

Project Proposal On

"Structural integrity and Material selection for 3D printed prosthetic sockets Numerical and Experimental Analysis for paediatric applications"

Submitted to

Division:SEED

Programme or Scheme : Technology Interventions for Disabled and Elderly (TIDE)

Submitted by

Project Investigator:

Dr. B Sridhar Babu

MALLAREDDY ENGINEERING COLLEGE (A)-Secunderabad

Part 1 : General Information

General Information:

Name of the Institute/University/Organisation submitting the Project Proposal :

MALLAREDDY ENGINEERING COLLEGE (A)

State	Telangana		
Principal Investigrator Name:	Dr. B Sridhar Babu		
Category:	OBC		
Type of the Institue :	Academic Institutions (Private)		
Project Title :	Structural integrity and Material selection for 3D printed prosthetic sockets Numerical and Experimental Analysis for paediatric applications		
Division :	SEED		
Programme Or Scheme :	Technology Interventions for Disabled and Elderly (TIDE)		
Academic Area :	Mechanical Engineering,		
Application Area :	Basic Science,		
Goverment National Initiative :	Not Applicable,		
Type of Proposal :	Proposal Against Call		
Project Duration :	2 Years		
Proposal Submit Date :	30/09/2023		
Project Keywords :	prosthetic limb, 3D printing, Manufacturing, socket, Design, Finite element analysis,		

Project Summary :

Prosthetic devices playing major role in bringing the happiness in the lives of people those who are seriously suffering with disabilities and making them more independent and fulfilling lives. However there is a much scope in the improvement of prosthetic devices, and in the coming years, prosthetic devices holds great promise. In the recent years rapid developments has been taken place in the prosthetics, one of the great significant change is usage of advanced materials and additive manufacturing technology in manufacturing of prosthetic devices. Advanced materials like polymers, metal matrix composite materials enabled the devices more lighter, durable and more comfortable for the user. Additionally, artificial intelligence, sensor technology and deep learning have made possible to create smart prosthetic devices, these devices can respond to the user's body movements, muscle movements and also provide sensory feedback. In addition, important advancements have been implemented in integrating prosthetic devices with the user's nervous system and also important progress has been made in the development of brain devices interfaces that can interpret signals from the user's brain and translate them into the prosthetic movements. This technology very useful to the people with spinal card injuries or other conditions that limit the mobility.

However, despite of these advancements, still there are issues or problems associated with prosthetic devices one of the most significant issues is affordability. Prosthetic devices, especially the best ones, can be expensive making them inaccessible to much number of disabled persons who would benefit from them. Another important issue about prosthetic devices is longevity. Many of these devices are subject to constant wear and tear and their function often relies on the materials used in their construction. However, despite of using advanced materials like polymers, there are still issues regarding their, long term reliability, discomfort, and skin irritation for the end user. So Continuous research development in the area of prosthetic device materials science are very much important to address these challenges and ensure that these prosthetic devices very much accessible and effective for all individuals in need

In a prosthetic leg, Socket is the important part that joins the residual limb of the end user with the rest of the prosthetic limb. Young children grow rapidly, which can lead to problems in accommodating the prosthetic socket to the residual limb of the young children due to the size and volume changes. This can increase the rehabilitation cost significantly. Now a day's artificial manufacturing technology most regularly used in the manufacturing of 3D printed socket for affordability, so for a better mechanical performance of prosthetic socket a proper design and analysis is required.

Generally the prosthetic sockets are subjected to the combination of bending and compressive loads. These types of loads are due to the posture and weight of the user. So structural integrity of the prosthetic socket is very essential for examining the safety of the prosthesis. Many investigations have been done for adult users but there is no investigations on the young children prosthetics in the literature.

So this project mainly focuses on selection of material and structural integrity of the 3D printed pediatric prosthetic socket using experimental and numerical analysis.

The main objectives of the projects are

- 1. Design of the prosthetic socket for young children
- 2. Experimental and numerical Analysis of structural integrity of the socket
- 3. Proper Material and design parameter selection for prosthetic socket for young children
- 4. Fabrication of prosthetic socket for young children

Methodology

This project implementation mainly covers four phases

- 1. Design of prosthetic socket for a 15 year old male's residuum using CAD
- 2.Manufacturing the prosthetic socket using 3D printing technology with different materials i. PLA polylactic acid--- Tensile strength 45MPa Elastic Modulus 2000MPa,
- ii. ABSAcrylonitrile butadiene styrene----Tensile strength 38MPa Elastic Modulus 1310MPa,

iii. Polycarbonate PC--- Tensile strength 36MPa Elastic Modulus 1000MPa,

3. Investigation of the structural integrity of the socket by conducting principal strength test at static and cyclic loads using ANSYS software and also by performing mechanical tests experimentally. 4.Analysis of PLA polylactic acid, ABSAcrylonitrile butadiene styrene and Polycarbonate PC 3D printed socket materials performance at static and cyclic loads.

Based on the results Selection of proper Material and design parameter selection for prosthetic socket for young children.

Part 2: Particulars of Investigators

Principal Investigator:

1. Name:

Gender:	Male
Date of Birth:	08/05/1974
Designation :	Professor
Department:	Mechanical Engineering
Institute/University:	MALLAREDDY ENGINEERING COLLEGE (A)
State:	Telangana
District:	Ranga Reddy
City/Place:	Secunderabad
Address:	maisammaguda, dhulapally post-500100
Pin:	500100
Communication Email:	bsridhar8477@gmail.com
Alternate Email:	
Mobile:	9247969234
Phone:	
Fax:	
Category:	OBC
Co-Investigator:	
1. Name:	Dr. ISNVRPrashanth
Gender:	Male
Date of Birth:	10/12/1977
Designation :	Associate Professor
Department:	Mechanical Engineering
Institute/University:	MALLA REDDY ENGINEERING COLLEGE(AUTONOMOUS)
State:	Telangana

District:	Hyderabad		
City/Place:	Hyrabad		
Address:	Malla Reddy engineering college Maisamma guda, gulapally, Hyderabad		
Pin:	500100		
Communication Email:	prasanth5109@gmail.com		
Alternate Email:			
Mobile:	9963244299		
Phone:			
Fax:			
Category:	General		

Part 3: Suggested Refrees

Suggested Refrees:

1. Name:	Anjaneya Prasad
Mobile:	
Designation :	Professor
Email:	baprasadjntu@gmail.com
Institute/University:	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
Address:	Directorate of Research & Development Jawaharlal Nehru Technological University Hyderabad Kukatpally, Hyderabad, Telangana. Pin-500085
Academic Area:	Mechanical Engineering,
Application Area:	Basic Science,
State:	Telangana
District:	Ranga Reddy
City:	Hyderabad

	Address:	
	Pin Code:	
2.	Name:	Chandrashekar
	Mobile:	
	Designation :	Professor
	Email:	hodmech.vignanhyd@gmail.com
	Institute/University:	VIGNAN INSTITUTE OF TECHNOLOGY AND SCIENCE
	Address:	Deshmukhi, Pochampally, YadadriBhuvanagiri, Telangana, India
	Academic Area:	Mechanical Engineering,
	Application Area:	Basic Science,
	State:	Telangana
	District:	Hyderabad
	City:	Hyderabad
	Address:	
	Pin Code:	

Part 4: Financial Details

Financial Details:

A. Non - Recurring

Equipment

S.	Equipments	Qty.	Justification	1 Year	2 Year	Total
1.	3D printer	1	Manufacturing of prosthetic socket	0	450000	450000
2.	Ansys software	1	Software used to analyze the structural integrity of socket	350000	0	350000
3.	Pro E software	1	Used for prosthetic socket design	250000	0	250000
4.	UTM	1	Test the strength of materials and socket	0	950000	950000
			Total	600000	1400000	2000000

B. Recurring

Project Staff

S.	Project Staff	No.	Justification	1 Year	2 Year	Total
	-		-			

1.	Project Assistant	1	Project Assistant Dr S Venugopal Rao PhD Hyderabad	240000	240000	480000
			Total	240000	240000	480000

Consumables

S.	ltems	Qty.	Justification	1 Year	2 Year	Total
1.	Acrylonitrile butadiene styrene	10	material for 3D printing	0	30000	30000
2.	Poly corbonate material	10	3D Printing material	0	40000	40000
3.	polylactic acid	10	3D printing material	0	30000	30000
			Total	0	100000	100000

Contingency

S.	Description	Justification	1 Year	2 Year	Total
1.	unforeseen expenditure	unexpected expenditure	10000	10000	20000
		Total	10000	10000	20000

Travel

S.	Description	Justification	1 Year	2 Year	Total
1.	Project implementation	meeting vendors	20000	20000	40000
2.	travel expenses	to attend DST meetings and meeting ollaborator	10000	10000	20000
		Total	30000	30000	60000

Overhead

S.	Description	Justification	1 Year	2 Year	Total
1.	Institutional overheads	institutional overheads	10000	10000	20000
		Total	10000	10000	20000

Any Other Recurring

S.	Description	Justification	1 Year	2 Year	Total
1.	Fabriction material	Fabrication of supporting system for UTM machine	0	20000	20000
		Total	0	20000	20000

Budget Head Summary in (INR)

Budget Head	Year-1	Year-2	Total
1- Non-Recurring			
Equipment	600000	1400000	2000000
Subtotal (Capital)	600000	1400000	2000000
2- Recurring			
Project Staff	240000	240000	480000
Consumables	0	100000	100000
Contingency	10000	10000	20000
Travel	30000	30000	60000
Overhead	10000	10000	20000
Any Other Recurring	0	20000	20000
Subtotal (General)	290000	410000	700000
Total Project Cost (Capital + General)	890000	1810000	2700000

Part 5: PFMS Details

PFMS Unique Code Available: Yes

PFMS Unique Code :

TLML00000156

Part 6: Current Ongoing Project

Current Ongoing Project: NA

List of Uploaded Documents:-

- 1. Complete Project proposal
- 2. Biodata
- 3. Certificate from PI
- 4. Conflict of interest
- 5. Endorsement from head of Institute
- 6. Quotation for Equipments

PART I. EXECUTIVE SUMMARY

1. Title of the Project: Structural integrity and Material selection for 3D printed prosthetic sockets : Numerical and Experimental Analysis for paediatric applications

2. Category of the Project:

Sl. No.	Category	Please tick
1.	Developing at least a *Technology Readiness Level	
	(TRL) – 5 AT product	
2.	Enhancing Technology Readiness Level through Large-	\checkmark
	Scale Field Trials of products (which are at TRL 5 -	
	Technology validation in relevant environment)	
3.	Scaling up of products in collaboration with industry	
	partners	

3. Project Proposal submitted for addressing which target groups:

Sl. No.	Target Groups	Please Tick
1.	Elderly	
2.	Persons with Disability (PwD)	

3.1 In case the project proposal is submitted under disability category, please give the following details

Area ¹	Early Diagnosis	Independent	Education	Livelihood		
Disability	Earry Diagnosis	Living	Laucation	Liveimoou		
Visual						
Locomotor		\checkmark				
Intellectual						
Hearing						
Speech						
Multiple						
Any other						
(please specify)						

3.2 Have you done any preliminary work with respect to the selected target groups (Persons with Disabilities). If yes, please give the following details (please refer to Annexure – D on page No. 24-25 for description)

Type of	¹ Consulted	² Consulted	³ Nature of	⁴ Chance of		
Disability	PwD?	Experts	technology	success		
Disability with one leg	Yes	Yes	3D Printing	100%		

4. Brief Description of the Project:

Prosthetic devices playing major role in bringing the happiness in the lives of people those who are seriously suffering with disabilities and making them more independent and fulfilling lives. However there is a much scope in the improvement of prosthetic devices, and in the coming years, prosthetic devices holds great promise.

In the recent years rapid developments has been taken place in the prosthetics, one of the great significant change is usage of advanced materials and additive manufacturing technology in manufacturing of prosthetic devices. Advanced materials like polymers, metal matrix composite materials enabled the devices more lighter, durable and more comfortable for the user. Additionally, artificial intelligence, sensor technology and deep learning have made possible to create smart prosthetic devices, these devices can respond to the user's body movements, muscle movements and also provide sensory feedback. In addition, important advancements have been implemented in integrating prosthetic devices with the user's nervous system and also important progress has been made in the development of brain devices interfaces that can interpret signals from the user's brain and translate them into the prosthetic movements. This technology very useful to the people with spinal card injuries or other conditions that limit the mobility.

However, despite of these advancements, still there are issues or problems associated with prosthetic devices; one of the most significant issues is affordability. Prosthetic devices, especially the best ones, can be expensive making them inaccessible to much number of disabled persons who would benefit from them. Another important issue about prosthetic devices is devices subject longevity. Many of these are to constant wear and tear and their function often relies on the materials used in their construction. However, despite of using advanced materials like polymers, there are still issues regarding their, long term reliability, discomfort, and skin irritation for the end user. So Continuous research & development in the area of prosthetic device materials science are very much important to address these challenges and ensure that these prosthetic devices very much accessible and effective for all individuals in need

In a prosthetic leg, Socket is the important part that joins the residual limb of the end user with the rest of the prosthetic limb. Young children grow rapidly, which can lead to problems in accommodating the prosthetic socket to the residual limb of the young children due to the size and volume changes. This can increase the rehabilitation cost significantly. Now a day's artificial manufacturing technology most regularly used in the manufacturing of 3D printed socket for affordability, so for a better mechanical performance of prosthetic socket a proper design and analysis is required.

Generally the prosthetic sockets are subjected to the combination of bending and compressive loads. These types of loads are due to the posture and weight of the user. So structural integrity of the prosthetic socket is very essential for examining the safety of the prosthesis. Many investigations have been done for adult users but there is no investigations on the young children prosthetics in the literature.

So this project mainly focuses on selection of material and structural integrity of the 3D printed pediatric prosthetic socket using experimental and numerical analysis.

5.Brief details of literature survey and existing patents in the proposed intervention:

Several researchers studied performance of materials and different methods of manufacturing of prosthetic sockets and also studied the mechanical performance of the sockets using finite element methods

Merel van der et al [1] Mechanical properties of the 3D printed prosthetic socket materials are studied with reference to ISO 527 standards and concluded that the FFF- printed sockets are more useful and safe for adult age people, also investigated the structural integrity of the printed socket using the strength on the basis of ISO 10328 standards and suggested that tough PLA is the best material for socket.

Nickel, E.A et al[2] investigated the strength of definitive transtibial prosthetic sockets, which are manufactures with additive manufacturing(3D printing) technology and tested twenty four 3D printed sockes on the basis of ISO 10328 ultimate tensile strength standards and refined the design of the socket for P6 level load.

M. J. Jweeg, et al. [3] Mechanical properties of the prosthetic socket materials studied by exposing the samples to the tensile and flexural tests and also studied the properties by increasing and decreasing the material layers.

C. Mario et al.,[4] Selective laser sintering technique was used in the manufacturing of prosthetic socket and studied the structural integrity of the socket using finite element method.

R. Abd Al-razaq, et al.,[5] investigated the prosthetic socket mechanical performance using only static loads and used composite material used in prosthetic device manufacturing.

In many of the investigations, very small amount work has been reported on 3D printed prosthetic socket materials, not considered the compressive and bending loads on the sockets and structural integrity, but mainly focused on adult users.

However, in many of the investigations on materials and analysis of mechanical performance of 3D printed pediatric prosthetic sockets has been limited. This project mainly focuses on design and manufacturing of a socket for young children with effective material, also doing investigations on structural integrity, by conducting experiments and finite element analysis.

References

- 1. Van der Stelt, M.; Verhamme, L.; Slump, C.H.; Brouwers, L.; Maal, T.J.J. Strength testing of low-cost 3D-printed transtibial prosthetic socket. *Proc. Inst. Mech. Eng. Part H J. Eng. Med.* 2022, 236, 367–375
- 2. Nickel, E.A.; Barrons, K.J.; Owen, M.K.; Hand, B.D.; Hansen, A.H.; Desjardins, J.D. Strength Testing of Definitive Transtibial Prosthetic Sockets Made Using 3D-Printing Technology. *JPO J. Prosthet. Orthot.* 2020, *32*, 295–300
- **3.** M.J.Jweeg .S.S.Hasan and J.S.Chiad 2008 Effects of Lamination Layers on the Mechanical Properties for Above Knee Prosthetic Socket Eng. Technol. J. 759-776
- **4.** Faustini M C, Neptune R R, Crawford et al 2006 An Experimental and Theoretical Framework for Manufacturing prosthetic socket Ieee Transactions on Neural Systems and Rehabilitation Engineering vol 14 pp 304-10
- **5.** Al-razaq I R A and Yasir Khalil Ibrahim ,2016, Modular Socket System Versus Vacuum Technique in Trans-tibial Prosthetic Socket Int. J. Energy Environ. 457-468

6 Existing state of art in the proposed field/intervention/subject:

In the recent years rapid developments has been taken place in the prosthetics, one of the great significant change is usage of advanced materials and additive manufacturing technology in manufacturing of prosthetic devices. Advanced materials like polymers, metal matrix composite materials enabled the devices more lighter, durable and more comfortable for the user. Additionally, artificial intelligence, sensor technology and deep learning have made possible to create smart prosthetic devices, these devices can respond to the user's body movements, muscle movements and also provide sensory feedback. In addition, important advancements have been implemented in integrating prosthetic devices with the user's nervous system and also important progress has been made in the development of brain devices interfaces that can interpret signals from the user's brain and translate them into the prosthetic movements. This technology very useful to the people with spinal card injuries or other conditions that limit the mobility.

7.Importance of the proposed project in the context of current status

despite of these advancements, still there are issues or problems associated with prosthetic devices; one of the most significant issues is affordability. Prosthetic devices, especially the best ones, can be expensive making them inaccessible to much number of disabled persons who would benefit from them. Another important issue about prosthetic devices is longevity. Many of these devices are subject to constant wear and tear

and their function often relies on the materials used in their construction. However, despite of using advanced materials like polymers, there are still issues regarding their, long term reliability, discomfort, and skin irritation for the end user. So Continuous research & development in the area of prosthetic device materials science are very much important to address these challenges and ensure that these prosthetic devices very much accessible and effective for all individuals in need

Generally the prosthetic sockets are subjected to the combination of bending and compressive loads. These types of loads are due to the posture and weight of the user. So structural integrity of the prosthetic socket is very essential for examining the safety of the prosthesis. Many investigations have been done for adult users but there is no investigations on the young children prosthetics in the literature.

So this project mainly focuses on selection of material and structural integrity of the 3D printed pediatric prosthetic socket using experimental and numerical analysis.

8 objectives

The main objectives of the projects are

- 1. Design of the prosthetic socket for young children
- 2. Experimental and numerical Analysis of structural integrity of the socket
- **3.** Proper Material and design parameter selection for prosthetic socket for young children
- 4. Fabrication of prosthetic socket for young children

9.Novelty of the project:

Young children grow rapidly, which can lead to problems in accommodating the prosthetic socket to the residual limb of the young children due to the size and volume changes. This can increase the rehabilitation cost significantly. Now a day's artificial manufacturing technology most regularly used in the manufacturing of 3D printed socket for affordability, so for a better mechanical performance of prosthetic socket a proper design and analysis is required to maintain the reliability and longevity.

10. Methodology

This project implementation mainly covers four phases

- 1. Design of prosthetic socket for a 15 year old male's residuum using CAD
- 2. Manufacturing the prosthetic socket using 3D printing technology with different materials

i. PLA (polylactic acid)--- Tensile strength 45MPa & Elastic Modulus 2000MPa,
ii. ABS(Acrylonitrile butadiene styrene)----Tensile strength 38MPa & Elastic Modulus 1310MPa,

iii. Polycarbonate (PC)--- Tensile strength 36MPa & Elastic Modulus 1000MPa,

- 3. Investigation of the structural integrity of the socket by conducting principal strength test at static and cyclic loads using ANSYS software and also by performing mechanical tests experimentally.
- 4. Analysis of PLA (polylactic acid), ABS(Acrylonitrile butadiene styrene) and Polycarbonate (PC) 3D printed socket materials performance at static and cyclic loads.

Based on the results Selection of proper Material and design parameter selection for prosthetic socket for young children.

11 Work plan

Activity	Number of months																					
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Receive Grant																						
Purchase& Receipt of equipment																						
Commissioning, Testing of equipment																						
Design of prosthetic socket																						
Manufacturing of prosthetic socket using 3D printer with different materials																						
Testing the socket at loads																						
FE Analysis of Socket																						
Study on structural integrity and materials performance																						
Results compilation and report submission																						
Research assistance/ guidance/ consultancy(will continue)																						

12 Diagrammatic representation of the proposed prototype/ product and flow chart in case of process/protocol

Modification to existing prosthetic socket(Red colour)

Flow chart on Analysis and fabrication of socket for pediatrics

Year	Deliverables (which can be monitored or assessed)
First	Young children limb geometry data, Deisgn of socket, Meshing
Second	Finite element analysis results, Material selection, Fabrication

13. Expected S&T Deliverables (3-4 significant deliverables each year):

14. Suggested plan of action for utilization of the outcome expected from the project

The outcome of the project is very helpful to the prosthetic limb manufacturers, the design data, details about the better material and the structural integrity of 3D printed prosthetic socket for pediatrics data will be shared among the prosthetic limb manufacturers, definitely the outcome of the project will make the disabled paediatrics, to live independently with more comfort.

i. Principal Investigator	
Name	Dr B Sridhar Babu
Date of Birth	08/05/1974
Highest Qualification	PhD
Designation	Professor
Department	Mechanical Engineering
Institute/University	Malla Reddy Engineering college
Expertise in the proposed area of	Yes (on 3D Printing)
work. Whether had done any in	
projects in the proposed area of	
work	
E-Mail & Mobile Number	bsridhar8477@gmail.com
ii. Co-Investigator	
Name	Dr.I.S.N.V.R.Prashanth
Sex and Date of Birth	Male. 10/12/1977
Highest Qualification	PhD
Designation	Associate Professor
Department	Mechanical Engineering
Institute/University	Malla reddy Engineering college
Expertise in the proposed area of	manufacturing

15. Short Bio-data of PI & Co-PI (With Educational Qualifications):

work. Whether had done any in	
projects in the proposed area of	
work	
E-Mail & Mobile Number	Prasanth5109@gmail.com

16. Project Duration : 2 years

17. Budget Summary: Rs. 2700000

Recurring Cost : Rs.20,20,000

Non-Recurring cost : Rs.6,80,000

Sl.	Items	Budget (in Rs.)					
No.		1 st Year	2 nd year	Total			
А.	Recurring						
1.	Manpower	2, 40,000	2,40,000	4,80,000			
2.	Consumables		1,00,000	1,00,000			
3.	Travel	30,0000	30,000	60000			
4.	*Trainings/Awareness/Field						
	Trials/Dissemination and						
	Deployment etc						
5.	*Other Costs (including	50000	50000				
	technology testing and						
	validation, patents etc)						
5.	Contingency	10000	10000	20000			
6.	Overheads	10000	10000	20000			
	Total (A)			6,80,000			
B.	Non-Recurring						
1.	Equipment	6,00,000	14,00,000	20,00,000			
2.	Fabrication Costs		20,000	20,000			
	Total (B)			20,20,000			
	Grand Total (A+B)			27,00,000			

18. Details of Collaborators:

Sl. No.	Name of the organisation	**Purpose of collaboration						
1	Malla Reddy Hospitals, Hyderabad	For residual limb geometry and						
		dimensions purpose , For						
		meeting disable persons						

PART II. TECHNICAL DETAILS

1. Title of the Project: Structural integrity and Material selection for 3D printed prosthetic sockets : Numerical and Experimental Analysis for paediatric applications

2.Statement of the Problem and Technology Gaps:

of these devices Many are subject to constant and tear wear and their function often relies on the materials used in their construction. However, despite of using advanced materials like polymers, there are still issues regarding their, long term reliability, discomfort, and skin irritation for the end user. So Continuous research & development in the area of prosthetic device materials science are very much important to address these challenges and ensure that these prosthetic devices very much accessible and effective for all individuals in need.

In a prosthetic leg, Socket is the important part that joins the residual limb of the end user with the rest of the prosthetic limb. Young children grow rapidly, which can lead to problems in accommodating the prosthetic socket to the residual limb of the young children due to the size and volume changes. This can increase the rehabilitation cost significantly. Now a day's artificial manufacturing technology most regularly used in the manufacturing of 3D printed socket for affordability, so for a better mechanical performance of prosthetic socket a proper design and analysis is required.

Generally the prosthetic sockets are subjected to the combination of bending and compressive loads. These types of loads are due to the posture and weight of the user. So structural integrity of the prosthetic socket is very essential for examining the safety of the prosthesis. Many investigations have been done for adult users but there is no investigations on the young children prosthetics in the literature. So this project mainly focuses on selection of material and structural integrity of the 3D printed pediatric prosthetic socket using experimental and numerical analysis.

a) State the main problem of the targeted users you seek to address

Disabled young children with 13 to 15 years of age, Young children grow rapidly, which can lead to problems in accommodating the prosthetic socket to the residual limb of the young children due to the size and volume changes. This can increase the rehabilitation cost significantly

b) What are existing STI gaps and how did you come to know of this

Gaps identified through the literature survey

Most of the investigations done for adult users but there is no investigations on the young children prosthetics in the literature. Important issue about prosthetic devices is longevity. Many of these devices are subject to constant wear and tear and their function often relies on the materials used in their construction. However, despite of using advanced materials like polymers, there are still issues regarding their, long term reliability, discomfort, and skin irritation for the end user. So Continuous research & development in the area of prosthetic device materials science are very much important to address these challenges and ensure that these prosthetic devices very much accessible and effective for all individuals in need.

c) Why is it important to solve the identified gaps

- 1.To make the disabled paediatrics lives more comfort and independent.
- 2. To make prosthetic limb devices more affordable and Longevity.

3. Review of Literature/Status/Earlier Works and/or Initiatives

International:

Several researchers studied performance of materials and different methods of manufacturing of prosthetic sockets and also studied the mechanical performance of the sockets using finite element methods

Merel van der Stelt et al [1] investigated the mechanical properties of the materials used in the 3D printed prosthetic socket according to the ISO 527 and concluded that the FFF- printed sockets are more useful safe for adult age and also investigated the structural integrity of the FFF- printed socket using the strength on the basis of ISO 10328 standards and suggested that tough PLA is the best material for socket.

Nickel, E.A et al[2] investigated the strength of definitive transtibial prosthetic sockets, which are manufactures with additive manufacturing(3D printing) technology and tested twenty four 3D printed sockes on the basis of ISO 10328 ultimate strength standards and refined the design of the socket for P6 level load.

M. J. Jweeg, et al. [3] investigated the mechanical properties of materials used in prosthetic socket by exposing the samples to the tensile and flexural tests and also studied the properties by increasing and decreasing the material layers.

C. Mario et al.,[4] Selective laser sintering technique was used in the manufacturing of prosthetic socket and studied the structural integrity of the socket using finite element method.

R. Abd Al-razaq, et al.,[5] investigated the prosthetic socket mechanical performance using only static loads and used composite material used in prosthetic device manufacturing.

In many of the investigations, very small amount work has been reported on 3D printed prosthetic socket materials, not considered the compressive and bending loads on the sockets and structural integrity, but mainly focused on adult users. However, in many of the investigations on materials and analysis of mechanical performance of 3D printed pediatric prosthetic sockets has been limited. This project mainly focuses on design and manufacturing of a socket for young children with effective material, also doing investigations on structural integrity, by conducting experiments and finite element analysis

4. Suggested STI solutions:

a) Definitely the outcome of the project will make the disabled paediatrics, to live independently with more comfort.

b) A better material will be suggested for the manufacturing of paediatric Prosthetic socket, which will be more affordable and maintains a good structural integrity in the prosthetic socket.

c) Optimised Paediatric prosthetic socket design data can be created

(a) Nature of proposed interventions:

Sl. No.	Category	Please tick
1.	Developing at least a Technology Readiness Level (TRL)	
	- 5 AT product	
2.	Enhancing Technology Readiness Level through Large-	\checkmark
	Scale Field Trials of products (which are at TRL 5 -	
	Technology validation in relevant environment)	
3.	Scaling up of products in collaboration with industry	
	partners	

b) Outline your idea or solution you plan to develop

Prosthetic devices subject are to constant wear and tear and their function often relies on the materials used in their construction. However, despite of using advanced materials like polymers, there are still issues regarding their, long term reliability, discomfort, and skin irritation for the end user. So Continuous research & development in the area of prosthetic device materials science are very much important to address these challenges and ensure that these prosthetic devices very much accessible and effective for all individuals in need. In a prosthetic leg, Socket is the important part that joins the residual limb of the end user with the rest of the prosthetic limb. Young children grow rapidly, which can lead to problems in accommodating the prosthetic socket to the residual limb of the young children due to the size and volume changes. This can increase the rehabilitation cost significantly. Now a day's artificial manufacturing technology most regularly used in the manufacturing of 3D printed socket for affordability, so for a better mechanical performance of prosthetic socket a proper design and analysis is required. Generally the prosthetic sockets are subjected to the combination of bending and compressive loads. These types of loads are due to the posture and weight of the user. So structural integrity of the prosthetic socket is very essential for examining the safety of the prosthesis. Many investigations have been done for adult users but there are no investigations on the young children prosthetics in the literature.

So this project mainly focuses on selection of material and structural integrity of the 3D printed pediatric prosthetic socket using experimental and numerical analysis.

5. Objectives (should not contain the processes/activities involved in the project)

The main objectives of the projects are

- 1. Design of the prosthetic socket for young children
- 2. Experimental and numerical Analysis of structural integrity of the socket
- 3. Proper Material and design parameter selection for prosthetic socket for young children
- 4. Fabrication of prosthetic socket for young children

6. Methodology and Work Plan.

a. State the methodology in a sequence of clearly defined steps leading to achievement of the project objectives

This project implementation mainly covers four phases

- 1. Design of prosthetic socket for a 15 year old male's residuum using CAD
- 2. Manufacturing the prosthetic socket using 3D printing technology with different materials

i. PLA (polylactic acid)--- Tensile strength 45MPa & Elastic Modulus 2000MPa, ii. ABS(Acrylonitrile butadiene styrene)----Tensile strength 38MPa & Elastic Modulus 1310MPa,

iii. Polycarbonate (PC)--- Tensile strength 36MPa & Elastic Modulus 1000MPa,

- 3. Investigation of the structural integrity of the socket by conducting principal strength test at static and cyclic loads using ANSYS software and also by performing mechanical tests experimentally.
- 4. Analysis of PLA (polylactic acid), ABS(Acrylonitrile butadiene styrene) and Polycarbonate (PC) 3D printed socket materials performance at static and cyclic loads.

Based on the results Selection of proper Material and design parameter selection for prosthetic socket for young children.

b. Phase wise plan of action with time lines and deliverables in tabular form or pert diagram

Activity		Number of months																				
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Receive Grant																						
Purchase& Receipt of equipment																						
Commissioning, Testing of equipment																						
Design of prosthetic socket																						
Manufacturing of prosthetic socket using 3D printer with different materials																						
Testing the socket at loads																						
FE Analysis of Socket																						
Study on structural integrity and materials performance																						
Results compilation and report submission																						
Research assistance/ guidance/ consultancy(will continue)																						

c. Details/Mechanism for the involvement of target user groups in the project

Disabled people from the Malla reddy hospital

7 Artistic Impression and/or Diagrammatic Representation of the prototype/product

Modification to existing prosthetic socket(Red colour)

Flow chart on Analysis and fabrication of socket for pediatrics

8. Indicative techno-economic viability/cost benefits analysis of the prototype/product developed.

3D printed prosthetic devies are more affordable and very cheap compared ti the other devices.

9. Comment on the likely impact of the project on target groups as well as on the existing state of art in the proposed area of work.

The outcome of the project is very helpful to the prosthetic limb manufacturers, the design data, details about the better material and the structural integrity of 3D printed prosthetic socket for pediatrics data will be shared among the prosthetic limb manufacturers, definitely the outcome of the project will make the disabled paediatrics, to live independently with more comfort. The additive manufacturing is very easy and more affordable products can be achieved

10. Whether the project requires in vivo/in vitro studies and requires ethical clearance? No

11. Whether the proposed prototype/product proposed developed should adhere to any standards?

YES, ISO standards

12. Details of Field Trials, Testing and Validation of Proposed Intervention in real time Field trials, Testing and validation of proposed device will be conducted at Malla reddy hospital Hyderabad.

13. Outline your idea for scaling and commercialisation

The project results will be given to prosthetic device manufacturers without any commercial aspect. the project outcomes are beneficial to disable persons

14. Suggested parameters (5-6) for monitoring the progress of the project

Sl. No	Year	Suggested Parameters/Output/Outcomes
1	2024	Young children limb geometry data, Deisgn of socket,
		Meshing
2	2025	Finite element analysis results, Material selection,
		Fabrication

15. Expertise available with the proposed investigating group/institution in the proposed area of work.

YES,

PART III: BUDGET

A. RECURRING

1. BUDGET FOR MANPOWER

Sl.	Designation	Budget (Rs)						
No.		1 st Year	2 nd Year	3 rd Year	Total			
1.	Research Associate	2,40,000	2,40,000		4,80,000			
2.								
	TOTAL				4, 80,000			

(Staff recruited for a project should be paid as per the norms and guidelines of the DST. The justification should contain the work allocation/functions of each project staff. Please refer to different OMs regarding salary structure of various categories of project staff available on DST Website)

2. BUDGET FOR CONSUMABLES

Sl.	Consumables	Budget (Rs)						
No		1 st Year	2 nd Year	3 rd Year	Total			
1.	polylactic acid		30000		30000			
2	Acrylonitrile butadiene styrene		30000		30000			
3	Poly corbonate		40000		40000			
	TOTAL				1,00,000			

3. BUDGET FOR TRAVEL

Sl.	Purpose		Buc	dget	
No		1 st Year	2 nd Year	3 rd Year	Total
1.	Project Implementation	20,000	20,000		40000
2.	For attending DST	10,000	10,000		20000
	Review Meetings				
	TOTAL				60000

4. BUDGET FOR TRAININGS/AWARENESS/FIELD TRIALS/DISSEMINATION AND DEPLOYMENT ETC

Sl.	Description of Trainings	Budget							
No	User/Field Trials etc	1 st Year	2 nd Year	3 rd Year	Total				
1.									
	TOTAL								

5. BUDGET FOR OTHER COSTS

Sl. No	Description of Other	Budget							
	Costs	1 st Year	2 nd Year	3 rd Year	Total				
1.	Testing of the Product,								
	validation, patents etc								

TOTAL

6. BUDGET FOR CONTINGENCIES

Sl. No	Item	Budget							
		1 st Year	2 nd Year	3 rd Year	Total				
1.	Unforeseen Expenditure	10000	10000		20000				
	TOTAL				20000				

7. BUDGET FOR OVER HEADS

Sl. No	Item	Budget						
		1 st Year	2 nd Year	3 rd Year	Total			
1.	Institutional Overheads	10000	10000		20000			
	TOTAL				20000			

B. NON-RECURRING

Sl. No.	Item	Budget						
		1 st Year	2 nd Year	3 rd Year	Total			
1.	Pro E software	2,50,000			2,50,000			
2	Ansys software	3,50,000			3,50,000			
3	3D printer		4,50,000		4,50,000			
4	Mechanical strength tester		9,50,000		9,50,000			
2.	Fabrication		20000		20000			
	TOTAL				2020000			

Detailed justification for each and every item of equipment should be given Bill of materials/estimate for fabrication and construction cost should be provided

PART IV: DETAILS OF THE IMPLEMENTING (HOST) INSTITUTE

(In case of Voluntary Organizations/NGOs and Private Institutes please enclose copies of Registration Certificate/Trust Deed, Memorandum of Association including By-laws and

Mandate, Audited statement of accounts for the last three years, Annual Report including activity profile for last three years) – All these documents should be enclosed with the application format and should be uploaded in e-PMS.

Name of the Organization	Malla Reddy Engineering Col	lege
Address	MALLA REDDY ENGINEE	RING COLLEGE
	MAIN CAMPUS	
	Maisammaguda(H), Gundlapo	ochampally Village,
	Medchal Mandal,	
	Telangana State - 500100	
Telephone with STD code	Phone: 9348161125	Fax: NA
E – mail	principal@mrec.ac.in	
Website	https://mrec.ac.in/	
Year of Establishment	2002	
Registration No & Date	No:5613/2001	
	Date: 21.08.2001	
FCRA Registration No &	Section 8	
Date (if applicable)	U88900TS2023NPL174548	
Annual Budget in last		
Financial Year		
Operational Area (State &	State	
Districts)		
NGO Darpan Id	TS/2017/0154621	
Unique Code under PFMS	TLML00000156	
Whether Implementing	YES	
EAT Module in PFMS		

1. Details of the Host Institution

2. Infrastructure available land/building (including equipment) for executing the project.

Space Details (Incubation Space (Cubicles), Maker space, Conference Room, Meeting Rooms, and Other Facilities): **21,040 sq.ft**

List of Major Equipment

Civil Engineering					
S. No	Equipment	Particulars	Year of purchase	Cost (Rs)	
1.	Tri Axial Test	Top Loading Pad, Perspex, 38mm dia, Plain Perspex Disc 38 mm dia x 6 mm thick , Porous Stone 38mm dia x 6 mm thick , Sheath Stretcher for 38mm dia specimen	2014	1,87,500	
2.	Digital Compression Testing Machine 2000Kn	Quality Engineering and Instruments	06-01-2016	3,15,939	
3.	pan mixer constant drum rotating blade type electrically operated fitted with 5Hp 3phase ISI motor cap of 100kg	Quality Engineering and Instruments	23-11-2010	140000	
4.	Hydraulic jump apparatus	Closed Circuit unit	2016	1,64,000	
5.	Pelton wheel turbine	Closed Circut unit	2003	1,59,900	
6.	Francis turbine	Closed Circuit unit	2003	1,80,600	
Electrical and Electronics Engineering					
S. No	Equipment	Particulars	Year of purchase	Cost (Rs)	
1	Rectifier	220V, 100A	06.11.2003	1,10,000	

Electronics and Communication Engineering				
S. No	Equipment	Particulars	Year of purchase	Cost (Rs)
1	Spectrum Analyzer	0.15MHz to 1050MHz	23.02.2017	1,22,000

Computer Science and Engineering	Computer	[•] Science	and	Engineering	7
----------------------------------	----------	----------------------	-----	-------------	---

S.No	Equipment	Particulars	Year of purchase	Cost (Rs)
1	1 server	Intel core i7-9900k,16 GB RAM,8 TB Hard Disk,DELL Monitor,Mouse,Keyboard		
2	19 clients	i5-10400,8 GB RAM,1 TB Hard Disk,DELL Monitor,Mouse,Keyboard	2021	5,51,000/-

Information Technology					
S.No	Equipment	Particulars	Year of purchase	Cost (Rs)	
1	DESKTOP	Intel Core i3, 1 TB HDD,4GB RAM, 64- bit Processor			
		Mining Engineering			
S.No	Equipment	Particulars	Year of purchase	Cost (Rs)	
1	Anchorage test apparatus	Pull out of 50tonnes capacity	2016	169400	
2	Tri axial strength testing apparatus	Rock Tri axial cell for testing rock samples of BX, NX cat no. Aim 211. constant pressure system for rocks pressure 160kg/cmsq, load frame motorised 3 speeds , proving ring	2019	256054	
3	Uni axial strength testing apparatus	Uni axial compressive strength test machine with main frame with 100KN ring with 2 dial guages	2019	167785	
4	Wifely shaking table	arrangement for seperating minerals of various densities	2016	265228	
5	Froath flotation cell	for seperating the concentrate from crushed ore of 15microns size	2016	176818	

6	Magnetic separator	Magnetic seperating of minerals arrangement	2016	160616
7	Roller crusher	Doublle smooth roller crusher 300mm dia x 200mm W	2016	280665
8	Grindability index apparatus	bond index mill 300mn ID X 300MM IL	2016	198000
9	Axial flow fan setup	Two axial flow fans with duct pipe	2015	513000
10	Direct Shear test apparatus	shear box 300mmx300mm x100mm, jack of 100KN, hydraulic hand pump, load guage 100kn, dial gauges 0.01x25mm	2019	151040
11	Mineral jig	arrangement for separating coal and iron ore waste	2016	136080
12	Centrifugal fan	fans with duct pipe	2015	183000
13	Electronic total station - 325	Horizon made Electronic total station 325 model	2006	278623
14	Electronic total station - 555	Horizon made Electronic total station 555 model	2008	221825

Dr. B.SRIDHAR BABU Ph.D., M.Tech, B.Tech

Flat No. 302, Harekrishna sadan Apt, Ragavendra Nagar, Nacharam, Hyderabad-500 076(TS). **Contact:** 9247969234. **E-Mail:** <u>bsridhar8477@gmail.com</u> **ORCID:** 0000-0002-3721-813Xz

RESEARCH INTERESTS

- Solid Mechanics/Contact Mechanics, Stress Analysis
- Characterization of Materials
- Manufacturing

EDUCATIONAL QUALIFICATIONS

Year	Education
2016	Ph.D., JNTUH, Hyderabad (Mechanical Engineering)
	Thesis: Indentation size effects on elasto-plastic deformation behavior
	of materials for aero engine components. (Mechanics of solids)
2010	M.Tech., ANU, Guntur, (Computer Science and Engineering)
2005	M.Tech., JNTUH, and Hyderabad (Advanced Manufacturing systems),
1999	B.Tech., KITS Warangal. (Mechanical Engineering),
1995	Diploma, Govt. Polytechnic, Warangal, (Mechanical Engineering),

PROFESSIONAL EXPERIENCE: 20 years

TROTESSIONNE EM ENERGE. 20 years	
Malla reddy Engineering college	Spet 2023 t0 till date
Professor	
Sri Venkateswara College of Engineering and Technology	Dec 2021 to Aug 202
Professor	
CMR Institute of Technology, Hyderabad.	July, 2009 to Nov 2021
Professor & Dean of IIIC	
RRS College Of Engineering, Hyderabad	Aug, 2003 to June 2003
Associate Professor & HOD	
Bharath Institute of Technology & Science, Hyderabad	June 2001 to May 2003
Assistant Professor	
Mother Therisa Institute Of Science and Technology	Sep, 1999 to April 2001
Assistant Professor	
ΤΕ ΓΙΝΙ ΓΑΙ ΠΙΠΙ ΓΑΤΙΩΝς.	
Laternational Lournale (CCL (Coorner (MLaC))	25
• International Journals (SCI/Scopus/WoSJ:	25
• International Journals (Peer Reviewed/UGC Indexed):	18
 National / International Conferences: 	07
 Books/Book Chapters: 	13

INSTITUTIONAL MEMBERSHIPS:

- · Fellow member of institute of engineers
- Life Member of Indian Society for Technical Education
- Member of SAE India
- Member of international association of engineers

GUEST EDITOR:

- Academic Editor for Journal of Engineering Hindawi Publications
- Academic Editor for Advances in Polymer Technology Hindawi Publications
- Academic Editor for Advancesin Materials Science and Engineering, Hindawi Publications
- **"Processing, Characterization and Application of Light weight materials**" Special issue of Advances in Materials Science and Engineering, Hindawi Publishers(SCI & Scopus indexed journal.
- *'Advances in Materials Processing and Techniques'* a Topical Collection of SN Applied Sciences, **Springer Nature journal** (ESCI Indexed)
- Proceedings of 3rd International Conference on Manufacturing, Material Science and Engineering (ICMMSE'20), **AIP Proceedings** (Scopus and WOS indexed).

- Proceedings of 2nd International Conference on Manufacturing, Material Science and Engineering (ICMMSE'20), **Materials Today Proceedings** (Scopus and CPCI Indexed).
- Proceedings of 2nd International Conference on Manufacturing, Material Science and Engineering (ICMMSE'20), **AIP Proceedings** (Scopus and CPCI Indexed, WOS).
- Proceedings of International Conference on Research and Advances in Mechanical Engineering (ICRAME 2020), IOP Conference Series: Materials Science and Engineering (Scopus and CPCI Indexed).
- Proceedings of 1st International Conference on Manufacturing, Material Science and Engineering (ICMMSE'19), **MaterialsToday-Proceedings**(Scopus and CPCI Indexed).
- Proceedings of 1st International Conference on Manufacturing, Material Science and Engineering (ICMMSE'19), **AIP Proceedings** (Scopus and CPCI Indexed, WOS).

LIST OF PUBLICATIONS:

International Journals (SCI/ESCI/SCIE/ SCOPUS / WoS):

- B Sridhar Babu, A Kumaraswamy and Kaushik Kumar, Effect of Macro, Micro and Nano Loads on The Indentation Behaviour of Ti-6Al-4V And Haynes 242 Alloys, International Journal of Automotive and MechanicalEngineering(IJAME); 19(2),9816–9822, 2022, https://doi.org/10.15282/ijame.19.2.2022.15.0757; ISSN: 2180–1606 (IF 0.331)
- Harinadh V, Edison G, Kaushik Kumar, Paolo Ferro, B Sridhar Babu, Thermal and Residual Stress Distributions in Inconel 625 Butt-Welded Plates: Simulation and Experimental Validation Advances in materials science and Engineering, (Hindawi) SCI, (IF.1.75) http://doi.org/10.1155/2021/3948129.
- 3. Harinadh Vemanaboina, Edison Gundabattini, B Sridhar Babu, Paolo Ferro and Kaushik Kumar, Effect of Heat Input on Distortions and Residual Stresses Induced by Gas Tungsten Arc Welding in SS 316L To INCONEL625 Multipass Dissimilar Welded Joints, Advances in Materials Science and Engineering (Special Issue: Processing, Characterization, and Applications of Lightweight Materials)

2021 (Article ID 1028461); https://doi.org/10.1155/2021/1028461, ISSN: 1687-8442 (IF 2.098)

- Balram Y, B Sridhar Babu, Venkata Ramana G, Comparison of metallurgical and mechanical properties of dissimilar joint of AISI 316 and Monel 400 developed by pulsed and constant current gas tungsten arc welding processes. The international Journal of Advanced Manufacturing Technology, Springer, (SCI) (IF:2.99)2020 (<u>http://doi: 10.1007/s00170-020-05562-</u><u>w</u>).
- 5. S. Sathees Kumar, B. Sridhar Babu, K Tirupathi, *Comparison of Ductile, flexural, Impact and hardness attributes of sisal reinforced polyester composites*, Intelligent Manufacturing and Energy Sustainability (Springer) 2020 (http://doi:10.1007/978-981-15-1616-0 62).
- S.SatheeshKumar,T.VishnuVardhan,B.SridharBabu.Dataset on tribological characterization and thermal properties of silicon carbide reinforced polyamide composites for industrial applications,DatainBrief,Elsevier(ESCI&SCOPUS)(IF:1.5)2020,(<u>http://doi:10.1016/j.dib.2</u> 020.105662).
- B. Sridhar Babu and Kaushik Kumar, Temperature Dependence of Indentation Behavior of Ti-6Al-4V Alloy for Bio Medical Applications Bio interface Research in Applied Chemistry, ISSN: 2069-5837, (SCOPUS &WoS) (IF: 1.5) 2020 (http://doi: 10.33263/BRIAC96.629234)
- 8. S. Marichamy, M. Ravichandran, B. Stalin, B. Sridhar Babu 'Optimization of Abrasive Water Jet Machining Parameters for α-β brass using Taguchi Methodology' FME Transactions (SCIE & SCOPUS) (IF:1) (2019). (http://doi.10.5937/fmet1901116M).
- T. Vishnu Vardhan, S. Marichamy and B. Sridhar Babu, Effects of Graphite Particles in Titanium Metal Matrix Developed by Spark Plasma Sintering Process' Lecture Notes in Mechanical Engineering (Springer) (SCOPUS) 2019, (<u>http://10.1007/978-981-32-9931-3-26</u>)
- 10. B Sridhar Babu, A Kumaraswamy, B Anjaneya Prasad 'Elasto-plastic Deformation Behavior of Ti- 6Al-4V and Haynes242 Alloys at Nanoscale Loads' International Journal of Materials Science, (SCOPUS) 2014 (http://doi:10.1007/S12666-015-0550-8)
- 11. B Sridhar Babu, A Kumaraswamy, B Anjaneya Prasad 'Effect of Indentation Size and Strain Rate on Nanomechanical Behavior of Ti-6Al-4V Alloy' Transactions of Indian institute of metals Springer, (SCIE & SCOPUS) (IF:1.4) 2014, (<u>http://10.1007/S12666-014-0438-Z</u>)
- B Sridhar Babu, A Kumaraswamy, B Anjaneya Prasad, Investigation of Elasto-Plastic Deformation Behavior of Haynes242 Alloy Subjected to Nanoscale Loads through Indentation Experiments' Transactions of Indian institute of metals Springer, (SCIE & SCOPUS) (IF:1.4) 2015, (<u>http://10.1007/S12666-015-0550-8</u>)
- 13. Sridhar Babu B, Kumaraswamy A, Anjaneya Prasad B. 'Numerical analysis of effect of friction on mechanical properties of Ti-6Al-4VAlloy through Nanoindentation' Procedia Engineering (Elsevier) (2013) (<u>http://10.1016/j.proeng.2013.09.182</u>).
- 14. **B. Sridhar Babu** and M Srinivas, A Critical Review on Recent Research Methodologies in additive Manufacturing, Materials today (Elsevier) (SCOPUS) 2017 (<u>https://doi.org/10.1016/j.matpr. 2017.07.258</u>).
- **15. Sridhar Babu B,** Kumaraswamy, A Novel method of evaluating flow curve for SS304 form low cost indentation experiments, **ARPN journal of engineering and Applied sciences**,(SCOPUS) 2011.
- 16. Sridhar Babu B, Senthil kumar, Comparative Modeling on Surface Roughness for Roller Burnishing process using Fuzzy Logic, International Journal of Mechanical and Production Engineering Research and Development (SCOPUS) 2018 (<u>http://doi.org/10.24247/ijmperd feb 2018</u>)
- 17. A Naga Sai Ranganayakulu, D Devsingh, **B Sridhar Babu**, Vishnu Vardhan, T *Experimental development of pultrusion moulds*, *Materials Today* (*Elsevier*) 2019 (*SCOPUS*) (<u>https://doi.org/10.1016/j.matpr.2019.07.612</u>)
- Balram Y, B Sridhar Babu, Venkat Ramana G Thermal Stress Analysis Of AISI 316 Stainless Steels Weldments In TIG And Pulse TIG Welding Processes. Materials Today (Elseveir) (SCOPUS) 2019 (https://doi.org/10.1016/j.matpr.2019.06.695).
- 19. Balram Y,Sriramoju Avinash, **B Sridhar Babu**, Venkat Ramana Gunda, *Multi-response* optimization of pulse TIG welding process parameters of welds AISI 304 and Monel 400 using grey relational analysis, *Materials Today* (*Elseveir*) (*SCOPUS*) (https://doi.org/10.1016/j.matpr.2019.07.211)

- 20. Balram Y,Sravan Kumar, **B Sridhar Babu**, Venkat Ramana G, *Effect of filler wires on weld strength of dissimilar pulse GTA monel 400 and AISI 304 weldments*. *Materials Today (Elsevier) (SCOPUS),* (https://doi.org/10.1016/j.matpr.2019.06.759).
- 21. Balram Y, **B Sridhar Babu**, Venkat RamanaG, Residual stress analysis of dissimilar tungsten inert gas weldments of AISI 304 and Monel 400 by numerical simulation and experimentation, *Materials Today* (*Elseveir*) (*SCOPUS*), (https://doi.org/10.1016/j.matpr. 2019.07.639)
- 22. **B Sridhar babu**, V Srikanth, Balram Y,*Numerical analysis on indentation behavior of Ti- 6Al-*4V),*MaterialsToday(Elseveir)(SCOPUS)*, 201,(<u>https://doi.org/10.1016/j.matpr. 2019.08.</u> <u>139</u>).
- 23. M. A. Ali Baig, Azeem, **B. Sridhar Babu**, *Porous Cylinder Subjected To Conjugate Heat Transfer PartII.* **AIP Conference Proceedings**, (SCOPUS), (https://doi.org/10.1063/1.5141242).
- 24. M. A. Ali Baig, Azeem, **B. Sridhar Babu**, Porous Cylinder Subjected To Conjugate Heat Transfer-Partll. AIP Conference Proceedings, (SCOPUS), (<u>https://doi.org/10.1063/1.5141240</u>).
- 25. Chikesh Ranjan S, Nikhil, **B Sridhar Babu**, Design and Demonstration of Manual Operated Pedalo Water Boat for Garbage Collection from Lake, **AIP Conference Proceedings**, (**SCOPUS**) (<u>https://doi.org/10.1063/1.5141267</u>).
- 26. Chikesh Ranjan S, B Sridhar Babu, Design and Fabrication of Quad copter with Rechargeable Solar Power Source AIP Conference Proceedings, (SCOPUS), (https://doi.org/10.1063/1.5141174).

International Journal Papers (Peer Reviewed):

- 1. Vijay Kumar T, **B.Sridhar Babu**, Rakesh Jalla. 'Experimental and theoretical study on effect of welding speed and tool pin profiles on aluminum friction stir welded butt joints.' *International Journal of Research in Engineering & Advanced Technology*, Volume 1, Issue 4, Aug-Sept, 2013
- Y Balram, B Sridhar Babu, Harinadh Vemanaboina, K Chandrasekhar 'Prediction of Residual Stresses and Distortion in GTAW Process- A Review' *International Journal of Advance Research and Innovative Ideas in Education* ISSN (0)-2395-4396, Volume 2, Issue 2, April 2017.
- **3. Sridhar Babu B**, Kumaraswamy A, Anjaneya Prasad B, Relevance of Nano indentation Experiments in Materials Research-A Review.' *Advanced Materials Manufacturing & Characterization* Volume 3 Issue 1 (2013).
- 4. P.Shravan Kumar, B.Sridhar Babu. 'Development and Analysis of Connecting Rod from the 3D scanned data by Reverse Engineering Technique using Catia.' *International Journal* of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014
- 5. Priyadarsini M, Sridhar Babu .B, Rakesh Jalla. 'Non-Destructive Evaluation of Elasto Plastic Properties of Inconel alloy through Microindentation.' *International Journal of Research in Engineering & Advanced Technology*, Volume 1, Issue 4, Aug-Sept, 2013
- 6. Swathy B, **B.Sridhar Babu**. 'Dynamic Analysis of a Hermetic Reciprocating Compressor.' *International Journal of Latest Trends in Engineering, Science and Technology,* Volume 1 Issue5 May 2014.
- 7. B.Sridhar Babu, Pawar Deepak Dinkarrao. 'Computational Fluid Dynamics and Experimental Analysis for Optimum Geometry of Vortex Tube.' *International Journal of InnovativeResearch in Science, Engineering and Technology*, Volume 3, Issue 8, 2014
- Raghunandan K, B. Sridhar Babu. 'Electro-Mechanical System Design for Seating Systems.' *International Journal of Engineering Research and Technology*, Volume 3, Issue 7,July- 2014
- **9.** Valmeti Sudheer, **B Sridhar Babu** 'Computational Fluid Dynamics Analysis of a Building ventilation solar chimney' *International Journal of Advance Research and Innovative Ideas in Education* ISSN (0)-2395-4396, Volume 2, Issue 2, April 2017.
- L. Durga Prasad, D Dev Singh, B Sridhar Babu 'Static and Dynamic Analysis of Centrifugal Blower using composite material' *International Journal of Latest Trends in Engineering Science and Technology*, Volume 2, Issue 3,Oct. 2015.
- 11. Srinivas Namana, D Dev Singh, **B Sridhar Babu** 'Prediction of Behavior of Composite Material Low pressure Vessels under Various Loadings' *International Journal of Latest Trends in Engineering Science and Technology*, Volume 2, Issue 3,Oct. 2015.

- 12. G Venkatesh, G Venkata Ramna, B Sridhar Babu 'Simulation of Friction stir welding process parameters of Al 5086-HE15, Al 6061-HE20 joints' *International Journal of Latest Trends in Engineering Science and Technology*, Volume 2, Issue 3,Oct. 2015
- **13.** N Srujana, **B Sridhar Babu** 'Comparative Study of performance of Acoustic Horns of different profiles using FEA' *International Journal of Latest Trends in Engineering Science and Technology*, Volume 2, Issue 3,Oct. 2015
- 14. Siva RamaKrishna, G Venkata Ramna, **B Sridhar Babu** 'Design of the Impulse Tubing Assembly Structure for Seismic Conditions' *International Journal of Latest Trends in Engineering Science and Technology*, Volume 2, Issue 3,Oct. 2015.
- **15. B Sridhar Babu** Development and Analysis of Connecting Rod from the 3D scanned data by Reverse Engineering Technique using Catia International *Journal of Research in Engineering & Advanced Technology* 2320-8791.
- **16. B Sridhar Babu** An experimental study on the effect of diameter and rotational speed on mechanical behavior ofAA6063-T6 friction welded joints International *Journal for Scientific Research & Development- IJSRD*2321-0613
- 17. M Srinivas and **B Sridhar Babu** Development of High Strength, High Toughness and High Wear Resistant Parts for Mud Pump *International Journal of Innovations in Engineering and Technology* (*IJIET*) 2319-1058
- **18.** Valmeti Sudheer, **B Sridhar Babu** Thermal analysis of Automobile Oil Sump *International Journal of Advance Research and Innovative Ideas in Education* ISSN (0)-2395-4396, Volume 2, Issue 2, April 2017.

National & International Conference Papers

- 1. A Kumaraswamy, **B Sridhar Babu**, B Anjaneya Prasad 'Non-destructive evaluation of elasto- plastic properties of Ti-6Al-4V alloy through Nanoindentation' NDE 2012, December 10 to 13, 2012/Cp-51, p27 **DOI** :10.1016/j.matdes.2011.01.003
- 2. **B Sridhar Babu**, A Kumaraswamy, B Anjaneya Prasad, A Computational study of factors affecting the characterization of Nanoindentation in Ti-6Al-4V alloy" The Fifty seventh Congress of the Indian society of theoretical and applied mechanics (An international meet) Pages 115 to120, DIAT, PUNE.
- B Sridhar Babu, A Kumaraswamy, B Anjaneya Prasad, Effect of strain rate on mechanical properties of Ti-6Al- 4V alloy through Nanoindentation National conference on Micro &Nano Fabrication- CMTI Bangalore, January 21st to 23rd 2013 Pages 127 to 131,
- 4. **B Sridhar Babu**, A Kumaraswamy, B Anjaneya Prasad, Effect of strain rate on mechanical behavior of Haynes 242 alloy through Nanoindentation, National conference on Emerging trends in mechanical engineering,- Osmania University, Hyderabad
- **5.** Y Balram, **B Sridhar Babu**, An experimental study on the effect of diameter and rotational speed on mechanical behavior of AA6063-T6 friction welded joints National conference on recent trends& innovations in mechanical engineering- NNREC-Hyderabad
- 6. B Sridhar Babu, A Kumaraswamy, B Anjaneya Prasad, Investigation on indentation behavior of Ti-6Al-4V alloy 7th International & 28th All India Manufacturing Technology, Design and Research (AIMTDR) Conference 2018 December 13th-15th 2018, College of Engineering Guindy, Anna University, Chennai, India.
- 7. S Sateesh Kumar, **B Sridhar Babu**, Comparision of ductile, flexural, impact and hardness attributes of sisal fiber reinforced polyester composites, International conference on intelligent manufacturing and energy sustainability, Malla reddy college of engineering and technology, Hyderbad, June 21-22, 2019.

Books Published:

1. Kumar, K. and Sridhar Babu, B., *Hybrid Composites: Processing, Characterization and Applications*, (ISBN 978-3-11-072468-4) Verlag Walter de Gruyter GmbH, GERMANY (https://www.degruyter.com/document/isbn/9783110724684/html)

- 2. Kumar, K. and Sridhar Babu, B., *Advances in Industrial Automation and Robotics*, (ISBN 978-0-36-748797-3) CRC Press (A Taylor & Francis Company), USA. (https://www.routledge.com/Industrial-Automation-and-Robotics-Techniques-and-Applications/Kumar-Babu/p/book/9780367487973)
- Kumar, K., Sridhar Babu, B. and Davim, J. P., Light Weight Materials: Processing and Characterization, (ISBN: 978-1-78-630797-2) ISTE Science Publishing Ltd. UK. (<u>http://iste.co.uk/book.php?id=1810</u>) 2021
- **4. Kumar, K.**, Sridhar Babu, B. and Davim, J. P., *Advancements in the Processing, Characterization, and Application of Lightweight Materials*, **IGI Global, USA** (https://www.igi-global.com/book/handbookresearch-advancements-processing-characterization/266361)
- Sridhar Babu, B. and Kumar, K., Nanomaterials and Nanocomposites: Characterization: Processing, and Applications (Under book series Engineering Materials) (Catalogue #364177; ISBN: 978-0-367-48389-0, CRC Press (A Taylor & Francis Company), USA (<u>https://www.routledge.com/Nanomaterials-and-Nanocomposites-Characterization-Processing-and-Applications/Babu-Kumar/p/book/9780367483890</u>)
- Kumar, K., Sridhar Babu, B. and Davim, J. P., *Coatings Materials, Processes, Characterization and Optimization* (Under book series Materials Forming, Machining and Tribology) (978–3–030–62162–9), Springer Nature, Germany (https://www.springer.com/gp/book/9783030621629)
- 7. Sridhar Babu, B. Engineering Mechanics Spectrum publications 2019.
- 8. Sridhar Babu, B. Engineering Drawing Spectrum publications 2019.
- 9. Kumar, K., Sridhar Babu, B. and Davim, J. P., *Optimization for Industrial Problems* (Under Book Series Management Science and Engineering), River Publishers, DENMARK.
- 10. Kumar, K., Sridhar Babu, B. and Davim, J. P., Advanced Welding Engineering and Technology for Marine Applications (Under Book Series Science, Technology, and Management), CRC Press (A Taylor & Francis Company), USA.
- **11. Sridhar Babu, B.** Ballistic Performance of Multi- layered metallic plates: FEM **Lambert Publications** 978-3- 659- 92044-8.
- **12.** Sridhar Babu, B. Numerical analysis of Ultrasonic machine acoustic horn, Lambert Publications 978-3- 659- 93969-3.
- **13.** Sridhar Babu, B. Analysis of Honeycomb Sandwich Structures Lulu Publications 978-1-365-60830-8.
- 14. Sridhar Babu, B. Analysis of CNC Rotary Table Used in Horizontal Machining Centre Lulu Publications
- **15.** Kumar, K., **Sridhar Babu, B.** and Davim, J. P., *Lightweight Materials Industrial Approach* (Under Book Series Engineering Materials), **CRC Press (A Taylor & Francis Company), USA.**
- **16.** Kumar, K., **Sridhar Babu, B.** and Davim, J. P., *Industrial Automation in I 4.0 Era* (Under book series *Advanced Mechanical Engineering*), **Verlag Walter de Gruyter GmbH, GERMANY.**
- ------

Book Chapters Published:

- Sridhar Babu, B. and Kumar, K. Characterization of Coatings through Indentation technique. In Kumar, K., Sridhar Babu, B. and Davim, J. P. Eds. Coatings – Materials, Processes, Characterization and Optimization, Springer Nature, Germany Pages 139 – 150 <u>https://doi.org/10.1007/978-3-030-62163-6 6</u>.
- Ranjan, C., Kalita, H., Sridhar Babu, B. and Kumar, K., Application of Evolutionary Optimization Techniques Towards Non – Traditional Machining for Performance Enhancement, In Bose, G. K. and Pain, P. eds. Machine Learning Applications in Non-Conventional Machining Processes, IGI Global USA Pages 181–194 https://doi.org/10.4018/978-1-7998-3624-7.ch011.
- **3. Sridhar Babu, B**. Multiaxis CNC programming and machining, Modern manufacturing Processes, Wood head publishing, Elsevier, 2020 (SCOPUS).
- **4.** B. Vijay Kumar and **Sridhar Babu**, **B**. Optimization of process parameters for AA6063 alloys friction surfacing on Mild steel. Coatings Book, Springer Nature, 2021.
- 5. Uzawal and Sridhar Babu, B. Development and mechanical characterization of jute/polypropylene/coir composites, Plant and Animal Composites Book, De Gruyter 2021.

6. Sateesh Kumar and Sridhar **Babu**, **B**. A review on ductile attributes of natural fiber composites, Plant and Animal Composites Book, De Gruyter 2021

CONFERENCES, WORKSHOPS, SHORT TERM COURSES CONDUCTED:

- Convener of 4th International Conference on Manufacturing, Materials Science and Engineering- 2022 (ICMMSE'22), 30th & 31st December – 2022, SVCET Chittoor, A.P.
- 2. Program Co-ordinator for AICTE Sponsored Two week Faulty Development Programme on Artificial intelligence for industry 4.0, March 2021
- **3.** Convener of 3rd International Conference on Manufacturing, Materials Science and Engineering- 2021 (ICMMSE'21), 13th & 14th August 2021, CMR Institute Technology.
- 4. Convener of 2nd International Conference on Manufacturing, Materials Science and Engineering- 2020 (ICMMSE'20), 7th & 8th August 2020, CMR Institute Technology.
- **5.** Convener of First International Conference on Manufacturing, Materials Science and Engineering 2019 (ICMMSE'19), 16th –17th August 2019, CMR Institute Technology, Hyderabad-500090 Telangana, INDIA.
- 6. Convener of National level Student Symposium (Illuminate 2017), CMR Institute of Technology, Hyderabad.
- 7. Convener of National level Student Symposium (Illuminate 2016), CMR Institute of Technology, Hyderabad
- 8. Convener of National level Student Symposium (STANZA & Waves 2006,2007,2008), RRS College of Engineering, Hyderabad.
- 9. Convener of National Level A two day workshop on Material Characterization, CMR Institute of Technology, Hyderabad.
- 10. Convener of National Level a two day workshop on Advanced Composite materials, CMR Institute of Technology, Hyderabad.
- **11.** Convener of National Level A two day workshop on Advanced IC Engine Topics, CMR Institute of Technology, Hyderabad.

PERSONAL INFORMATION:	
Date of Birth	: 08-05-1974
Marital Status	: Married
Hobbies	:Playing Cricket, Listening
Music. Languages Known	: Telugu, Hindi, and English.

(Dr. B. Sridhar babu)

CERTIFICATE FROM THE INVESTIGATORS

It is certified that

1. We agree to abide by the terms and conditions of the DST grant.

2. We did not submit this or a similar project proposal elsewhere for financial support.

3. We have explored and ensured that equipment and basic facilities available in the host institution and collaborating institution will be used as and when required for the purpose of the project. We shall not require financial support under this project, for procurement of the already available equipment.

4. We undertake that spare time on permanent equipment procured through DST grants will be made available to other users.

5. The proposed equipment is not available with the Host Institution/Collaborating Institution6. In case the Principal Investigator (PI) leaves the Institution, the Co-Investigator (Co-I) will

assume the charge of the Investigator for Competing the Project with prior approval of DST. 7. We understand that shifting of the sanctioned project from one institution to other institution due to change of the institution by the principal investigator/co-investigators is not allowed and is at sole discretion of DST, subject to submission of No Objection Certificate from the Host Institution by the PI.

8. All the information given is true to the best of our knowledge and belief.

1. Signature of Principal-Investigator with place

Sm/20/09/23. Dr B Sridhar Babu, Hyderabad, Telengana

2. Signature of Co-Investigator place and date

Dr.I.S.N.V.R.Prashanth, Hyderabad, Telengana

POLICY ON CONFLICT OF INTEREST

DEPARTMENT OF SCIENCE AND TECHNOLOGY

Issues of Conflicts of Interest and ethics in scientific research and research management have assumed greater prominence, given the larger share of Government funding in the country's R & D scenario. The following policy pertaining to general aspects of Conflicts of Interest and code of ethics, are objective measures that is intended to protect the integrity of the decision-making processes and minimize biasness. The policy aims to sustain transparency, increase accountability in funding mechanisms and provide assurance to the general public that processes followed in award of grants are fair and non-discriminatory. The Policy aims to avoid all forms of bias by following a system that is fair, transparent and free from all influence/ unprejudiced dealings, prior to, during and subsequent to the currency of the programme to be entered into with a view to enable public to abstain from bribing or any corrupt practice in order to secure the award by providing assurance to them that their swill also refrain from bribing and other corrupt practice and the decision makers will commit to prevent corruption, in any form, by their officials by following transparent procedures. This will also ensure a global acceptance of the decision-making process adopted by DST.

Definition of Conflict of Interest:

Conflict of Interest means "any interest which could significantly prejudice an individual's objectivity in the decision-making process, thereby creating an unfair competitive advantage for the individual or to the organization which he/she represents". The Conflict of Interest also encompasses situations where an individual, in contravention to the accepted norms and ethics, could exploit his/her obligatory duties for personal benefits.

1. Coverage of the Policy:

(a) The provisions of the policy shall be followed by persons applying for and receiving funding from DST, Reviewers of the proposal and Members of Expert Committees and Programme Advisory Committees. The provisions of the policy will also be applicable on all individuals including Officers of DST connected directly or indirectly or through

intermediaries and Committees involved in evaluation of proposals and subsequent decisionmaking process.

(b) This policy aims to minimize aspects that may constitute actual Conflict of Interests, apparent Conflict of Interests and potential Conflict of Interests in the funding mechanisms that are presently being operated by DST. The policy also aims to cover, although not limited to, Conflict of interests that are Financial (gains from the outcomes of the proposal or award), Personal (association of relative / Family members) and Institutional (Colleagues, Collaborators, Employer, persons associated in a professional career of an individual such as Ph.D. supervisor etc.)

2. Specifications as to what constitutes Conflict of Interest.

Any of the following specifications (non-exhaustive list) imply Conflict of Interest if,

(i)Due to any reason by which the Reviewer/Committee Member cannot deliver fair and objective assessment of the proposal.

(ii) The applicant is a directly relative# or family member (including but not limited to spouse, child, sibling, parent) or personal friend of the individual involved in the decision-making process or alternatively, if any relative of an Officer directly involved in any decision-making process / has influenced interest/ stake in the applicant's form etc.

(iii) The applicant for the grant/award is an employee or employer of an individual involved in the process as a Reviewer or Committee Member; or if the applicant to the grant/award has had an employer-employee relationship in the past three years with that individual.

(iv) The applicant to the grant/award belongs to the same Department as that of the Reviewer/Committee Member.

(v) The Reviewer/Committee Member is a Head of an Organization from where the applicant is employed.

(vi) The Reviewer /Committee Member is or was, associated in the professional career of the applicant (such as Ph.D. supervisor, Mentor, present Collaborator etc.)

(vii) The Reviewer/Committee Member is involved in the preparation of the research proposal submitted by the applicant.

(viii) The applicant has joint research publications with the Reviewer/Committee Member in the last three years.

(ix) The applicant/Reviewer/Committee Member, in contravention to the accepted norms and ethics followed in scientific research has a direct/indirect financial interest in the outcomes of the proposal.

(x) The Reviewer/Committee Member stands to gain personally should the submitted proposal be accepted or rejected.

The Term "Relative" for this purpose would be referred in section 6 of Companies Act, 1956.

1. Regulation:

The DST shall strive to avoid conflict of interest in its funding mechanisms to the maximum extent possible. Self-regulatory mode is however recommended for stake holders involved in scientific research and research management, on issues pertaining to Conflict of Interest and scientific ethics. Any disclosure pertaining to the same must be made voluntarily by the applicant/Reviewer/Committee Member.

2. Confidentiality:

The Reviewers and the Members of the Committee shall safeguard the confidentiality of all discussions and decisions taken during the process and shall refrain from discussing the same with any applicant or a third party, unless the Committee recommends otherwise and records for doing so.

3. Code of Conduct

(a) The applicant must refrain from suggesting referees with potential Conflict of Interest that may arise due to the factors mentioned in the specifications described above in Point No.2.

(b) The applicant may mention the names of individuals to whom the submitted proposal should not be sent for refereeing, clearly indicating the reasons for the same.

4. Final Appellate authority:

Secretary, DST shall be the appellate authority in issues pertaining to conflict of interest and issues concerning the decision-making process. The decision of Secretary, DST in these issues shall be final and binding.

DECLARATION

I have read the above "Policy on Conflict of Interest" of the DST applicable to Applicant and agree to abide by provisions thereof.

A hereby declare that I have no conflict of interest of any form pertaining to the proposed grant *

I hereby declare that I have conflict of interest of any form pertaining to the proposed grant*

* (Tick whichever is applicable)

Dr B Sridhar Babu

(Name /Signature with date)

Malla Reddy Engineering College

Accredited by NAAC with 'A''' Grade (# - cycle) NBA Accredited Programmes - UG (CE, EEE, ME, ECE & CSE) PG (CE - Structural Ergg., EEE Electrical Power Systems, ME - Thermat Engg.)

lated to JNTU Hyderabau

1. It is certified that the project proposal "Structural integrity and Material selection for 3D printed prosthetic sockets: Numerical and Experimental Analysis for paediatrie application as title of the project" has not been submitted to any other agency/agencies for financial support

2. The scale of pay, allowance, etc. proposed are those admissible to persons of corresponding status employed in the Institute/University/NGO/Voluntary Organization, and are in accordance with the DST guidelines

3. It is agreed that any research outcome or intellectual property right(s) on the invention(s) arising out of the project shall be taken in accordance with the instructions issued with the approval of the competent authority.

4. The institute welcomes participation of **Dr B. Sridhar Babu** as the Principal Investigator and **Dr ISNVR Prasanth** as the Co-Investigator for the project.

5. In case the Principal Investigator (PI) leaves the Institution, the Co-Investigator (Co-I) will assume the charge of the Principal Investigator for Competing the Project with prior intimation to DST and approval of DST.

6. The Institute will render all administration and financial support for successful completion of the project.

Hyderabad.

6. The proposed equipment is not available with the Host Institution.

Signature of Executive Authority

of Institute/ University with Seal with date

1. Signature of Principal-Investigator with place and date

Malla Roddy Engineering College Malsammaguda, Dhulapally. (Post Via Kompally), Sec'bad-500100.

2. Signature of Coplace and date

001 005

'66u=

Ref. No:- VIGNAN/MT/2017-2018 2023

Date: 30 September

To, MECH HOD.

Dear Sir

Sub.:- Our offer for Laboratory equipments.

We like to introduce ourselves as a manufacturers and suppliers of Educational Training Equipments and Laboratory products for Engineering Colleges, Polytechnics and other Technical Institutes in India. We have vast experience in manufacturing the educational training systems and laboratory instruments.

We are pleased to enclose herewith our offer and specifications for the MOS Lab Equipments.

We like to bring your kind notice that our products are cost effective and superior in quality. Please feel free to contact us for further queries regarding specifications, pricing and other details.

Please note that we already supplied these equipments to various Engineering colleges in Andhra Pradesh, Orissa, Gujarat and Maharashtra states. We are pleased to enclose herewith our customer list for your kind reference.

We look forward to your favorable consideration.

Thanking you, and hoping to be associated with long-term fruitful basis, we remain,

Yours truly For Micro Technologies

B. RAMA KRISHNA / T. HARI KRISHNA

LAB EQUIPMENTS

S. No.	Name of the Equipment	Qty.	Amount
1.	 UNVERSAL TESTING MACHINE- COMPURTERISED VERSION 10TONS (including extensometer) UTM with following standard accessories for Tension, compression, Bending & Transverse with auto load facility and generally as per the leaflet enclosed. <u>STANDARD ACCESSORIES:</u> Tension Test 10/25 Tension test jaws for ground specimens 25/40 diameter (mm). <u>TENSILE TEST</u>: Tensile Test jaws for flat specimen 0-15 thickness 15- 30mm width 65mm. <u>COMPRESSION TEST</u>: Pair of compression plates of diameters 20mm. <u>TRANSVERSE TEST</u>: Table with adjustable rollers of width (mm) 160 diameter of rollers (mm) 30 maximum clearance between supports (mm) 500 radius of punch Tops (mm) 12 and 16. <u>SPECIAL FEATURES FOR COMPUTERISED TESTING:</u> 1. Computer controlled with real time graph. Results include load Vs displacement curve, max. load max. Displacement, UTS, % elongation, young's modulus & proof stress (if extensometer is used). 	01 No.	9,50,000.00
2.	3D Printer	01	4,50,000.00
3.	PRO E software (1user)	01	2,50,000
4.	Ansys software(1user)	01	3,50,000

TERMS & CONDITIONS

1.	Taxes & Duties	:	GST @18% on Basic Price
2.	Validity	:	The prices are valid for Two Months
3.	Delivery	:	With in 3 to 4 weeks on receipt of your firm order.
4.	Warranty	:	All our products are warranted against defects in material or workmanship for a period of TWO year from date of the delivery.
5.	Payment	:	40% along with the purchase order and 50% after delivery of the equipment. & Balance After Installation. All payments will be made in the form of DD or cheque.
6.	Installation	:	Above prices are inclusive of Installation and commissioning charges.
7.	Transportation	:	Extra at Actual.