

2 sinu pM u
y x

η α∂ ∂
− = −

∂ ∂
.  (1.10) 

Let 1
1( ) cosp p x yη α= −  then (1.10) becomes  

0,p
y
∂

=
∂

   
2

2
2 sinu dpM u

y dx
η α∂

− = −
∂

   (1.11) 

The corresponding non-dimensional boundary conditions are given as 

-1u =   at  1 2 and y h y h= =     (1.12) 

Solving equation (1.11) using the boundary conditions (1.12), we get  
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2
1 2cosh sinh sin /dpu c My c My M

dx
η α⎛ ⎞= + − −⎜ ⎟

⎝ ⎠
    (1.13) 

where 
[ ]

[ ]

2
2 1

1
1 2 2 1

1 sin / sinh sinh

cosh sinh cosh sinh

dp M Mh Mh
dxc

Mh Mh Mh Mh

η α⎧ ⎫⎛ ⎞− + − −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭=

−
 and    

           
[ ]

[ ]

2
1 2

2
1 2 2 1

1 sin / cosh cosh

cosh sinh cosh sinh

dp M Mh Mh
dxc

Mh Mh Mh Mh

η α⎧ ⎫⎛ ⎞− + − −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭=

−
 

The volume flow rate in the wave frame is given as 

( ) ( )

( )

1

2

1 2
1 2 1 2

1 22

  sinh sinh cosh cosh

sin
                                                    .

h

h
q udy

c cMh Mh Mh Mh
M M

dp
dx h h

M

η α

=

= − + −

⎛ ⎞−⎜ ⎟
⎝ ⎠− −

∫

        (1.14) 

From (1.14), we have 

( )
3 2

1 2

2 1 2 1

sindp qM D D M
dx D h h MD

η α+
= +

− −
          (1.15) 

where   

1 1 2 2 1cosh sinh cosh sinhD Mh Mh Mh Mh= −                      and 

( ) ( )2 2
2 1 2 1 2cosh cosh sinh sinhD Mh Mh Mh Mh= − − −  

The instantaneous flux at any axial station is given by 
1

2
1 2( , ) ( 1)

h

h
Q x t u dy q h h= + = + −∫        (1.16) 

The average volume flow rate over one wave period (T= / cλ ) of the peristaltic 
wave is defined as  

1 20 0

1 1 ( ) 1 .
T T

Q Qdt q h h dt q d
T T

= = + − = + +∫ ∫     (1.17) 

The pressure rise over one wave length of the peristaltic wave is given by 
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( )

( )
( )

1 3 21
1 2

0
2 1 2 10

3 21
1 2

1 2
2 1 2 10

sin

1
                    sin sin .

dp qM D D Mp dx dx
dx D h h MD

Q d M D D M
QI I

D h h MD

η α

η α η α

⎡ ⎤+
Δ = = +⎢ ⎥− −⎣ ⎦

⎡ ⎤− − +
⎢ ⎥= + = + +

− −⎢ ⎥⎣ ⎦

∫ ∫

∫

(1.18) 

 

where 
( )

1 3
1

1
2 1 2 10

M DI dx
D h h MD

=
− −∫  and 

( )
1 3 2

1 2
2

2 1 2 10

(1 )d M D D MI dx
D h h MD

− + +
=

− −∫ . 

 

The equation (1.17) can be rewritten as 

2

1

sinp IQ
I
η αΔ − −

=        (1.19)  

 

 

Discussion of the Results 
 

 

The variation of axial velocity u as a function of y at 0.25x=  for different values of 
M with 1 20.7, 1.2, 2dφ φ= = = , 0.5, / 6η α π= =  and phase shift 0θ =  for (i) 

0.5dp
dx

=−   (ii) 0dp
dx

=  and (iii) 0.5dp
dx

=  as shown in Fig 1.2. The maximum 

velocity occurs at the centre of the channel and increases as M increases 

for 0.5dp
dx

= − , 0 and 0.5dp dp
dx dx

= = .  Further for non conducting fluid (i.e., 0M = ) 

the flow reverses when 0.5dp
dx

= .  

 
 
 
 



 
1736                                                                                               G. Rami Reddy et al 

 
 

-2 -1 0 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

M = 2

M = 1

M = 0.5
M = 0

y

u

 
Fig 1. 2(i).The variation of velocity u  
with y for  different values of M  
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       Fig 1.2(ii). The variation of 
velocity u  with y for different values  of 
M 
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Fig 1.2(iii).The variation of velocity u  with y for different values of M 

 

 

Fig 1.3 shows that the variation of axial velocity u with y for different values of M at 

0.25x= with 1 0.7φ = , 2 1.2, 2,dφ = = 0.5, / 6η α π= =  and 
4
πθ =  for (i) 

0.5dp
dx

=− , (ii) 0dp
dx

=  (iii) 0.5dp
dx

=   as shown in Fig 1.3.  The maximum velocity 

increases as M increases for 0.5dp
dx

=−   0 and 0.5dp dp
dx dx

= = .  Further, for 

0.5dp
dx

=  the flow is reverse in the direction of wave proposition on the channel for 

0M = .  
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Fig 1.3(i) .The variation of velocity u  with 
y for different values of M. 
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Fig 1.3(ii).  The variation of velocity u  with 
y for different values of M. 
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Fig 1.3(iii).The variation of velocity u  with y for different values of M with 

The same behavior holds for
2
πθ = , as shown in Fig 1.4.  Finally we conclude as 

phase shift increases the maximum velocity decrease (Fig 1.2 – 1.4).  Further the 
maximum velocity is more when compared with that in the horizontal channel 
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Fig 1.4(i).   The variation of velocity u  with 

y for different values of M. 
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Fig 1.4(ii). The variation of velocity u  
with y for different values of M. 
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Fig 1.4(iii).The variation of velocity u  with y for different values of M. 

The variation of axial velocity u as a function of y at 0.25x= for different values of 

α  with 1 0.7φ = , 2 1.2,φ =  2,d =  ,
4
πθ =  1η =  and 0.5,M =  for (i) 0.5dp

dx
=− ,   

is shown in Fig 1.5. It is observed that the maximum velocity increases as 

η increases for all values of 
dp
dx

.   
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Fig 1.5(i).The variation of velocity u  with y for different values of α
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