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1. Introduction    

Rotating flows of fluids with the effect of magnetic fields through a porous media have the significant role in the study 

of Cosmic and oceanic fluids eddies, rotating food machinery, processing industry, and filtration plants.  A porous 

medium is a material or substance that contains interconnected void spaces or pores through which fluids, such as gases 

or liquids, can flow. Porous media are commonly found in various natural  and  engineered  systems,  including  

soils,  rocks,  ceramics,  foams,  and  filters.  The  physical properties  of  porous  media,  such  as  pore  

size,  shape,  and  connectivity,  play  a  crucial  role  in determining  their  overall  behaviors,  including  
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flow of fluid,  heat  and  mass  fluxes. Flow through a porous medium have numerous engineering and geophysical 

applications, for example, in chemical engineering for filtration and purification process; in agriculture engineering to 

study the underground water resources; in petroleum technology to study the movement of natural gas, oil and water 

through the oil reservoirs. In view of these applications, many researchers have studied MHD free convective heat and 

mass transfer flow in a porous medium [1-15]. 

Multiple material processing and chemical flow techniques include the boundary layer flow caused by extending the 

surface. A numerous examples include drawing wire, making glass fiber, making paper, and making polymer sheets and 

liquid metal. It is clear that the classical theory of Newtonian fluid flows does not provide an appropriate description of 

the flow and heat transfer behavior of these fluids. Considerable attention has been focused in recent years by various 

scientists and engineers the study problem involving the phenomena of heat and mass transfer with radiation effect. This 

is due to the fact that radiation effects on convection is quite important in the context of many practical applications 

such as in cooling and heating of channels, nuclear power plant, fire research, electrical power generation, nuclear 

reactors, gas turbines and nuclear waste disposal [16-30]. 

 

The convective heat and mass transfer rates for external interface layer can alter in response to changes in the surface 

mass flow, often known as blowing.  Evaporation can occasionally cause a significant transfer of species.  The  

blowing  effect  is  brought  on  by  Stefan,  an  issue  for  species transmission. The study of heat and mass 

transfer with chemical reaction is of great practical importance to engineers and scientists because of its almost 

universal occurrence in many branches of science and engineering. In particular, the study of chemical reaction, heat 

and mass transfer with heat radiation is of considerable importance in chemical and hydrometallurgical industries. A 

reaction is said to be first-order if the rate of reaction is directly proportional to the concentration itself. In many 

chemical processes, a chemical reaction occurs between a foreign mass and a fluid in which a plate is moving. These 

processes take place in numerous industrial applications, e.g., polymer production, manufacturing of ceramics or 

glassware [31-46].  

 

The aim of the present paper concentrates to investigate the effect of chemical reaction on steady two -dimensional free 

convection heat and mass transfer flow of a viscous incompressible electrically conducting and radiating fluid through a 

porous medium bounded by an inclined surface with constant suction velocity, constant heat and mass flux under the 

influence of uniform magnetic field applied normal to the direction of flow. 

 

2. Mathematical Formulation  

Consider steady two dimensional motion of incompressible electrically conducting and radiating fluid through 

a porous medium occupying semi-infinite region of space bounded by a vertical infinite surface with heat 

source or absorption in the presence of chemical reaction under the action of uniform magnetic field applied 

normal to the direction of the flow. The x-axis is taken along the surface in the upward direction and y-axis is 

taken normal to it. The fluid properties are assumed constant except for the influence of density in the body 

force term. As the bounding surface is infinite in length, all the variables are function of  only. Hence, by 

usual boundary layer approximation the basic equations for steady flow highly porous medium are 

0
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
                  (1)  
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Where u  and v  are the velocity components  along and perpendicular to the surface,  g  is the acceleration due 

to gravity, T  the temperature of the fluid near the plate, T
the free stream temperature, C  concentration,   the 

coefficient of thermal expansion, 


 is the volumetric coefficient of expansion of the spices concentration, k  the 

thermal conductivity, pC  the specific heat of constant pressure, 
0B  the magnetic field coefficient,   viscosity of 

the fluid,  the density,   the magnetic permeability of fluid 
0V  constant suction velocity,   the kinematic 

viscosity and D  chemical molecular diffusitivity. 

 

3. Solution of the problem 

0v v = − (Constant)             (5) 

where 0 0v   corresponds to steady suction velocity (normal) at the surface. In view of equation (5), equations (2), 

(3) and (4) are reduced to  
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The relevant boundary conditions are 

0, , for all 0

0, , 0, 0

0, , , 0

w

y y

u T T C C t

q m
u T C t

D

u T T C C t










 

= = = 

= = − = = 

→ → → → 
      

(9) 

The local radiant for the case of an optically thin gray gas is expressed by 

( )4 44rq
a T T








= − −
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           (10) 

It is assume that the temperature differences within the flow are sufficiently small such that 
4T  may be expressed as a 

linear function of the temperature. This is accomplished by expanding 
4T in a Taylor series about T and neglecting 



K. Subba Narasimhudu/Afr.J.Bio.Sc. 6(Si4) (2024)                Page 6058 to 10 
 

  

higher-order terms, thus 

4 3 44 3T T T T  −              (11) 

By using equations (10) and (11), equation (7) reduces to 
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Introducing the following non-dimensional quantities in equations (6), (8) and (12) and asterisk  
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(13) 

where Gr  is Grashof number, Pr  is Prandtl number, M  is Magnetic number, Sc  is Schmidt number,  Kr  is 

Chemical reaction parameter, lQ  is radiation absorption parameter,  Q  is heat source parameter, and R Radiation 

parameter where q  is the heat flux term per unit area and m  is the mass flux per unit area. 

We get  

1
u u M u Gr Gr 
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The corresponding boundary condition in dimensionless form are reduced to 

0 : 0, 1, 1
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The physical variables ,u and   can be expanded in the power of ( ) . This can be possible physically as   

for the flow of an incompressible fluid is always less than unity. It can be interpreted physically as the flow due to the 

Joules dissipation is super imposed on the main flow. Hence we can assume            
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Using equation (18) in equations (14)–(16) and equating the coefficient of like powers of , we have             

( )1
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(19) 
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The corresponding boundary conditions are 
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Solving equations (19) to (24) with the help of (25), we get 
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In view of above,               
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Skin – friction: 

The skin-friction coefficient at the plate is given by 
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Heat Transfer: 

The rate of heat transfer in terms of Nusselt number at the plate is given by 

1 2
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4. Results and discussion 

The governing coupled linear partial differential equations (6) – (8) subject to the initial and boundary conditions  (9) 

corresponding to the three cases of motion of the plate have been solved analytically using perturbation technique 



K. Subba Narasimhudu/Afr.J.Bio.Sc. 6(Si4) (2024)                Page 6060 to 10 
 

  

without any restriction. The numerical results for the temperature, velocity, skin-friction and the Nusselt number are 

computed to carry out a parametric study showing influences of several system parameters. The temperature profiles for 

different values of chemical reaction (Kr), heat source (Q) and Prandtl number (Pr) are shown in figures (8) - (10). It is 

observed that the temperature decreases with increasing values of chemical reaction and heat source parameters. It is 

noted that an increase of Prandtl number results in a decreasing the thermal boundary layer thickness and more uniform 

temperature distribution across the boundary layer. The reason is that smaller values of Prandtl number (Pr) are 

equivalent to increasing the thermal conductivities and therefore heat is able to diffuse away from the heated surface 

more rapidly than for higher values of Pr. The velocity profiles are shown in figures (1) – (3) for different values of 

Grashof number, chemical reaction parameter and radiation absorption parameter.  It is observed that the velocity 

increases with increasing thermal Grashof number (Gr), chemical reaction (Kr) and radiation absorption. Physically this 

is possible because as the Grashof number or time increases, the contribution from the buoyancy force near the plate 

becomes significant and hence a rise in the velocity near the plate is observed. Moreover, it is seen that the larger the 

value of radiation parameter, the thinner the momentum boundary layer size. The velocity profiles are shown in figure 

(5) for different values of Prandtl number (Pr) in the pure convection case due to uniform velocity of the plate.  

Moreover, the velocity of fluid decreases with increasing Prandtl number. This is consistent with the physical 

observation that the fluids with high Prandtl number have greater viscosity, which makes the fluid thick and hence 

move slowly.  

 

 

Table: Skin friction coefficient ( )  

      Previous study Present study 

Sc Gm  M Pr 
lQ  

Gr = 1.0 Gr = - 1.0 Gr = 1.0 Gr = - 1.0 

0.22 5.0 1.0 1.0 0.72 1.0 3.5985 -10.0124 3.4892 -10.4565 

0.60 5.0 1.0 1.0 0.72 1.0 5.1542 -10.0045 4.6541 -10.1462 

0.78 5.0 1.0 1.0 0.72 1.0 3.6742 -9.5125 3.4564 -9.2547 

2.62 5.0 1.0 1.0 0.72 1.0 9.4567 -4.6388 9.2566 -4.2658 

0.22 1.0 1.0 1.0 0.72 1.0 4.4589 -9.0236 4.7986 -9.2654 

0.22 2.0 1.0 1.0 0.72 1.0 3.5785 -10.5865 3.2567 -10.2564 

0.22 3.0 1.0 1.0 0.72 1.0 2.5458 -13.1568 2.1755 -12.9865 

0.22 4.0 1.0 1.0 0.72 1.0 1.1895 -15.0256 1.0654 -15.1546 

0.22 5.0 1.0 1.0 0.72 1.0 3.5682 -11.1242 3.3600 -10.7256 

0.22 5.0 2.0 1.0 0.72 1.0 4.4256 -15.8963 4.1346 -15.1285 

0.22 5.0 3.0 1.0 0.72 1.0 4.8954 -18.0124 4.5005 -17.9124 

0.22 5.0 4.0 1.0 0.72 1.0 5.1145 -18.9856 4.6880 -19.6785 

0.22 5.0 1.0 1.0 0.72 1.0 3.5869 - 3.3342 - 

0.22 5.0 1.0 2.0 0.72 1.0 3.1247 - 2.6472 - 

0.22 5.0 1.0 3.0 0.72 1.0 2.9568 - 2.4276 - 

0.22 5.0 1.0 4.0 0.72 1.0 3.5681 - 2.8245 - 

 

Conclusions: 

The following are observed in this paper: 



K. Subba Narasimhudu/Afr.J.Bio.Sc. 6(Si4) (2024)                Page 6062 to 10 
 

  

• Presence of foreign species reduces the velocity as well as thermal boundary layer and further reduction 

occurs with increasing Schmidt number in case of externally cooled plate. 

• Greater cooling results in increase in velocity and thermal boundary layer thickness. 

• Velocity of fluid layer decreases and thickness of thermal boundary layer increases with increasing 

Schmidt number in case of externally heated plate. 

• Greater heating causes reduction in fluid velocity and increase in thermal boundary layer thickness. 

• Porosity of the medium has considerable effect on velocity distribution. The profiles increase with 

increases in permeability parameter. 

Appendix 
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Fig. (7). Velocity Profiles for Sc
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Fig. (13): Concentration profiles of Kr 
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