MICROPROCESSORS & MICROCONTROLLERS
LECTURE NOTES

B. TECH
(11 YEAR ECE & EEE)
(2020-21)

Prepared by:
Mrs. K. ANURADHA,
Assistant Professor

Department of Electronics and Communication Engineering

MALLA REDDY ENGINEERING COLLEGE
(Autonomous)

An UGC Autonomous Institution, Approved by AICTE and Affiliated to
JNTUH Hyderabad, Recognized under section 2(f) &12 (B) of UGC Act 1956,
Accredited by NAAC with ‘A’ Grade (Il Cycle) and NBA, Maisammaguda,
Dhulapally (Post Via Kompally), Secunderabad-500 100 Website:
www.mrec.ac.in E-mail: principal@mrec.ac.in

;:ﬁ‘i MALLA REDDY ENGINEERING COLLEGE | B.Tech.

(MR-18) (Awtomnomons) V Semester
: 80414 MICROPROCESSORS AND MICROCONTROLLERS L|T P

Credits: 3 3 N N

Pre-Requisites: Digital Electronics.

Course Objectives: This course provides the students to understand operation and
programming of 3085 Microprocessor, develops real time applications using B086
processor, understand the basic concepts of 8051 Microcontroller and interfacing with
YO devices.

MODULE I: 8085 Architecture [8 Periods]
Intreduction to Microprocessors, Architecture of 8085, Pin Configuration and Function,
internal register & flag register, Generation of Control Signals: Bus Timings: De-
multiplexing of address/ data bus; Fetch Cycle, Execute Cycle, Instruction Cycle,
Machine cycles, T-states, memory interfacing.

MODULE II: Instruction Set and Programming with 3085 [10 Periods]
Instruction for Data Transfer, Arithmetic and Logical Operations, Branching Operation,
Machine Cycle Concept, Addressing Modes, Instructions Format, Stacks, Subroutine and
Related Instructions, Elementary Concepts of Assemblers, Assembler Directives,
Looping and Counting, Software Counters with Time Delays, Simple Programs using
Instruction Set of 8085, Debugging, Programs Involving Subroutines, Programs for Code
Conversion e.g. BCD to Binary, Binary to BCD, Binary to Seven-Segment LED Display.
Binary to ASCII, ASCII to Binary, Program for Addition Subtraction, Programs for
Multiplication and DMvision of Unsigned Binary Mumbers.

MODULE III: 8086 Architecture [09 Periods]
A:B0B6 Architecture-Functional diagram, Register Organization, Memory Segmentation,
Programming Model, Memory addresses, Physical Memory Organization, Architecture
of B086, Signal descriptions of B0E6- Common Function Signals, Timing diagrams,
Intermupts of 8086.

B: Interfacing /0 Devices: Interfacing of 8086 with Memory, key board and display,
A/D and DA,

MODULE IV: Introduction to Microcontroller [10 Periods]
A brief History of Microcontrollers, Harvard Vs Von-Neumann Architecture; RISC Vs
CISC, Classification of MCS-51family based on their feamres (80518052, 8031, 8751,
ATENC51), Pin configuration of 8031.

8051 Microcontroller Architecture and Instruction Set: Registers of 8051, Inbuilt
FAM, Register banks, stack, on-chip and external program code memory ROM, power
reset and clocking circuits, IO port structure, addressing modes, Instruction set and
programming.|

MODULE ¥: 8051 Real Time Control [11 Perinds]
Counter/Timer and Interrupts of 8051: Introduction, Registers of timer/counter,
Different modes of timerfcounter, Timerfcounter programming, Interrupt Vs Polling,
Types of intermupts and wector addresses, register used for interrupts initialization,
programming of external interruptis, Timer intermpts.

Asynchronous Serial Communication and Programming: Introduction to serial
communication, Programming the Serial Communication Interrupts, RS232 standard,
R5422 Standard. RS-485 standard, Max 232/233 Driver.

Interfacing with 8051: Interfacing and programming of: ADC (0804,08080809,0848) &
DACIOB0E), dc motor, stepper motor, Relays, LED and Seven segment display, LCD,
4x4 keyboard matrix.

Text Books:

1. Ramesh Gaonkar, “Microprocessor Architecture, Programing and Application with
BOS5” . Penram, 5" Edition, 2002.

2. AK.Ray, “Advanced Micro processors and Peripherals™ 3 Tata McGraw-Hill,
Edition.

3. Mazidi, Mazidi&McKinlay, “The 8051 Microcontroller and Embedded Systems using
Assembly and C” 2™ Edition.PHL

Reference Books:

1. D% Hall TMH. “Microprocessors and Interfacing”™ 2™ Edition, 2006

2. K. Uday Kumar, B.5. Umashankar, “The 8085 Microprocessor: Architecture,
programming and Interfacing™ Pearson, 2008.

3. Lin and Gibson, “Micro Computer System S036/3088 Family Architecture,
Programming and Design™ PHI, 2™ Edition

4. Kenneth. J. Ayala, Cengage Learning, “The 8051 Microcontroller™ 3™ Edition, 2004.

E-Resources:

1. htips:/www mtorialspoint.com » MMicroprocessor » Microprocessor - 8083
Architecture

httpfwwrw cpu-world.comfCPUs 8086/

https ffwww joumals.else vier.com'microproce ssors-and-micros ystems’
http/ricmagazine . comftechnologie sfview/Microcontrollers

httpx/nptel.ac.in/course s/ 1 6108 100/

http:/nptel.ac.in/courses/ 108 107029/

nptel.ac.infcourse s 106 108 10K

Aokl

Course Outcomes:

After Completion of this course the student will able to

1. Leamn basic concepts, organization of 8085 microprocessor.

Program the 8085 microprocessor.

Understand the 8086 microprocessor and it’s interfacing with 'O devices.
Fonow the architecture and instruction set of 8051 Microcontroller.
Interface IA0 devices with 051 microcontroller.

Ll

MICROPROCESSOR AND MICROCONTROLLER

MODULE |
8085 ARCHITECTURE

Computer: A computer is a programmable machine that receives input, stores and

Introduction

manipulates data/information, and provides output in a useful format.

Basic computer system consist of a CPU, memory and [I/O unit.

CPU

Address bus

ROM

RAM

&

Data bus

1/0 1/0
interface devices
Control
bus

Block diagram of a basic computer system

|]

e
——

. Basic Concepts of |

==

* Microcomputer:- It is a programmable machine. The two principal
characteristics of a computer are:
= Responds to a specific set of instructions in a well-defined manner.

e It can execute a prerecorded list of instructions (a program)
= [ts main components are

= CPLU]

= Input & Output devices

« Memory

* Microprocessor:- It is a programmable VLSI chip which includes ALU, register
circuits & control circuits. Its main units are-
« ATL
» Registers
e« Control Unit

* Microcontroller:- Silicon chip which includes microprocessor, memory & I/0 in
a single package

DEVICE (RAM & ROR) DEVICE

Microcomputer

PR
REIETERE FARN
Pl =Ty [Fp=]
Fheripheral Devices
R T RO, LT ASD Convertern
Thrmasr
Seerbal L Oy
Microprocessor Microcontroller

== e

~— Definition of the M icroproc

——

SSOT

v" Microprocessor is a Programmable, Clock driven, Register based,

Electronic device that reads instruction from a storage device, takes the

data from input unit and process the data according to the instructions

and provides the result to the output unit.

-

Y

'TI'

'tl'

Programmable- Perform Different set operation on the data depending on the

sequence of instructions supplied by the programmer.

Clock Driven — Whole task is divided into basic operations, are divided into

precise system clock periods.
Register Based - Storage element

Electronic Device — fabricated on achip

ALU:- Arithmetic and logical operations like add, subtraction, AND & OR.

= Register Array: - Store data during the execution of program.

Control Unit: Provides necessary timing & control signal. It controls the flow of data
between microprocessor and peripherals.

- : : p
ML'I:I:"I.':IFII:"I:IC'EE-E-'I:II:' LS O e -I_"-IZIE‘.I':FI'I::IE‘.I'EI:‘.II'.'DF MiCrocomputer.

Stores information such as instructions and data in binary format (o and 1).

Sub-system” of microprocessor-based system. sub-system includes the registers

inside the microprocessor .

v Read Only Memory (ROM): used to store programs that do not need

alterations.
v Random Access Memory (RAM) (R/WM): used to store programs

that can read and altered like programs and data.

* Input/output: Communicates with the outside world.
« System Bus: Communication path between the microprocessor and peripherals.

group of wires to carry bits.

.....

———
T —

— How does a Microprocessor works

v To execute a program, the microprocessor “reads” each
instruction from memory, “interprets” it, then “executes or
perform” it.

v The right name for the cycle is

» Fetch

» Decode

» Execute

v" This sequence is continued until all instructions are
performed.

8085 is developed by INTEL

+ 8 bit microprocessor: can accept 8 bit data simultaneously

¥ Operates on single +s5V D.C. supply.

1,,"

Designed using NMOS technology

6200 transistor on single chip

It provides on chip clock generator, hence it does not require external clock
generator.

Operates on 3MHz clock frequency.

+ 8bit multiplexed address/data bus, which reduce the number of pins.

+ 1baddress lines, hence it can address 2™16 = 64 K bytes of memory

~ It generates 8 bit I/ addresses, hence it can access 28 = 256 I/0 ports.

v+ 5 hardware interrupts i.e. TRAP, RST6.5, RSTs5.5, RS5T4.5, and INTR

It provides DMA._

INTA RST 6.5 TRAPF

INTR RST 5.5 HEET-S s S0D
control

£ 2

B-bit internal data bus

FonsseEr 4= gy

supply tGND Timing and control
ey Cik
*a2 Control Status DMA Reset address bufler I
L] | i T | ALE S5, 10/M T LA FResest coul ‘
Aqg - Ag ADy - ADg
Ready Haid L addrass bus address/data bus

Internal Architecture (functional block diagram)of 8085
3

---===;""";SE§5T}EEifEEfﬁI'EL-T—-' - oo

8085 architecture consists of following blocks:

1. Register Array

2. ALU & Logical Group

3. Instruction decoder and machine cycle encoder, Timing and control
circuitry

4. Interrupt control Group

5. oerial 1/O control Group

14

L | -
2 C

ArTchifte

e —==

——
—"—
_._l--

——

e Registers Array : 14 register out of which 1z are 8 bit capacity and z of 16 bit. Classify into 4 types

(a) General purpose register: (user accessible)

- B,C,D,E . H,L are 8 bit register.(can be used singly)

- Can also be used for 16-bit register pairs- BC, DE & HL.

- Used to store the intermediate data and result

- H & L can be used as adata pointer(holds memory address)

(b) Special Purpose Register[A, Instruction Register and Flag]

(h.a) Accumulator (A): (user accessible)

- B bit register

- All the ALU operations are performed with reference to the contents of Accumulator.
- Result of an operation is stored in A.

- Store 8 bit data during 1/O transfer

(b.2) Instruction Register: (user not accessible)

- When an instruction is ferched from memory, it is loaded in IR. Then transferred to the
decoder for decoding.

- It is not programmable and can not be accessed through any instruction.

15

(b.3) Flag Register(F): (user accessible)

» B8 bit Register
» Indicates the status of the ALU operation.

» ALU includes 5 flip flop, which are set or reset after an operation

according to data conditions of the result in the accumulator.

Sign

aro

Aunxiliarv Carmes
Parity

S ey

(Flag Register)

Flag Register...... cont....

Significance

C or CY (Carry)

P (Parity)

AC (Auxiliary carry)

Z(zero)

S{Sign)

CY is set when an arithmetic operation generates a carry
out, otherwise it is o (reset)

P=1; if the result of an ALU operation has an even number
of1's in A:
P= o; if number of1is odd.

Similar to CY,

AC=1if there is a carry from D3 to D4 Bit
AC= o if there is a no carry from D3 to D4 Bit
(not available for user)

Z = 1: if result in A is ooH
o otherwise

S=1 if D~ bit of the A is 1{indicate the result is -ive)
S= o if D bit of the A is o(indicate the result is +ive)

g

ATCINILE

(c) Temporary Register| W, Z, Temporary data register]

» Internally used by the MP(user not accessible)

(c.1) W and Z register:
- 8 bit capacity
- Used to hold temporary addresses during the execution of some

instructions

(c.2) Temporary data register:
: 8 bit capacity
- Used to hold temporary data during ALU operations.

— 8085 Architecture cont....

(d) Pointer Register or special purpose [SP, PC]
(d.1) Stack Pointer(SP)

-

16 bit address which holds the address of the data present at the top of the stack
memaory

It is a reserved area of the memory in the RAM to store and retrieve the temporary
information.

Also hold the content of PC when subroutines are used.

When there is a subroutine call or on an interrupt. ie. pushing the return address on a

jump, and retrieving it after the operation is complete to come back to its original

location.

(d.3) Program Counter(PC)

-

-

16 bit address used for the execution of program
Contain the address of the next instruction to be executed after fetching the instruction

it is automatically incremented by 1.

MNot much use in programming, but as an indicator to user only

In addition to register MP contains some latches and buffer

w

Increment and decrement address latch
- 16 bit register
- Used to increment or decrement the content of PC and SP
o Address buffer

3 8 bit unidirectional buffer

- Used to drive high order address bus{ A8 to Aag)

B VW hen it 1s not used under such as reset, hold and halt etc this buffer is used

tristate high orderaddress bus.
v Data/Address buffer

B & bit bi-Directional buffer

-

Used to drive the low order address (Ao to A7) and data (Do to D7) bus.

-

Under certain conditions such as reset, hold and halt etec this buffer is used
tristate low order address bus.

- 8085 Architectt

(2) ALU & Logical Group: it consists ALU, Accumulator, Temporary
register and Flag Register.
(a) ALU
» Performs arithmetic and logical operations

= Stores result of arithmeticand logical operations in accumulator

(b) Accumulator
= General purpose register

> Stores one of the operand before any arithmetic and logical
operations and result of operation is again stored back in

Accumulator

= Store 8 bit data during 1/0O transfer

21

T e

_‘___—_'—
—
—

- (2) ALU & Logical Grouph....cccccccciiec e sCOML . tiiiiecoscnsasscnsss
(c) Temporary Register
- 8 bit register

- During the arithmetic and logical operations one operand is available in A

and other operand is always transferred to temporary register

For Eg.: ADD B - content of B is transferred into temporary register

before actual addition
(d) Flag Register
- Five flag is connected to ALU

- After the ALU operation is performed the status of result will be stored in

five flags.

8085 Architectu

(3) Instruction decoder and machine cycle encoder, Timing and

control circuitry
(a) Instruction decoder and machine cycle encoder:

Decodes the op-code stored in the Instruction Register (IR) and

establishes the sequence of events to follow.

Encodes it and transfer to the timing & control unit to perform the
execution of the instruction.
(b) Timing and control circuitry

» waorlks as the brain of the CPU

For proper sequence and synchronization of all the operations of MP,

this unit generates all the timing and control signals necessary for

comimunication between microprocessor and peripherals.

23

(4) Interrupt Control group

=%
8

NN

Interrupt:- Occurrence of an external disturbance

After servicing the interrupt, 8085 resumes its normal working sequence
Transfer the control to special routines

Five interrupts: - TRAP, R5T7.5, R8T6.5, RSTs.5, INTR

In response to INTR, it generates INTA signal

(5) Serial 1/O control Group

YN

Data transferred on Do- Dy lines is parallel data

But under some condition it is used serial data transfer

Serial data is entered through SID(serial input data) input (received)
Serial data is outputted on 50D serial output data) input (send)

24

Xy — =]

Mo ——]
Reset out -a—1
SOD -]
SID —{]
Trap --4—]
RST 7.5 —{]
RST 6.5 «—1]
RST 5.5 —={]
INTR -
INTA -]
Y T
A0 -
A0, -]
Dy -
A0, -
Ay -
AD) s -
A -
vas —]|

D@~ 0LEWwN-

e T T)
0O~ 00aN=0

8085 Pin Diagram

oo
HOLD
HLIDA

Reset in
Ready
- O

Pin Configuration

CLK {out)

Seriml S
14 soa

W e rnmd | w
Brvavmesnamal
Faprnialw
[S DN
(L LT

ST i e

FE T WA
il —_—
.l__lbl o | e L.

B e reanl Sl
ey at e e e B il g e

High-{Frudes
Ml as FPlas

= i

i “errwirusl
RRETE |

"

HEESECT
LT

Srainas SEaprais

Functional Pin diagram

u . = = = o = it L = it e
RE= e ey e e e e s e et e Wi et
' o e Y e S =

- 8085 Pin Descrip

» The 8085 i1s an 8-bit general purpose microprocessor that can
address 64K Byte of memory.

» It has 40 pins and uses +5V for power. It can run at a maximum
frequency of 3 MHz.

» The pins on the chip can be grouped into 6 groups:
e Address Bus and Data Bus.
* Status Signals.
 Control signal
e [nterrupt signal
* Power supply and Clock signal
* Reset Signal
* DMA request Signal
e Serial 1/O signal
 Externally Initated Signals. =

The Address anc

i

O Address Bus (Pin 21-28)
16 bitaddress lines Ao to Aas

The address bus has 8 signal lines A8 — Aas which are unidirectional.

= The other 8 address lines Ao to A7 are multiplexed (time shared) with the 8
data bits Higher-order Address Lower-order Address

[B T e e)

A,

O Data Bus (Pin 19-12) I~

—

Data Bus

To save the number of pins lower order address pin are multiplexed with 8 bit

data bus (bidirectional)

So, the bits ADo — AD75 are bi-directional and serve as Ao - A7 and Do - D7 at

the same time.

During the execution of the instruction, these lines carry the address bits

during the early part (T:1 state), then during the late parts(Tz state) of the

execution, they carry the 8 data bits.

27

~ Status Signals

Status Pins - ALE, S, S_
1. ALE(Address Latch Enable): (Pin 30)
~ Used to demuluplexed the address and data bus
+ive going pulse generated when a new operation is started by uP.
= ALE = 1 when the ADO — AD7 lines have an address
= ALE = 0 When it is low it indicates that the contents are data.
This signal can be used to enable a latch to save the address bits from the AD lines.

2. S1 and SO (Status Signal): (Pin 33 and 29)

» Status signals to specity the kind of operation being performed .
Usually un-used in small systems.
o o HALT
O 1 WERITE
1 o REATD
1 1 FETCH

Status Pins - ALE, S, S_
1. ALE(Address Latch Enable): (Pin30)
= Used to demultiplexed the address and data bus
+ive going pulse generated when a new operation is started by uP.

= ALE = 1 when the ADO — AD7 lines have an address
= ALE =0 When it is low it indicates that the contents are data.

» This signal can be used to enable a latch to save the address bits from the AD lines.

2. S1 and SO (Status Signal): (Pin 33 and 29)
Status signals to specity the kind of operation being performed .

¥l

O (8] HALT
O 1 WRITE
1 (a] READ
1 1 FETCH

Control Signals
Control Pins - RD, WR, 10/M(active low)
1. RD: Read(Active low) (Pin 32)
» Read Memory or I/O device

» Indicated that data i1s to be read either from memory or I/P device and data bus is ready
for accepting data from the memory or 1/O device.

2. WR: Write(Active low) (Pin 31)
~ WWrite Memory or /O device
» Indicated that data on the data bus are to be written into selected memory or I/P device.
3. ITIO/M: (Input Output/Memory-Active low) (Fin 3.4)
#~ Signal specifies that the read/write operation relates to whether memory or I/O device.
= YWhen (I10O/M=1) the address on the address bus 15 for I/O device
»~ When (IO/M=0) the address on the address bus is for memory

1O/ Mactivelow KD L wE L Control Signa

O 1 MEMER M/M Read
O 1 O MEMW M /M write
1 O 1 IOR I/O Read
1 1 O 1OW 1/ Write

Control and status Signals

When So, S1 is combined with 10/M(active low), we get status of
machine cycle

Signal

o Opcode fetch

o 1 o Memory read ‘RD=o

o o 1 Memory write WR =0

1 1 o I1/O read RD = o

1 O 1 I/O write WER =0

N 1 o Interrupt INTA =o
Acknowledge

Z Halt -

Z x x Hold :n[-:]:l' WER _;?:‘l

£ Reset

Z= Tristate, X = don't care condition

e i T RS R e B R e

= —_ B e

S e

Interrupts

» They are the signals initiated by an external device to request the
microprocessor to do a particular task or work.

» There are five hardware interrupts called, (Pin 6-11)

TRAP

RST 7.5

RST 6.5 (inpurs)
RST 5.5

INTR

INTA (acave low output)

» On receipt of an interrupt, the microprocessor acknowledges the interrupt
by the active low INTA (Interrupt Acknowledge) signal.

R e R B Tt P e o

==

Vee (Pin 40) : single +5 volt power supply “T -
Vss (Pin z20) : Ground nn B8 17 o
There are 3 important pins in this group. ul-: i s
l u,
Lyt P pns e l

+ Xo and X3 :((Pin 1-2)

#» Crystal or R/C network or LC network connections to set the
frequency of internal clock generator.

» The frequency is internally divided by two.

> Since the basic operating timing frequency is 3 MHz, a 6 MH=z
crystal is connected to the Xo and X1 pins.

v CLK (output): (Pin 37)

» Clock Output is used as the system clock for peripheral and devices
interfaced with the microprocessor.

EE R

PP-— Reset Sign

|||

v" Reset In (input, active low) (Pin 36)
» This signal is used to reset the microprocessor.

» The program counter inside the microprocessor is set to
zero(ooooH)

> The buses are tri-stated.

v" Reset Out (Output, Active High) (Pin 3)
» It indicates MP is being reset.

> Used to reset all the connected devices when the
microprocessor is reset.

|||||||||||||||||||||||

‘O DMA:

= When 2 or more devices are connected to a common bus, to prevent the devices from
interfering with each other, the tristate gates are used to disconnect all devices except the one
that is communicating ata given instant .

#= The CPU controls the data transfer operation between memory and [/O device.

= DMA operation is used for large volume data transfer between memory and an /O device
directhy.

» The CPU is disabled by tri-stating its buses and the transfer is effected directly by external
control circuits.

«~ HOLD (Pin 38)

This signal indicates that another device is requesting the use of address and data bus.
So it relinquish the use of buses as soon as the current machine cycle is completed.

MP regains the bus after the removal of a HOLD signal

Ll

v HLDA (Pin 39)
On receipt of HOLD signal, the MP acknowledges the request by sending
out HLDA signal and leaves out the control of the buses.

= After the HLDA signal the DMA controller starts the direct transfer of data.
After the removal of HOLD request HLDA goes low.

— o= =t
- =
o g e e e

~ Serial /O Signa

These pins are used for serial data communication
v SID (input) Serial inputdata (Pin 4)
> Itis a data line for serial input
» Used to accept serial data bit by bit from external device

The data on this line is loaded into accumulator bit 7 whenever a
RIM instruction is executed.

v' SOD (output) Serial output data (Pin 5)
It isa data line for serial output
» Used to transmit serial data bit by bit to the external device

#» The 7t bit of the accumulator is outputted on SOD line when SIM
instruction is executed.

e

s -
e

. Externally Initiated signal

v Ready (input) (Pin 35)
> Memory and /O devices will have slower response compared to

MIiCTOPTOCessSOrs.

Before completing the present job such a slow peripheral may not be

'Tll'

able to handle further data or control signal from CPU.
> The processor sets the READY signal after completing the present job

to access the data.
> It synchronize slower peripheral to the processor.

» The microprocessor enters into WAIT state while the READY pin is

disabled.

85 Programr

e e]

programming mﬂdel

.....

= The register which are programmable and available for the use are six general

purpose register, A, F, PC, 5P.

ACCUMULATOR A (8) :.—. ...n:.nm-i-r-.-. :
B (8) I C I | I (8)
(8) E (8)
(8} L (B}
Stack Pointer (SP) (16)
Program Counter {(PC) (16)
IDats Bus

8 Lines Badirectional

16 Lines nmadwrectional

8085 programming model

Various /0O devices and memories are connected to CPU by a group of lines

called as bus.

>

A:J |
< > ~ L |
ﬁa Memory Input |< g,_:;:;
AL ==t T o
Do I

é__

8085 Bus structure

gl

-.l_-n."— —

= Data f'lﬂw from memory to MPU

Steps and data flow, when the

instruction code o1o0o1111 (4FH
- MOV C, A) stored in the
location zoos5H, is being fetch.

Fetch Cycle: To fetch the byte,
the MPU needs to identify the

memory location 2005 and
enable the data flow from
IMEeIMmory

Step 1: MPU places the 16 bit memory address from PC on the address bus

Step 2: Control unit send the signal RD to enable memory chip

Step 3: The byte from the memory location is placed on the data bus.

Step 4: The byte is placed on the instruction decoder of the MPU and task is carried

out according to the instruction.

o

(JHow a data byte is transfer from
memory tothe MPLL
(AIt shows the five different group
of signals with clock

Step 1: At Tr1 higher order memory
address 2o0H is placed on the Ai5 — A8
and the lower order memory address
osH is placed on the bus AD7-ADo,
and ALE signal high. 10/M goes
low (memory related signal).

Step 2: During Tz RD signal is sent
out. RD is active during two clock
periods.

Step 3 : During T3, Memory is enabled then instruction byte 4FH is placed on the data
bus and transferred to MPU. When RD goes high it causes the bus to go into high

impedance state.

Step 4: During T4, the machine code or byte is decoded by the instruction decoder and

content of A is copied into register.

U CIcrdtl :

. Signals are used both for memory and 1/0
: related operations. So four different
control signals are generated by combining
the signals RD, WR and 10/M.
MEMR = Reading from memory
MEMW = writing into memory
IOK = Reading from input port
IOW = writing to an out put port

Fig: Generate Read/write control signal
Ik PRy d- 1 U Fig: BoBs De-multiplexed address and data
bus with control signal

S = W S
ey g e e
B

e e

s

De-multiplexing AD7-ADo

= AD7— ADo lines are serving a dual purpose and that they need to be
demultiplexed to get all the information.

» The high order bits(zo H) of the address remain on the bus for three clock
periods. However, the low order bits (osH) remain for only one clock
period and they would be lost if they are not saved externally. The low order
bits of the address disappear when they are needed most.

#» To make sure we have the entire address for the full three clock cycles, we
will use an external latch to save the value of AD7— ADo when it is carrying
the address bits. We use the ALE signal to enable this latch. ALE signal is

connected to the enable (G) pin of the latch.

> Given that ALE operates
as a pulse during Ti, ALE is
high the latch is
transparent; output
changes according to input.
So during Ti1 output of
latch is osH.

» When ALE goes low, the
data byte osH is latched
until the next ALE, the
output of the latch

represents the low order
address bus A7- Ao after

latching operation.

Timing Diagram is a graphical representation. It
represents the execution time taken by each

instruction in a graphical format. The execution
time is represented in T-states.

Instruction Cycle:
The time required to execute an instruction .

Machine Cycle:
The time required to access the memory or
input/output devices .

T-State:

eThe machine cycle and instruction cycle takes
multiple clock periods.

e A portion of an operation carried out in one
system clock period is called as T-state.

collected by C Gokul AP JEEE,WCET

Note : Time period, T = 1/f ; where f = Internal clock frequency

nsmg edge 1 fallmgedgc ﬂrnegatwe edge
positive Edgi_/—L/__/_L
———
| T-state

collected by C.Gokul APSFEEE,WCET

Timing diagrams

* The 8085 microprocessor has 7 basic machine
cycle. They are

. Op-code Fetch cycle(4T or 6T).

. Memory read cycle (3T)

. Memory write cycle(3T)

. I/O read cycle(3T)

. I/O write cycle(37T)

. Interrupt Acknowledge cycle(6T or 127T)
. Bus i1dle cycle

N kW N =

— ——

Machine Cycle Status Hﬂ' of Control
S0 [Machine cycles

Opcode Fetch 4 RD =0
Memory Read 3 RD =0
Memory Write 3 WR =0
[/0 Read] RD=0
/0 Write 3 | WR =0
INTR Acknowledge 3 INTA =0

1.0pcode fetch cycle(4T or 6T)

SIGNAL T, T, L T,
CLOCK

L AR] N oo

OPCODE FETCH

* The Opcode fetch cycle, fetches the instructions from memory
and delivers it to the instruction register of the microprocessor

* Opcode fetch machine cycle consists of 4 T-states.

T1 State:

During the T1 state, the contents of the program counter are

placed on the 16 bit address bus. The higher order 8 bits are
transferred to address bus (A8-A15) and lower order 8 bits are

transferred to multiplexed A/D (ADD-AD7) bus.

ALE (address latch enable) signal goes high. As soon as
ALE goes high, the memory latches the ADO-AD7 bus. At
the middle of the T state the ALE goes low

srted by C A il AFJEEE, WL

T2 State:

During the beginning of this state, the RD’ signal goes low
to enable memory. It is during this state, the selected
memory location is placed on DO-D7 of the Address/Data
multiplexed bus.

T3 State:

In the previous state the Opcode is placed in DO-D7 of the A/D
bus. In this state of the cycle, the Opcode of the A/D bus is
transferred to the instruction register of the microprocessor.
NMow the RD’ goes high after this action and thus disables the
memory from A/D bus.

T4 State:

In this state the Opcode which was fetched from the memory
is decoded.

s ted by A il AP SEEE WCE

2. Memory read cycle (371T)

SIGNAL T i
CLOCK P b
A -Ayg HIGHER ORDER MEMORY
AD,-AD, MemoRvabor g DATA
ALE

m-nl Sl'lr

'

These machine cycles have 3 T-states.

T1 state:

The higher order address bus (A8-A15) and lower order address
and data multiplexed (ADO-AD7) bus. ALE goes high so that the
memory latches the (ADO-AD7) so that complete 16-bit address
are available.

The mp identifies the memory read machine cycle from the
status signals 10/M’=0, S1=1, SO0=0. This condition indicates the

memory read cycle.
T2 state:

Selected memory location is placed on the (DO-D7) of the A/D
multiplexed bus. RD’ goes LOW

T3 State:

The data which was loaded on the previous state is transferred
to the microprocessor. In the middle of the T3 state RD’ goes
high and disables the memory read operation. The data which
was obtained from the memory is then decoded.

3. Memory write cycle (31)

: | SIGNAL y o J 1 T

' CLOCK s P e
' P e HIGHER ORDER ADDRESS
AD,-AD, M AbDaEss Xty DATA | (Dy-Dg)
ALE

IO/M.,S, S, ' 10/M = 0, S, =0 | Sg=1
WR

These machine cycles have 3 T-states.

T1 state:

The higher order address bus (A8-A15) and lower order address
and data multiplexed (ADO-AD7) bus. ALE goes high so that the

memory latches the (ADO-AD7) so that complete 16-bit address
are available.

The mp identifies the memory read machine cycle from the

status signals 10/ =0, S1=0, SO=1. This condition indicates the
memory read cycle.

T2 state:

Selected memory location is placed on the (DO-D7) of the A/D
multiplexed bus. WR’ goes LOW

T3 State:

In the middle of the T3 state WR’ goes high and disables the

memory write operation. The data which was obtained from
the memory is then decoded.

4.1/0 read cycle(371)

S5.1/0 write cycle(3T)

SIGINAL

CLOCK
Au*ﬁﬁl

| AD,-AD,

ALE -

WER

IO/M,S, S,

PORT ADDRESS

--------- DATA | (DD

What is an Interface

* an interface is a concept that refers to a point of
interaction between components, and is
applicable at the level of both hardware and
software.

* This allows a component, (such as a graphics card
or an Internet browser), to function

independently while using interfaces to
communicate with other components via an
input/output system and an associated protocol.

Example Block Diagram

Data Lines

8085 Memory

Control Lines !

Interface

8085 Interfacing Pins

Higher Address Bus A .- A
Lower Address/Data Bus AD,-AD,
> ALE _
8085 > 10/M
> RD
> WR

READY

Memory Chip

! !‘k’ data input lines

‘n” address line
|

MIEMOTY Chip select
read 2n words
write ‘K’ bits per word

l ‘ ‘k” data output lines

8085 Interfacing with Memory chips

Data
I -
8085 ADO-AD7 AD — A7
ALE Memory
AB-A15 E AB-A15
— = CS

1o/Mm _—

— , | RD

RD e e e e D S S R A

Interface

MODULE Il

INSRUCTION SET
AND PROGRAMMING
WITH 8085

Instruction Set of 8085

An instruction 1s a binary pattern designed inside a microprocessor to perfc
a specific function.

The entire group of instructions that a microprocessor
supports 1s called Instruction Set.

8085 has 246 instructions.

Each instruction is represented by an 8-bit binary value.

These 8-bits of binary value is called Op-Code or

Instruction Byte.

2

Classification of Instruction Set

Data TransferInstruction

Arithmetic Instructions

Logical Instructions

Branching Instructions

Control Instructions

Data Transfer Instructions

These instructions move data between registers, or
between memory andregisters.

These instructions copy data from source to
destination.

While copying, the contents of source are not
modified.

Data Transfer Instructions

MOV Rd, Rs Copy from source to destination.
M, Rs
Rd, M

- This instruction copies the contents of the source register

into the destination register.

- The contents of the source registerare not altered.

- If one of the operands 1s a memory location, its location is
specified by the contents of the HL registers.

- Example: MOV B, C or MOV B,M

Data Transfer Instructions

Operand Description
MVI Rd, Data Move immediate 8-bit
M, Data

- The 8-bit data is stored in the destination register or
memory.

~ If the operand is a memory location, its location is
specified by the contents of the H-L registers.

- Example: MVI B, 57H or MVI M, 57H

Data Transfer Instructions

Operand Description

LDA 16-bit address Load Accumulator

-~ The contents of a memory location, specified by a 16-
bit address 1n the operand, are copied to the
accumulator.

" The contents of the source are not altered.

- Example: LDA2034H

Data Transfer Instructions

Operand Description

LDAX B/D Register Load accumulatorindirect
Pair

- The contents of the designated register pair point to a memory
location.

- This instruction copies the contents of that memory location
into the accumulator.

- The contents of either the register pair or the memory location
are notaltered.

- Example: LDAX B

Data Transfer Instructions

Operand Description

LXI Reg pair, 16-bit Load register pairimmediate
data

- This instruction loads 16-bit data in the register pair.

- Example: LXI H, 2034 H

Data Transfer Instructions

Operand Description

LHLD 16-bit address Load H-L registers direct

 This instruction copies the contents of memory
location pointed out by 16-bit address into register L.

It copies the contents of next memory location into
register H.

- Example: LHLD 2040 H

0

Data Transfer Instructions

Operand Description

STA 16-bit address Store accumulator direct

-~ The contents of accumulator are copied into the
memory location specified by the operand.

- Example: STA2500H

Operand Description

STAX Reg. pair Store accumulator indirect

~ The contents of accumulator are copied into the
memory location specified by the contents of the
register pair.

- Example: STAX B

Data Transfer Instructions

Operand Description

SHLD 16-bit address Store H-L registersdirect

-~ The contents of register L are stored into memory
location specified by the 16-bit address.

- The contents of register H are stored into the next
memory location.

- Example: SHLD 2550H

Data Transfer Instructions

Operand Description

XCHG None Exchange H-L with D-E

- The contents of register H are exchanged with the
contents of register D.

- The contents of register L are exchanged with the
contents of registerE.

- Example: XCHG

14

Data Transfer Instructions

Operand Description

SPHL None Copy H-L pair to the Stack Pointer (SP)

~ This instruction loads the contents of H-L pair into SP.

- Example: SPHL

Data Transfer Instructions

Operand Description

XTHL None Exchange H-L with top of stack

- The contents of L register are exchanged with the
location pointed out by the contents of the SP.

- The contents of H register are exchanged with the next
location (SP +1).

- Example: XTHL

Data Transfer Instructions

Operand Description

PCHL None Load program counter with H-L contents

- The contents of registers H and L are copied into the
program counter (PC).

- The contents of H are placed as the high-order byte
and the contents of L as the low-order byte.

- Example: PCHL

Data Transfer Instructions

Operand Description

PUSH Reg. pair Push register pair onto stack

- The contents of register pair are copied onto stack.

~ SP isdecremented and the contents of high-order registers
(B, D, H, A) are copied into stack.

SP 1s again decremented and the contents of low-order
registers (C, E, L, Flags) are copied into stack.

- Example: PUSHB

Data Transfer Instructions

POP Reg. pair Pop stack to register pair

- The contents of top of stack are copied into register pair.

The contents of location pointed out by SP are copied to
the low-order register (C, E, L, Flags).

SP is incremented and the contents of location are copied
to the high-order register (B, D, H, A).

- Example: POPH

Data Transfer Instructions

Operand Description O port.

OuT 8-bit port Copy datafrom accumulator toaport with 8-
address bitaddress

Data Transfer Instructions

Operand Description

IN 8-bit port Copy datato accumulator from aport with 8-
address bitaddress

~ The contents of I/O port are copied into accumulator.

- Example: IN 8CH

Arithmetic Instructions

These instructions perform the operations like:

. Addition
. Subtract
. Increment

. Decrement

Addition

Any 8-bit number, or the contents of register, or the
contents of memory location can be added to the
contents ofaccumulator.

The result (sum) 1s stored in the accumulator.

No two other 8-bit registers can be added directly.

Example: The contents ofregister B cannot be added
directly to the contents of register C.

Subtraction

Any 8-bit number, or the contents of register, or the
contents of memory location can be subtracted from
the contents ofaccumulator.

The result is stored in the accumulator.
Subtraction is performed m 2’s complement form.

If the result 1s negative, it i1s stored m 2’s complement
form.

No two other 8-bit registers can be subtracted directly.

Increment / Decrement

The 8-bit contents of a register or a memory location
can be mncremented or decremented by 1.

The 16-bit contents of a register pair can be
incremented or decremented by 1.

Increment or decrement can be performed on any
register or a memory location.

Arithmetic Instructions

Operand Description

* Thecontents of registeror memory are added to the contents of accumulator.
ADD R Add register or memory to accumulator M

* If the operand is memory location, its address is specified by H-L pair. All flags are modifie
reflect the result of the addition.

-+ Example: ADD B or ADDM

Arithmetic Instructions

e contents

(-)pe-ra-\nd- N ‘Descrip-tion !

ADC R Addregister ormemory to accumulator with
M carry

-+ |If the operand is memory location, its address is specified by H-L pair. All flags are modifie:
reflect the resultof the addition.

« Example: ADCB orADCM

Arithmetic Instructions

Operand Description

ADI 8-bit data Add immediate to accumulator

The 8-bit data 1s added to the contents of accumulator.
The result 1s stored 1in accumulator.

All flags are modified to reflect the result of the
addition.

Example: ADI45H

Arithmetic Instructions

Operand Description

ACI 8-bit data Add immediate to accumulator with carry

- The 8-bit data and the Carry Flag (CY) are added to the
contents of accumulator.

 The result is stored in accumulator.
Al flags are modified to reflect the result of the addition.

- Example: ACI 45H

.

DAD

A metic
Reg. pair
The 16-bit contents of t

conter

1ts of H-L pair.

The result 1s st

I1f t
3 P E

e
UiV

ored in |

No other flags

are char

Exam

ple: DAD B

ctic
AU U

Addregister pair to H-L pair

he register pair are added to the

i o
wn
2!

P the
o LICIL ©U

Arithmetic Instructions

Opcode | Operand Description [contents of the

SUB R Subtractregister or memory from accumulator M

-+ |If the operand is memory location, its address is specified by H-L pair. All flags are modifie:
reflect the result of subtraction.

« Example: SUB B or SUBM

Arithmetic Instructions

Operand Description

SBB R Subtractregister or memory fromaccumulator
M with borrow

- The contents of the registeror memory location and Borrow Flag (i.e.
CY) are subtracted from the contents of the accumulator.

- Theresultis stored in accumulator.

~ If the operand is memory location, its address is specified by H-L pair.
- Allflags are modified to reflect the result of subtraction.

- Example: SBBB or SBBM

Arithmetic Instructions

Operand Description

SUI 8-bit data Subtract immediate from accumulator

- The 8-bit data is subtracted from the contents of the
accumulator.

 The result is stored in accumulator.
Al flags are modified to reflect the result of subtraction.

- Example: SUI 45 H

Arithmetic Instructions

Operand Description

SBI 8-bit data Subtract immediate from accumulator with
borrow

- The 8-bit data and the Borrow Flag (i.e. CY) is subtracted
from the contents of the accumulator.

~ The result is stored in accumulator.
Al flags are modified to reflect the result of subtraction.

- Example: SBI 45 H

35

Arithmetic Instructions

Operand Description

INR R Increment register or memory by 1
M

- The contents of register or memory location are
incremented by 1.

- The result is stored in the same place.

- If the operand 1s a memory location, its address 1s specified
by the contents of H-L pair.

~ Example: INR B or INR M

Arithmetic Instructions

Description .
Jre 18 .The result is

INX R Increment register pair by 1

 Example: INXH

Arithmetic Instructions

Operand Description

DCR R Decrement register or memory by 1
M

- The contents of register or memory location are
decremented by 1.

- The result is stored in the same place.

- If the operand 1s a memory location, its address 1s specified
by the contents of H-L pair.

~ Example: DCR B or DCRM

Arithmetic Instructions

Description .
| .The result is

DCX R Decrement register pair by 1

 Example: DCXH

Logical Instructions

These instructions perform logical operations on data
stored 1n registers, memory and status flags.

The logical operations are:
. AND

. OR

- XOR

' Rotate

. Compare

. Complement

, XOF

-

o—
o
(@)
i o

>
)
o <
o0

dat

1t
Can
vall

-bi

> contents of register, or

memory

- AN

p §

-

D operation

OR

| XO

R opera

operation

tion

with the con

tents of

accumulator.

H

The r¢

esult 1s ¢

stored 1n accum

ulator.

Rotate

Each bit in the accumulator can be shifted either left or right to the ne
position.

‘—-——-—‘-‘—_"-":"-;.

omp

e e

dre

» conten

)ATeEe S Fn -2
A1V 1UlL.,

[—

OCAT1
vvatul

(@)

~ Equality

sater The

s Than

with the contents of accumzt

1lator.

H

eflected in status flags

The resultis1

ts of register, or memor

Complement

The contents of accumulator can be complemented.

Each 0 is replaced by 1 and each 1 is replaced by 0.

Logical Instructions

Operand Description

CMP R Compare register or memory with
M accumulator

- The contents of the operand (register or memory) are
compared with the contents of the accumulator.

~ Both contents are preserved .

~ The result of the comparison is shown by setting the
flags of the PSW as follows:

Logical Instructions

Operand Description

CMP Compare register or memory with

R
M accumulator
D . .
if (A) < (reg/mem): carry flag 1s set
H
if (A) = (reg/mem): zero flag is set
H
if (A) > (reg/mem): carry and zero flags are reset.

|
Example: CMP B or CMPM

Logical Instructions

Operand Description

CPI 8-bit data Compare immediate withaccumulator

- The 8-bit data is compared with the contents of
accumulator.

- The values being compared remain unchanged.

The result of the comparison i1s shown by setting the
flags of the PSW as follows:

Logical Instructions

Operand Description

CPI 8-bit data Compare immediate withaccumulator

H

if (A) < data: carry flag 1s set
H

if (A) = data: zero flag 1sset

H
if (A) > data: carry and zero flags are reset

|
Example: CPI89H

et S

Logical Instructions

ANA R Logical ANDregisterormemory with
S M accumulator gy

- The contents of the accumulator are logically ANDed with the contents
of register ormemory

- Theresultis placed in the accumulator.

~ Ifthe operand is a memory location, its address is specified by the

contents of H-Lpair.
S, Z, Pare modified to reflect the resultof the operation.
- CY is reset and AC is set.
- Example: ANA B or ANA M.

Logical Instructions

Operand Description

ANI 8-bit data Logical AND immediate with accumulator

- The contents of the accumulatorare logically ANDed with
the 8-bit data.

- The result 1s placed in the accumulator.
S, Z, P are modified to reflect the result.
- CY 1s reset, AC 1sset.
- Example: ANI 86H.

Logical Instructions

Operand Description

ORA R Logical OR registeror memory with
M accumulator

' The contents of the accumulator are logically ORed with the contents of the register or
memory.

The result is placed in the accumulator.

If the operand is a memory location, its address is specified by the contents of H-L pair.

S, Z, P are modified to reflect the result.

CY and AC arereset.

Example: ORA B or ORAM.

Logical Instructions

Operand Description

ORI 8-bit data Logical OR immediate with accumulator

- The contents of the accumulator are logically ORed with
the 8-bit data.

- The result 1s placed in the accumulator.
S, Z, P are modified to reflect the result.
- CY and AC arereset.

- Example: ORI 86H.

e ———

Logical

et S

NSTri

Jctions

XRA

- The co

R
M

ntents of

the register or memory.

the accun

Logical XOR register ormemory with
accumulator

walator ar

e XORed

with the

contents

of

. There

~ If the operand 1is
~ the contents of

sult 1s pla

ced in th

d MECMmaor
H-L pair

e accumulator.

y location, its add;

ress 1S Sp

ecified by

oLl

- CY and AC arer

are modi

eset.

fied to reflect the

result of the opera

tion.

- Example: XRA

B or XR.

A M.

e

Logical

--____-_—————_

nstructions

XRI 8-bit data

The contents of the ac

>cumulator are XORed

XOR immediate with accumulator

with the

8-bit data.

The result 1s placed in the accumulat

OT.

S, Z, P are modified t
CY and AC arereset.

o reflect the res

ult.

ExarerIe: XRI 86H.

Logical Instructions

Operand Description

RLC None Rotate accumulatorleft

- Each binary bit of the accumulator 1s rotated left by one
position.

- Bit D7 1s placed in the position of D0 as well as in the Carry
flag.

- CY 1s modified according to bitD7.
S, Z, PAC are not affected.

- Example: RLC.

Logical Instructions

Operand Description

RRC None Rotate accumulatorright

- Each binary bit of the accumulator 1s rotated right by one
position.

- Bi1t DO 1s placed in the position of D7 as well as in the Carry
flag.

- CY 1s modified according to bit DO.
S, Z, P AC are not affected.

- Example: RRC.

Logical Instructions

Operand Description

RAL None Rotate accumulator left through carry

- Each binary bit of the accumulator is rotated left by one
position through the Carry flag.

- Bit D7 1s placed in the Carry flag, and the Carry flag is
placed 1n the least significant position DO.

- CY 1s modified according to bitD7.
S, Z, PAC are not affected.
- Example: RAL.

Logical Instructions

Operand Description

RAR None Rotate accumulator right through carry

- Each binary bit of the accumulator is rotated right by one
position through the Carry flag.

- Bit DO 1s placed in the Carry flag, and the Carry flag 1s
placed 1n the most significant position D7.

- CY 1s modified according to bit DO.
S, Z, PAC are not affected.
- Example: RAR.

Logical Instructions

Operand Description

CMA None Complement accumulator

]
The contents of the accumulator are complemented.

H
No flags areaffected.

H
Example: CMA.

Logical Instructions

Operand Description

CMC None Complement carry

] :
The Carry flag 1s complemented.

H
No other flags are affected.

H
Example: CMC.

Logical Instructions

Operand Description

STC None Set carry

H :
The Carry flag is set to 1.

H
No other flags are affected.

| Example: STC.

Branching Instructions

The branching instruction alter the normal sequential flow.

These instructions alter either unconditionally or
conditionally.

Branching Instructions

Operand Description
JMP 16-bit address Jump unconditionally

- The program sequence is transferred to the memory
location specified by the 16-bit address given 1n the
operand.

- Example: JMP 2034 H.

Branching Instructions

Operand Description
Jx 16-bit address Jump conditionally

- The program sequence is transferred to the memory
location specified by the 16-bit address given 1n the
operand based on the specified flag of the PSW.

- Example: JZ 2034 H.

Jump Conditionally

Opcode Description Status Flags
JC Jump if Carry CY =1
JNC Jump if No Carry CY=0
JP Jump if Positive S=0
IM Jump if Minus S=1
Iz Jump if Zero Z =1
INZ Jump if No Zero Z=0
JPE Jump if Parity Even P=1

JPO Jump if Parity Odd P=0

Branching Instructions

Operand Description

CALL 16-bit address Call unconditionally

- The program sequence 1s transferred to the memory
location specified by the 16-bit address given in the
operand.

- Before the transfer, the address of the next instruction after
CALL (the contents of the program counter) 1s pushed onto
the stack.

- Example: CALL 2034 H.

Branching Instructions

Cx 16-bit address Call conditionally

H The pro gram sequence 1S transferred to the memory
-------- g—-—locatron specified by the Jr(r—’ort address given in the
| operand based on the spec1ﬁed flag ofthe PSW |

= Before thetransfen the address of J:he next 1nstnrctlon_____ _
~ after the call (the contents of the program counter) 1S |
pushed onto the stack | | |

Call Conditionally

Opcode Description Status Flags
CC Call if Carry CY =1
CNC Call if No Carry CY=0
CP Call if Positive S=0
CM Call if Minus S=1
CZ Call if Zero 7 =1
CNZ Call if No Zero =0
CPE Call if Parity Even P=1

CPO Call if Parity Odd P=0

Branching Instructions

Operand Description

RET None Return unconditionally

~ The program sequence is transferred from the
subroutine to the calling program.

- The two bytes from the top of the stack are copied into
the program counter, and program execution begins at
the new address.

- Example: RET.

e ———

e

Bran:

ching

NSt

s

uctic

ﬁ

ONS

Rx None Call conditionally :
- The program sequence 1s transferred from the
subroutine to the calling program based on the
specified flag of the PSW.
- The two bytes from the top of the stack are copied into
~ the program counter, and program execution begins at
the new address.
~ Example: RZ.

Return Conditionally

Opcode
RC

RNC
RP
RM
RZ

RNZ

RPO

Description

Return if Carry
Return if No Carry

Return if Positive
Return if Minus
Return if Zero

Return if No Zero
Return if Parity Even

Return if Parity Odd

Status Flags
CY =1

CY=0
S=0
S=1
Z=1
Z=0
P=1

P=0

Branching Instructions

Operand Description
RST 0-7 Restart (Software Interrupts)

- The RST instruction jumps the control to one of cight
memory locations depending upon the number.

 These are used as software instructions in a program to
transfer program execution to one of the eight
locations.

- Example: RST 3.

E—————————

A _‘__—-‘-"_‘_"‘-:-—_;_-

e D

Restart Address Table

RST 0 0000 H
RST 1 0008 H
RST 2 0010 H
RST 3 0018 H
RST 4 0020 H
RST 5 0028 H
RST 6 0030 H

RST 7 0038 H

Control Instructions

The control structions control the operation of
MmICTrOprocessor.

Control Instructions

Operand Description

NOP None No operation

- No operation is performed.

" The instruction is fetched and decoded but no
operation is executed.

- Example: NOP

Control Instructions

HLT None Halt

- The CPU finishes executing the current instruction
and halts any further execution.

- An interrupt or reset is necessary to exit from the halt
state.

- Example: HLT

Control Instructions

Operand Description

DI None Disable interrupt

- The interrupt enable flip-flop is reset and all the
interrupts exceptthe TRAP are disabled.

 No flags areaffected.
- Example: DI

Control Instructions

Operand Description

EI None Enable interrupt

- The interrupt enable flip-flop 1s set and all interrupts
are enabled.

- No flags areaffected.

- This instruction is necessary to re-enable the
interrupts (exceptTRAP).

- Example: EI

Control Instructions

RIM None Read Interrupt Mask

- This is a multipurpose instruction used to read the
status of iterrupts 7.5, 6.5, 5.5 and read serial data

input bit.

- The instruction loads eight bits in the accumulator
with the following interpretations.

- Example: RIM

RIM Instruction

D, D D D, D; D, Dy Dy
SID| 17 16 | IS | IE [7.5[6.5] 5.5

I .
Serial input Interrupt
data bit masked 1if
bit = 1
Interrupts Interrupt enable
pending if <« - flip-flop is set

bit = 1 if bit = 1

Control Instructions

Operand Description

SIM None Set Interrupt Mask

~ This is a multipurpose instruction and used to
implement the 8085 interrupts 7.5, 6.5, 5.5, and serial
data output.

- The instruction interprets the accumulator contents as
follows.

- Example: SIM

SIM Instruction

D, Dy Ds Dy D, D, D, Dy
SOD | SDE | XXX | R7.5 | MSE | M7.5 | M6.5 | M3.5
i | '
|
Serial output data Reset R7.5 Masks interrupts
if D, = 1 if bits = 1
Serial data enable «— Mask set
| = Enable enable if <
0 = Disable D; =1

Instruction format
* Instruction is a command to microprocessor to perform
a given task on specified data.
* Each instruction has two parts:

— One is the task to be performed: called Operation
code (op-code).

— Second is the data to be operated on called the
Operand.

* The operand or data can be specified in various ways.

* |t may include 8-bit(16-bit) data, an internal register, a
memory location’s data.

* In some instructions, operand is in implicit in
instruction.

Instruction Format

® Size of instruction
“ Instruction : 2parts

opcode — task to be performed

operand — 8/16 bit data/address, internal register
<4 1 bytenstruction : OPCODE

MOV CA

<4 2 bytemnstruction @ OPCODE 8-bat data/address
MVI D#E

4 3 byteinstruction : OPCODE low byte data/address high byte data’address
IMP 2084

BORS Imnstructon Set

Instruction Format

An instruction is a command to the microprocessor to perform a given task on a specified data. Each
instruction has two parts: one is task to be performed, called the operation code (opcode), and the second
1s the data to be operated on, called the operand. The operand (or data) can be specified in various ways.
It may include 8-bit (or 16-bit) data, an internal register, a memory location, or 8-bit (or 16-bit) address.
In some instructions, the operand is implicit.

Instruction word size
The 8085 instruction set is classified into the following three groups according to word size:

v One-word or 1-byte instructions
v Two-word or 2-byte instructions

v’ Three-word or 3-byte instructionsIn the 8085, "byte" and "word" are synonymous because it is an 8-
bit microprocessor. However, instructions are commonly referred to in terms of bytes rather than words.

1 One-Byte Instructions

A 1-byte instruction includes the opcode and operand in the same byte. Operand(s)
are internal register and are coded into the instruction

Table 2.1 Example for 1 byte Instruction

Task Op |Operand | Binary | Hex

code Code Code
Copy the contents of the accumulator m | MOV {CA [0100 1111 | 4FH
the register C.

Add the contents of register B to the | ADD |B 1000 0000 | §0H
contents of the accumulator.

[nvert (complment) each bit m the | CMA 0010 1111 | 2FH
accumulator.

These instructions are 1-byte instructions performing three different tasks. In the first instruction, both
operand registers are specified. In the second instruction, the operand B is specified and the accumulator
is assumed. Similarly, in the third instruction, the accumulator is assumed to be the implicit operand.
These instructions are stored in 8- bit binary format in memory; each requires one memory location.

MOV rd, rs

rd € rs copies contents of rs into rd.
Coded as 01 ddd sss

where ddd is a code for one of the 7 general registers which is the destination of the data, sss is the code
of the source register.

Example: MOV A,B

Coded as 01111000 = 78H = 170 octal (octal was used extensively in instruction design of such
processors).

ADDr

AECA+r

2 Two-Byte Instructions

In a two-byte instruction, the first byte specifies the operation code and the second byte
specifies the operand. Source operand is a data byte immediately following the opcode. For

example:

Table 2.2 Example for 2 byte Instruction

Table 2.2 Example for 2 byte Instruction

Task Opcode | Operand | Binary Hex Code
Code
Load an _Eubn data | MVI A, Data AT B 3B Furst Byte
byte 1 the
accumulator. Data Second Byte

DATA

The instruction would require two memory locations to store in memory.
MVI r.data

r € data

Example: MVI A,30H coded as 3EH 30H as two contiguous bytes.
This i1s an example of immediate addressing.

ADI data

A € A +data

OUT port

0011 1110

DATA

Where port is an 8-bit device address. (Port) €< A.

Since the byte is not the data but points directly to where it is located this is called direct addressing.

3 Three-Byte Instructions

In a three-byte instruction, the first byte specifies the opcode, and the following two bytes specify the 16-bit
address. Note that the second byte is the low-order address and the third byte is the high-order address.

opcode + data byte + data byte

Table 3.3 Example for 3 byte Instruction

Table 3.3 Example for 3 byte Instruction

Task Opcode Operand | Binary code | Hex Code

Transfer the | JMP 2085H (3 First byte
program L1100 0011

sequence to — 85 Second Byte
the memory

location oo100000 |20 Third Byte
2085H.

This instruction would require three memory locations to store in memory.
Three byte instructions - opcode + data byte + data byte
LXI rp, datalé6

rp is one of the pairs of registers BC, DE, HL used as 16-bit registers. The two data bytes are 16-bit
data in L H order of significance.

rp € datal6

LXI H,0520H coded as 21H 20H 50H in three bytes. This is also immediate addressing.
LDA addr

A € (addr) Addr is a 16-bit address in L H order.

Example: LDA 2134H coded as 3AH 34H 21H. This is also an example of direct addressing.

https://www.brainkart.com/article/Important-Short-Questions-and-Answers--8085---8086-Processor_7817/

ADDRESSING MODES
OF 8085

Addressing Modes of 8085

® To perform any operation, we have to
give the corresponding instructions to
the microprocessor.

® |[n each Instruction, programmer has
to specify 3 things:
Operation to be performed.
Address of source of data.

Address of destination of result.

Addressing Modes of 8085

® The method by which the address of
source of data or the address of
destination of result is given in the
Instruction is called Addressing
Modes.

® The term addressing mode refers to
the way in which the operand of the
Instruction is specified.

 Types of Addressing Modes

® Intel 8085 uses the following
addressing modes:

1. Direct Addressing Mode

Register Addressing Mode
Register Indirect Addressing Mode
Immediate Addressing Mode

L

Implicit Addressing Mode

Direct Addressing Mode

® In this mode, the address of the
operand Is given in the instruction
itself.

LDA 2500 |Load the contents of memory
H location 2500 H in accumulator.

® LDA is the operation.
® 2500 H is the address of source.
® Accumulator is the destination.

Register Addressing Mode

® In this mode, the operand is in
general purpose reqister.

MOV A, B | Move the contents of register B to
A.

® MOV is the operation.
® B is the source of data.
® A Is the destination.

Register Indirect Addressing
Mode

® In this mode, the address of operand
IS specified by a register pair.

MOV A, M | Move data from memory location

' specified by H-L pair to accumulator.

® MOV is the operation.

® M is the memory location specified by
H-L register pair.

® A IS the destination.

Immediate Addressing Mode

® In this mode, the operand is specified
within the instruction itself.

MVI A,05H | Move 05 H in accumulator.

® MVI is the operation.
® 05 H is the immediate data (source).
® A Is the destination.

Implicit Addressing Mode

® |f address of source of data as well as
address of destination of result is fixed,
then there is no need to give any
operand along with the instruction.

CMA Complement accumulator.

® CMA is the operation.
® A Is the source.
® AIs the destination.

Stack&subroutines

The stack is a group of memory location in the
R/W memory that is used for temporary storage
of binary information during the execution of a

program
The stack is a LIFO structure.
— Last In First Out.

The starting location of the stack is defined by
loading a 16 bit address into the stack pointer
that spaced is reserved, usually at the top of

the memory map.

The stack normally grows backwards into
memory.

The stack can be initialized anywhere in the
user memory map , but stack is initialized at the
highest memory location so that there will not
be any interface with the program.

In 8085 microprocessor system the beginning of
the stack is defined in the program by using the
instruction

LXI SP,16 bit.

The LXI SP,a 16 bit state that load the 16 bit
address into the stack pointer register.

Info

*The 8085 provide two instruction PUSH & POP for storing infor
mation on the stack and retrieving it back.

*Information in the register pairs stored on the stack in reverse
order by using the instruction PUSH.

* Information retrieved from the stack by using the instruction
POP.

*PUSH & POP both instruction works with register pairs only.
*The storage and retrieval of the content of registers on the
stack fallows the LIFO(Last-In-First-Out) sequence.

“Information in the stack location may not be destroyed until
new information is stored in that memory location

2000 LXI SP,2099H
2003 LXI H ,42F2H

2006 PUSH H

2007 DELAY COUNTER
200F |

2010 POP H

Load the stack pointer register with the addre
ss 2099.
Loads data in the HL register pair.

The content of the HL register pair pushed int
0 stack.

Saved data in stack pointer register to HL regi
ster pair.

The stack pointer is decremented by one to 2098 H
, and the contents of the h register are copied to
memory location 2098H. 8083 Reglater

The stack pointer register is again
decremented by one to 2097H,and
the contents of the L register are
copied to memory location 2097H.
The contents of the register pair
HL are not destroyed ; however

HL is made available for delay

Contents on the stack &in the regist
counter. i :

F
C
E

The contents of the top of the stack location shown by
the stack pointer are copied in the L register and the
stack pointer register is incremented by one to 2098
H

The contents of the top of the stack 2
(now it is 2098H) are copied in the P
H register,and the stack pointer is
incremented by one.

The contents of memory location

2097H and 2098 are not destroyed

until some other data bytes are X 2099
ncation Contents on the stack and in the registers

During pushing, the stack operates in a "decrement
then store” style.

The stack pointer is decremented first, then the
information is placed on the stack.

During poping, the stack operates in a “use then
increment” style.

The information is retrieved from the top of the
stack and then the pointer is incremented.

The SP pointer always points to “the top of the
stack”.

PUSH PSW (1 Byte Instruction)
Decrement SP
Copy the contents of
register A to the memory
location pointed to by SP
- Decrement SP
- Copy the contents of

Flag register to the memory
location pointed to by SP

» POP PSW (1 Byte Instruction) A FAG
Copy the contents of the 12 | 80
memory location pointed to
by the SP to Flag register
Increment SP

Copy the contents of the

memory location pointed to
by the SP to register A
Increment SP

A subroutine is group of instruction written sepa
rately from the main program to perform a func
tion that occurs repeatedly in the main program

When a main program calls a subroutine the pro
gram execution is transferred to the subroutine
after the completion of the subroutine ,the prog
ram execution returns to the main program.

The microprocessor uses the stack to store the r
eturn address of the subroutine.

The 8085 has two instructions for dealing
with subroutines.

— The CALL instruction is used to redirect
program execution to the subroutine.

— The RET instruction is used to return to t
he main program at the end of the subro
utine .

CALL ,16 bit

Call subroutine in conditionally located at
the memory address specified by the 16
bit operand.

This instruction places the address of the
next instruction on the stack and transfer
the program execution to the subroutine
address.

- Return unconditionally from the subrouti
ne.

- This instruction locates the return addre
ss on the top of the stack and transfers t
he program execution back to the calling
program.

GHe

The CALL instructions are 3-byte instruc
tion; the second byte specifies the low

order byte ,and the third by

the high order byte of the subroutine

address.

The return instruction are 1-byte instruc

tions.

A CALL instruction must be used in
conjunction with a return instruction in

the subroutine .

e specifies

The stack pointer register must be initiali
zed ,preferably at the highest memory lo
cation of the R/W memory.

The call instruction should be used in the
main program accompanied by the RET i
nstruction in the subroutine.

The 8085 supports conditional CALL and co
nditional RTE instructions.

— The same conditions used with conditional
JUMP instructions can be used.

— CC, call subroutine if Carry flag is set.
— CNC, call subroutine if Carry flag is not set

— RC, return from subroutine if Carry flag is
set

— RNC, return from subroutine if Carry flag
IS not set.

Assembler directives

Definition: Assembler directives are the instructions used by the assembler at the time of assembling
a source program. More specifically, we can say, assembler directives are the
commands or instructions that control the operation of the assembler.

Thus assembler is used to convert assembly language into machine code so that it can be understood
and executed by the processor.

Therefore, to control the generation of machine codes from the assembly language, assembler
directives are used.

assembler directives:

.show the beginning and end of a program provided to the assembler,
.used to provide storage locations to data,
.used to give values to variables,

.define the start and end of different segments, procedures or macros etc. of a program. Assembler
Directives of 8085

The assembler directives given below are used by 8085 and 8086 assemblers:

DB: Define Byte
This directive is used for the purpose of allocating and initializing single or multiple data bytes.

Memory name AREA has three consecutive locations where 30H, 52H and 35H are to be stored.

AREA 30H
S2H
35H

DW: Define Word
It is used for initialising single or multiple data words (16-bit).

These two 16-bit data 1020H and 4216H are stored at 4 consecutive locations in the
memory MARK.

MARK 16H
42H
20H
10H

END: End of programThis directive is used at the time of program termination.

EQU: Equate
It is used to assign any numerical value or constant to the variable.

DONE EQU I0H

Variable name ‘DONE’ has value 10H

MACRO: Represents beginning
Shows the beginning of macro along with defining name and parameters.

STEP MACRO [xl,x2, x3]

— statements

STEP ENDM

ENDM indicates the termination of macro.
where macroname (STEP) is specified by the user.

ORG: Origin
This directive is used at the time of assigning starting address for a module or segment.

ORG |050H

By this instruction, the assembler gets to know that the statements following this instruction, must be stored in the memory location beginning with address 1050H.

Assembler Directives of 8086

These assembler directives are specifically used by 8086:

ASSUME: Shows the segment name to the assembler
It provides information to the assembler regarding the name of the program or data segment for that particular segment.

ASSUME CS: DONE

This directive is used at the time of program termination.

EQU: Equate
It is used to assign any numerical value or constant to the variable.

DONE EQU I0H

Variable name ‘DONE’ has value 10H

MACRO: Represents beginning
Shows the beginning of macro along with defining name and parameters.

ENDM: End of macro
ENDM indicates the termination of macro.

ORG: Origin
This directive is used at the time of assigning starting address for a module or segment.

ORG 1050H

By this instruction, the assembler gets to know that the statements following this instruction, must be stored in the memory location beginning with address 1050H.

Assembler Directives (cont..)

» ASSUME

> DB - Defined Byte.

> DD - Defined Double Word
> DQ - Defined Quad Word
> DT - Define Ten Bytes

» DW - Define Word

1

Assembler Directives (cont..)
» ASSUME Directive - The ASSUME directive is
used to tell the assembler that the name of the logical
segment should be used for a specified segment.

»Example:

ASUME CS:CODE ;This tells the assembler that
the logical segment named CODE contains the instruction
statements for the program and should be treated as a code
segment.

ASUME DS:DATA ; This tells the assembler that
for any instruction which refers to a data in the data segment,
data will found in the logical segment DATA.

Assembler Directives (cont..)

> DW - The DW directive is used to define a
variable of type word or to reserve storage location of type

word 1n memory. _ I
»Example:

MULTIPLIER DW 437Ah ; this declares a
variable of type word and named it as MULTIPLIER. This
variable is initialized with the value 437Ah when it is
loaded into memory to run.

EXP1 DW 1234h, 3456h, 5678h ; this declares
an array of 3 words and 1nitialized with specified values.
STOR1 DW 100 DUP(0); Reserve an array of

100 words of memory and initialize all words with
0000.Array 1s named as STORI.

Assembler Directives (cont..)

» END - End Program End Procedure

» ENDP - End Segment Equate

»> ENDS - Align on Even Memory Address
» EQU -

» EVEN -

» EXTRN

Assembler Directives (cont..)

» ENDS - This ENDS directive 1s used with name of
the segment to indicate the end of that logic segment.
> Example:
CODE SEGMENT ;Hear it Start the logic

;segment containing code
; Some 1instructions statements to perform the logical
;operation
CODE ENDS ;End of segment named as
:CODE

Assembler Directives (cont..)

» GROUP - — The GROUP directive is
used to group the logical segments named after the
directive into one logical group segment.

> INCLUDE . This INCLUDE
directive is used to insert a block of source code from
the named file into the current source module.

Assembler Directives (cont..)

» PROC - Procedure
» PTR - Pointer

» PUBLC

» SEGMENT

» SHORT

> TYPE

Assembler Directives (cont..)

» PROC - The PROC directive is used to identify
the start of a procedure. The term near or far 1s used to specify
the type of the procedure.

» Example:

SMART PROC FAR ; This identifies that
the start of a procedure named as SMART and instructs the
assembler that the procedure is far .

SMART ENDP

This PROC is used with ENDP to indicate the break of the
procedure.

Assembler Directives (cont..)

» PUBLIC - The PUBLIC directive is used to
instruct the assembler that a specified name or label will be
accessed from other modules. |

» Example:
PUBLIC DIVISOR, DIVIDEND ;these two
variables are public so these are available to all modules.

If an instruction in a module refers to a variable in another
assembly module, we can access that module by declaring
as EXTRN directive.

16

NN VNN NN

AH
AH
AH
AH
AH
AH

00H
01H
02H
08H
09H
0AH

INT 21H

DOS Function Calls

: Terminate a Program

: Read the Keyboard

: Write to a Standard Output Device

: Read a Standard Input without Echo
: Display a Character String

: Buffered keyboard Input

: Call DOS Function

Assemble language programs for 8085 microprocessors

Arithmetic operations

Addition of two &bit Numbers

START:NOP
LXI H,0001H
MOV AM
INX H

MOV B.M
ADD B
INX H
MOV M,A

HLT

Assemble language programs for 8085
miCroprocessors

Arithmetic operations

Substraction of two 8bit Numbers

START:NOP
LXI H,0001H
MOV AM
INX H

MOV B.M
SUB B
INX H
MOV M,A

HLT

Assemble language programs for 8085
miCroprocessors

Arithmetic operations

Addition with carry of two 8bit Numbers

START:NOP
LXI H,0001H
MOV AM
INX H

MOV B.M
ADD B
ADC

INX H
MOV M,A

HLT

Assemble language programs for 8085
miCroprocessors

Arithmetic operations

Substractions with barrow of two 8bit Numbers

START:NOP
LXI H,0001H
MOV AM
INX H

MOV B.M
SUB B
SBB

INX H
MOV M,A

HLT

Assemble language programs for 8085
miCroprocessors
Arithmetic operations

INCREMENT OPERATION

START:NOP

LXI H,0001H
MOV AM
INC A

INX H
MOV M,A

HLT

Assemble language programs for 8085
miCroprocessors
Arithmetic operations

DECREMENT OPERATION

START:NOP
LXI H,0001H
MOV AM
DEC A

INX H
MOV M,A

HLT

Assemble language programs for 8085
miCroprocessors

Logical operations

Anding of two 8bit Numbers

START:NOP
LXI H,0001H
MOV AM
INX H

MOV B.M
ANA B
INX H
MOV M,A

HLT

18

Assemble language programs for 8085
miCroprocessors

Logical operations

ORing of two 8bit Numbers

START:NOP
LXI H,0001H
MOV AM
INX H

MOV B.M
ORA B
INX H
MOV M,A

HLT

Assemble language programs for 8085
miCroprocessors

Logical operations

XORing of two 8bit Numbers

START:NOP
LXI H,0001H
MOV AM
INX H

MOV B.M
XRA B
INX H
MOV M,A

HLT

Assemble language programs for 8085
miCroprocessors
Arithmetic operations

COMPLEMENT OPERATION

START:NOP

LXI H,0001H
MOV AM
CMP A

INX H
MOV M,A

HLT

Assemble language programs for 8085
miCroprocessors
Arithmetic operations

ROTATE LEFT OPERATION

START:NOP
LXI H,0001H
MOV AM
RLC A

INX H
MOV M,A

HLT

Assemble language programs for 8085
miCroprocessors
Arithmetic operations

ROTATE RIGHT OPERATION

START:NOP
LXI H,0001H
MOV AM
RRC A

INX H
MOV M,A

HLT

Assemble language programs for 8085
miCroprocessors
Arithmetic operations

ROTATE LEFT WITH CARRY OPERATION

START:NOP
LXI H,0001H
MOV AM
RAL A

INX H
MOV M,A

HLT

Assemble language programs for 8085
miCroprocessors
Arithmetic operations

ROTATE RIGHT WITH CARRY OPERATION

START:NOP
LXI H,0001H
MOV AM
RAR A

INX H
MOV M,A

HLT

Write a program to count the
number of 1’s in the A Register
of 8085 processor, the result is

to be stored in the register D

Set 1’s counter to 0

Set bit counter to 08H

k

Add A to itself

Test

Carry

Decrement bit
counter

Increment 1’s
counter

INITIALIZE

€2 8085 Simulator - [TUTORIALO2.B5]

File Edit CPU Help

DEeEH 2@

1Bue Compile P Step W Halt

MVI
MVl
MvI
LOOPBACK:
ADD
JNC

AHEAD:
DCR
JNZ
HLT

A,55H
D,00H
C,08H

A
AHEAD

INR| D

C
LOOPBACK

& BrkPt
CPU Registers

X Exit

S

- AC -

P -CY

Flags = [0]0[0]o[0fo[0]0]

Click to togale flag bits

PEl

1% Copy | 88Reset

3000
3001
3002
3003
3004
3005
3006
3007
3008
3009

0o
0o
0o
00
00
00
00
0o
00
0o

» | 0ofoo

B|O0000O C

D | 00|00 E

H|oojoo L sP [FFFO
System RAM [cols JFil
Address |Data |Address |Data |Address |[Data
1000 3E 2000 0o
1001 55 2001 oo
1002 16 2002 oo
1003 Do 2003 oo
1004 DE 2004 oo
1005 0ge 2005 00
1006 87 2006 00
1007 D2 2007 oo
1008 0B 2008 oo
1009 10 2009 0o
100A 14 200A Do

300A

0o

@ B0OB5 Simulator - [TUTORIALO2.85]
File Edit CPU Help

D ¥ B 8 3§Compile pRun Mstep. ‘ W Halt &BrkPt X Exit

MVI A, SSH CPU Registers

MVI D,O0OH
MVI C,08H s Z -AC-P -C¥

LOOPBACK: : 00100 Flags < [0T0T00]0T0]0]0]

ADD Click to togale flag bits
JHNC L i i

INR

: 00 E
DCR REG A = 55H “ ==
JNZ LOOPBACK 0101 0101 . 0o SENFFF0 e

HLT

System RAM [cols JFill FiCopy 83Reset

Address |Data |Address |[Data [Address |Data
1000 3E 2000 00 3000 00
1001 55 2001 oo 3001 oo
1002 16 2002 oo 3002 0o
1003 0o 2003 oo 3003 o0
1004 0E 2004 00 3004 00
1005 08 2005 oo 3005 oo
1006 87 2006 oo 3006 00
1007 2007 oo 3007 00
1008 2008 oo 3008

1009 2009 on 3009

8085 PROGRAMMING COUNTING AND LOOPING

@ B085 Simulator - [TUTORIALO2.85]
File Edit CPU Help

D ¥ & 5 Compile P Run Hﬁ?p‘ W Halt &BrkPt X Exit

MVI A,S5S5H CPU Registers

MVI D,00H
MVI C,08H 52 -AC-P -0Cr

LOOPBACK: 55100 Flags = [0]0[0[0[0]0][0[0]

c Click to toggle flag bits

JNC AHEAD

s 0101 0101 “ooloo E
DCR C 0101 0101

JNZ LOOPBACK 1010 1010 | a0

AHEAD:

HLT

'|System RAM [cois JFil EiCopy @ $8Reset

Address |Data |Address |Data |Address |Data
1000 3E 2000 00 3000 00
1001 55 2001 00 3001 00
1002 16 2002 00 3002 00
1003 00 2003 00 3003 00
1004 0E 2004 00 3004 00
1005 08 2005 00 3005 00
1006 2006 00 3006 00
1007 2007 00 3007 00
1008 2008 00 3008 00
1009 2009 00 3009 00

8085 PROGRAMMING COUNTING AND LOOPING

MVI A,SSH CPU Registers
MVI D,OO0H

=

MVI C,O08H
|LOOPBACK: a | AsHoo
I -
| JNC AHEAD oo lo7 |
INR D
AHEAD : D 00 |00 |
DCR C
JNZ LOOPBACK H 00|00 I
HLT
Sysitem RAM
Address Data
1000 3E
1001 a5
1002 16
1003 00
1004 0E
1005 08

8085 PROGRAMMING COUNTING AND LOOPING

@ 8085 Simulator - [TUTORIALO2.85]
File Edit CPU Help

Dz BE ¥ B 25 Compile pRun P{Step M Halt SBrkPt X Exit

MVI A, SSH CPU Regislels

MVI D,O00H

ADD A B | oolo7 ¢ Click to toggle flag bits

INR D

PR D | 00|00 E

DCR C

st e T H|00j00 L sP|FFF0 PC |

HLT
System RAM [cols JFil [f3Copy | 28Rs
Address [Data |Aﬂdress IData |Address [Data
1000 3E 2000 oo 3000 0o
1001 55 2001 0o 3001 oo
1002 16 2002 oo 3002 oo
1003 0o 2003 00 3003 00
1004 0OE 2004 0o 3004 il
1005 08 2005 oo 3005 oo
1006 87 2006 00 3006 00
1007 D2 2007 oo 3007 oo
1008 0B 2008 oo 3008 oo
1009 10 2009 00 3009 00

8085 PROGRAMMING COUNTING AND LOOPING

@ BOB5 Simulator - [TUTORIALO2.85]

File Edit CPU Help

Dz ¥ B 5 Compile P Run Hﬁﬂ W Halt &BrkPt % Exit

MVI A,S5SH CPU Registers

MVI D,00H

MVI C,08H c4l0z 6 2 _AC - P - Y
LOOPBACK: A Flags = [0]|0[0f0[0]1[0(1]
Click to toggle flag bits

JNC AHEAD B|00j06 C

INR D
AHEAD : D] 01|00 E

DCR C

JNZ LOOPBACK H| 000D L SP |FFF|:| PC I

HLT

System RAM [cols JFil B3Copy 38Re

Address [Data |Address [Data [Address]Data
1000 3E 2000 0o 3000 00
1001 56 2001 00 3001 00

1002 16 2002 00 3002 0o
1003 0o 2003 0o 3003 0o
1004 0E 2004 00 3004 00

1005 08 2005 0o 3005 0o
1006 87 2006 00 3006 0o
1007 D2 2007 00 3007 00
1008 0B 2008 0o joos 00
1009 10 2009 00 3009 00

3085 PROGRAMMING COUNTING AND LOOPING

MODULE -/l

8086 ARCHITECTURE

INTRODUCTION

COMPUTER

Microprocessor

 Amicroprocessor is an electronic component
that is used by a computer to do its work. It is a
central processing unit on a single integrated
circuit chip contalmng millions of very small
YD LY ransistors, resistors,

inmanhisag s penerd o f s

LK
0] -
-
-
Lor
-
-
-

Motherboard

Types of
microprocessors

Year Microprocessor/microcontroller Remark
1971-1972 | Intel® 4004, Intel® 4040 4-bit microprocessors
1974 Intel® 8080, TMS 1000 8-bit microprocessor
1975 Motorola® 6800 8-bit microprocessor
1976 MCS-48, Intel” 8085 8-bit microcontroller
1978 8086, Motorola™ 68000, Zilog Z-8000 16-bit microprocessors
1979 Intel® 8088 8 bit microcontroller
1980 Intel® 8051 8 bit microcontroller
1982 68010, 6805, 80186, 80188, 80286, 8096 (MCS-96) 16-bit microcontrollers
1984 Motorola® 68020 32-bit microprocessor
1985 Intel” 80386 32-bit microprocessor

PIC microcontrollers by Microchip® 8-bit microcontrollers
1987 Zilog 2280 16-bit microprocessor
1989 Intel® 80386xx, 80486 32-bit microprocessor
1993 Intel® Pentium ™ 32-bit microprocessor
1995 Intel® Pentium ™ Pro 32-bit microprocessor
1997 Atmel” 8-bit AVR family 8-bit RISC microcontrollers

Intel® Pentium ™ Il and Xeon™ 32-bit microprocessor
1999 Intel® Pentium ™ 11l, Celeron™, Pentium™ Il Xeon™ 32-bit microprocessors
2000 Intel® Pentium ™ 4 32-bit microprocessor
2003 Intel® Pentium ™ M 32-bit microprocessor
2006-2007 | Intel® Core™ 2 Duo and Quad 64-bit microprocessor
2008 Intel® Core™ /7 64-bit microprocessor

Classification of Microprocessors

,f H‘"‘m
.-"'f- ™
e : ¥
General Purpose Processors Application Specific f
(GPP) (ASP)
\
\

GPP proper: general || Microcontrollers:
purpose applications | |industrial applications

DSP (Digital Signal Processor):
programmable microprocessor

for extensive numerical
real-time computations

ASIP (Application Specific Instruction
Set Processor): programmable micro-
processor where hardware and
instruction set are designed together
for one special application

Application of Microprocessors:

]
- Microcomputers
- Personal Computers
- Printing Machines
- Security Systems
- Play Stations
- Digital Projectors
- 'Washing Machines
- Microwave Ovens

Intel 8086

Architecture &
Programming

Features of 8086 Microprocessor

» 1) 8086 has 16-bit ALU; this means 16-bit numbers are
directly processed by 8086.

» 2) It has 16-bit data bus, so it can read data or write
data to memory or 1/O ports either 16 bits or 8 bits at a
time.

» 3) It has 20 address lines, so it can address up to 220 i.e.
1048576 = 1Mbytes of memory (words i.e. 16 bit
numbers are stored in consecutive memory locations).
Due to the 1Mbytes memory size multiprogramming is
made feasible as well as several multiprogramming
features have been incorporated in 8086 design.

Features Continued ...

» 4) 8086 includes few features, which enhance
multiprocessinﬁ capability (it can be used with math
coprocessors like 8087, 1/0 processor 8089 etc.

P 5) Operates on +5v supply and single phase (single line)
clock frequency.(Clock is generated by separate
peripheral chip 8284).

» 6) 8086 comes with different versions. 8086 runs at 5
MHz, 8086-2 runs at 8 MHz, 8086-1 runs at 10 MHz.

» 7) It comes in 40-pin configuration with HMOS
technology having around 20,000 transistors in its
circuitry.

Features Continued ...

 8) It has multiplexed address and data bus like 8085 due to which the pin
count is reduced considerably

 9) Higher Throughput (Speed)(This is achieved by a concept called
pipelining)But the concept of 8086’s principles and structures is very
useful for understanding other advanced Intel microprocessors.

* 10) it will work in the 2 modes, 15t is minimum mode and 2" is maximum
mode.

* Minimum mode : If only 1 processor is used in any system to perform the
operation that is called as minimum mode operation.

 Maximum mode : If more than 1 processor is used in any system to
perform the operations that is called as maximum mode operations.

Main components present in the microprocessor

1. Arithmetic logic unit (ALU) : An arithmetic logic
unit (ALU) is a combinational digital
electronic circuit that
perfor - ---:LIA_THT,F:;I:ET' PR | I.:Jii_l.lélg.er.
opera1 Dperand Diparanid

+ +

A W B
S tatus
SfAtus
Qpooda ¥

"

hﬂeger
Result

2. Registers : which is used to store the data and
addresses of program.

It is a group of the flip flops.

N
REGISTERS

analogue data storaoge cells

3. Buses : bus is the group of the parallel conducting
wires which carries the data from one place to
another.

These are 2 types :
1) Data bus : which carry the data of program one

|aﬁn A ~nArthAar RlacrAa I+ i Wi AlrAacrtriAanal

2) Ad DATA BUS & ADDRESS BUS

prc

* 4. Memory : This is storage device which is used to
store program code and data.

Types of memory
|

RAM ROM

SRAM DRAM PROM EPROM EEPROM

5. Instruction queue : it fetch the instructions from the memory and
place the instructions in the serial order to perform the operation like
FIFO (first In first out).

Internal Architecture of 8086

T
MEMORY '
INTERFACE

'

o | o |

: / Y \ N

' A \\ I INSTRUCTION
| ’ ! 2 STREAM BYTE
i 3 OUELE

: B bus || |]F—:— 1

1 5

: ES =

i st o 1] "
i > =* |

] . 1

i E ' CONTROL

. : SYSTEM

beem e cemmme e e {[.................]

.

. E L |.

: L A bus A_\ JL,

PoAX AH AL N —— S

i BX BH Bl N ALU S

PoCx CH CL i

i DX DH DL v —

i ;‘3: OPERANDS

i 3 FLACGS

' DI

]

- L

]

o o o o

>
1.
2.
>

w NP YV VYV

The 8086 microprocessor architecture divided into 2 functional units:
Bus interface unit
Execution unit

BUS INTERFACE UNIT: it acts as bridge between external devices like memory and in /out
devices to execution unit. It provides a full 16 bit bidirectional data bus and 20 bit address bus.

The bus interface unit is responsible for performing all external bus operations.

Instrucltions fetch Instruction queuing, Operand fetch and storage, Address relocation and Bus
control.

It fetch the instructions or data from memory.
It writes the data to memory.

It writes the data to ports.

It reads the data from ports.

It is also having 3 functional parts:
Fetch (From

Instruction pointer (IP) memory/In&out) Result (to

u .
Segment registers y | memoTry/m&OUt)
Instruction queue 1 |

N

* Instruction pointer : it is a 16 bit register that keeps
the address of memory location of coming
instructions to be executed.

* Segment register : the memory space of mega bite
of 8086 is segment into 4blocks . Each block is
specified by register with maximum size of64kb.

»Code segment (qs) *™°
»Data segment (ds)
» Stack segment (ss)
> Extra segment (IeIS) |

S 64Kb
L™ 64Kb
S 64Kb

[N 64Kb

»INSTRUCTION QUEUE: BIU performs its operation
in parallel with execution unit.

* BIU fetch instruction byte while execution unit is
executing operations.

* The prefetched instruction is saved in group of
highspeed register and is known as instruction
gueue.

Execution unit

* The Execution unit is responsible for decoding and executing all instructions.

* The EU extracts instructions from the top of the queue in the BIU, decodes them,
generates operands if necessary, passes them to the BIU and requests it to
perform the read or write bys cycles to memory or I/0O

* During the execution of the instruction, the EU tests the status and control flags
and updates them based on the results of executing the instruction

Contd..

* If the queue is empty, the EU waits for the next instruction byte to be
fetched and shifted to top of the queue.

* When the EU executes a branch or jump instruction, it transfers
control to a location corresponding to another set of sequential
instructions.

* Whenever this happens, the BIU automatically resets the queue and
then begins to fetch instructions from this new location.

Memory

» The division of the 1Mb
memory of 8086 MP into 4
segments with 64Kb memory size
called as memory segmentation.
The 4 segments are code
segment , data segment, extra
segment , stack segment.

=The memory in an 8086/88
based system is organized as
segmented memory.

=The CPU 8086 is able to
address 1 Mbyte of memory.

=The Complete physically
available memory may be

segments.

divided into a number of logical

FFFFFH

SFFFFH

64K {

50000H

1889FH

7FFFFH
{ ES

gmentatlon

SS

CSs

64K

64K {
Fl‘l‘l‘l‘l{

20000H

DS

00000H

SEG BASE

TOP OF DS

BOTTOM

— 1Mb

OF Ds
(SEG BASE)—

A e SIze of each segment is 64 KB

. A segment Is an area that begins at any location which is
" divisible by 16.

« A segment may be located any where in the memory

« Each of these segments can be used for a specific
function.

— Code segment is used for storing the instructions.

— The stack segment is used as a stack and it is used to store the
return addresses.

— The data and extra segments are used for storing data byte.

—

- Y

*
In the assem

lan ua 2 programming, more than one datz
-'-"'ﬁr: = - _r:_._=:__:___.;a Il —._ i L 4,

Advantages of memory segmentation

» Allow the memory capacity to be 1Mb even though the
gddresges associated with the individual instructions are only 16
its wide.

» Facilitate the use of separate memory areas for the program, its
data and the stack.

» Permit a proEra_m and/or its data to be put into different areas of
memory each time the program is executed.

» Multitasking becomes easy.

» Allows the placing of code, data and stack portions of the same
program in different parts (segments) of the m/y, for data and
code protection.

» The segment registers are used to allow the instruction, data or
stack portion of the Erogram to be more than 64Kbytes long .
The above can be achieved by using more than one code, data
or stack segments.

PHYSICAL MEMORY

NR-ANIICATINNI
Physical

8086 PHYSICAL MEMORY ORGANISATION
When word data come BIU required 2 machine cycles

* The 8086’s 1Mbyte memory address space is divided in to
two independent 512Kbyte banks: the low (even) bank and
the high (odd) bank.

e Data bytes associated with an even address (0000016,
0000216, etc.) reside in the low bank, and those with odd
addresses (0000116, 0000316, etc.) reside in the high bank.

* Address bits Al through A19 select the storage location that
is to be accessed. They are applied to both banks in parallel.
AOand bank high enable (BHE) are used as bank-select
signals.

The four different cases that happen during accessing data:

Case 1: When a byte of data at an even address (such as X) is to be accessed:

TRAMBFER X

M)

*AQ is set to logic 0 to enable the low bank of memory.
*BHE is set to logic 1 to disable the high bank.

Case 2: When a byte of data at an odd address (such as X+1) is to be accessed

*AQis set to logic 1 to disable the low bank of memory.
*BHE is set to logic O to enable the high bank.

Case 3: When a word of data at an even address (aligned word) is to be accessed «

TRAMEBEER X« 1 X

%
r

(T,

*AQ is set to logic O to enable the low bank of memory.
*BHE is set to logic O to enable the high bank.

Case 4: When a word of data at an odd address (misaligned word) is to be accessed, then the 8086 need two bus cycles to
access it:
a) During the first bus cycle, the odd byte of the word (in the high bank) is addressed

*AOQ is set to logic 1 to disable the low bank of memory
*BHE is set to logic O to enable the high bank.

REGISTER ORGANISATION IN 8086

MP

‘I Registers in 8086 Microprocessor

» All the registers of 8086 are 16-bit registers. The general purpose
registers can be used as either 8-bit registers or 16-bit registers.

» The register set of 8086 can be categorized into 4 different

General Purposeae

R [Fa

Index pointer

Segment

Statu=s and Control

s

=55

[Flags

D=

[=

ES

General purpose Register

The registers AX,
BX,CX and DX
are the general
purpose 16-bit

registers.

All data register
can be used as
either 16 bit or 8§
bit. BX 15 a 16 b1t
register, but BL

indicates the
lower 8-bit of BX
and BH indicates
the higher 8-bit
of BX.

15 H gl7

Accumulator| AX]

AH AL
Base Register{BX)

BH Bl
Used as Counter(CH)

CH i

Used to point to data in |/0 operation|DX]

DH oL

The register CX
15 used default

counter in case
of string and
loop instructions.

AX 15 used as 16-
bit accumulator.
The lower 8-bit
15 designated as

AL and higher 8-

bit 15 designated
as AH. AL can be
used as an 8-bit
accumulator for
8-bit operation.

Segment Registers

18 used for addressing memory location in
the code segment of the memory, where the executable program is stored.

points to the data segment of the memory
where the data is stored.

also refers to a segment in the memory
which is another data segment in the memory.

is used fro addressing stack segment of the
memory. The stack segment is that segment of memory which 1s used to
store stack data.

Pointers and Index Registers.

The pointers contain offset within the particular segments.
The pointer register /P contains offset within the code segment.
The pointer register BP contains offset within the data segment.

The pointer register SP contains offset within the stack segment.

The index registers used as general purpose registers as well for offset storage in
case of indexed, base indexed and relative base indexed addressing modes.

The register 57 1s used to store the offset of source data in data segment.

The register DI is used to store the offset of destination in data or extra
segment.

The index registers are particularly useful for string manipulation.

FLAG REGISTERS

The 8086 flag register contents indicate the results of
computation in the ALU. It also contains some flag bits to
control the CPU operations.

A 16 flag register 1s used 1n 8086. It 1s divided into two
parts .

« Condition code or status flags- The condition code flag register is the
lower byte of the 16-bit flag register. The condition code flag register
is identical to 8085 flag register, with an additional overflow flag.

« Machine control flags- The control flag register is the higher byte of
the flag register. It contains three flags namely direction flag(D),
interrupt flag (/) and trap flag (7).

8086 Microprocessor

Flag Register

Architecture

Execution Unit (EU)

lowest nibble, i.e,

Auxiliary Carry Flag

This is set, if there is a carry from the
bit three during

Carry Flag

This flag is set, when there is

Sign Flag

This flag is set, when the
result of any computation

is negative

addition, or borrow for the lowest a carry out of MSB in case of
nibble, ie, bit three, during addition or a borrow in case
subtraction. of subtraction.

Zero Flag Parity Flag

This flag is set, if the result of
the computation or comparison
performed by an instruction is

This flag is set to 1, if the lower
byte of the result contains even
number of 1's ; for odd number

of 1's setto zero.

L ZEM
—\-________\-_
1 14 13 12 11

“16-

Owver flow Flag

This flag is set, if an overflow cccurs, Le, if the result of a sigmed
operation is large enough to accommodate ina destination
register. The result is of more than 7-bits in size in case of B-bit
zigned operation and more than 15-bits in size in case of 16-bit W

JDoEmENGE:

Tarp Flag
If this flag is set, the processor
Errters the single step execution
mode by genersting intemal
interrupts after the execution of
each instruction

Direction Flag
This is used by string manipulation instructions. If this flag bit
5 "0 the string Is processed beginning from the lowest
address to the highest address, i.e., auto incrementing mode.
Otherwise, the string is processed from the highest address
3/29/ 201 ptowards the lowest address, |.e., autdinmematingrmnods.

Interrupt Flag

Causes the 8086 to recognize

extemal mask interrupts; clearing IF

disables these interrupts.

@ Control Flags -

x| x| x| x | OF [DEEIEE SF | ZF | x | AF PF| x | CF
| 1 1 | 1 1 I | 1
| : | I (O ! : :
Overflow Flag ... + 1+ 1 Y | |
1 =0Overflow Occurred ! ! ! i ! Auxiliary Carry Flag : !
0= No Overflow Occurred I : : |1 1=Carry from Lower | |
(OFis calculated as C7 Ex-Or C6) | : : } ! Nibble to Higher Nibble ! :
i : : : | 0=Nosuch Carry I E
Direction Flag «----- | ' 11 (usedin 8-bit operations) | |
1 =Auto Decrement : I : \ \J :
0=Auto Increment i1 1 ZeroFlag Parity Flag |
(Used in String Instructions) ; : | 1=Result =0 1=Even Parity |
: j i + 0=Result =0 0=0dd Parity
mm.ﬂll s |
1=Enable Interrupt i ill.llﬂu M‘
0= Disable Interrupt E 1=MSB of result is 1 (.. -ve) 1= Carry out of
(Affects Only INTR) | 0=MSB of result is 0 (. +ve) MSB
v (Used for “Signed” numbers) 0=No such Carry

1 =Perform Single Stepping

0=Do Not Perform Single Stepping

Status Flag

This flag 1s set, when the result of any computation is
negative.

This flag is set, if the result of the computation or
comparison performed by the previous instruction 1s zero.

This flag 1s set to 1, if the lower byte of the result
contains even number of 1°s.

This flag is set, when there 1s a carry out of MSB in case
of addition or a borrow in case of subtraction.

Status Flag

This 1s set, 1t carry from the lowest
nibble, 1.e., bit three during addition, or borrow for the lowest
nibble, 1.e., bit three, during subtraction.

This flag is set, if an overflow occurs, i.e., if the
result of a signed operation is large enough to accommodatein a
destination register. The result is of more than 7-bits in size in case
of 8-bit signed operation and more than 15-bits in size in case of 16-
bit sign operations, then overflow will be set.

Control flag

If this flag 1s set, the processor enters the single step
execution mode.

It this flag 1s set, the maskable interrupt are

recognized by the CPU, otherwise they are 1gnored.

This is used by string manipulation instructions. If this
flag bit is *0°, the string 1s processed beginning from the lowest address
to the highest address, 1.e., auto incrementing mode. Otherwise, the string
is processed from the highest address towards the lowest address, 1.e.,
auto incrementing mode.

BUS INTERFACE UNIT

Dedicated Adder to generate

I‘ Address Bug 20 bit address

AH [AL | ax Baddrass

BH | BL | BX Eumr:;'\ﬂ!‘-\h Four 16-bit segment

CH [CL | CX -

... i F Ty registers
Registers op
. BP Code Segment (CS)
Cl Data Segment (DS)
Stack Segment (S5)
Extra Segment (ES)
|P
ALL Dala bus (16 bit) I nlemal | A
] | I I:'.nmnmicmmni e
Temporary MI
Registers ™

| I 1
| _ el Instruction queue
| i (1 Bus
| y 3 gﬂgﬁ: TE b 1]23]4]5]s

Execution Unit (EU)

Bus Interface Unit (BIU)

BUS INTERFACE UNIT

ADDRESS GENERATION

» Eg: physical address=155A5h (20 bit)

» Segment address=1005h (16 bit)
0001 0000 0000 0101

. OﬁSEt=5555h (I 6 blt) Segment addr left
0001 0000 0000 0101 0000 4w :T0o0 ™
¥ 0101 0101 0101 0101 4w Ofsec

000l Ol0l Ol0l 1010 OlOl

| S 3 Pl 5 Av— Physical address

Generation of 20 bit physical address

The 20-bit Physical address is often represented as:

Segment Base address+ Offset OR CS+IP
CS 34800 —2Implied Zero (from shft Left)
+IP 1234

35A34H

* So, physical address = base address of segment registers
+ offset value of pointer registers/index registers.

* Base address of segment registers obtained by appending
the O at the LSB position of segment base values.

Always physical addresses are generated by adding like these:
Code segment base address + offset value of instruction pointer
Data segment base address + off set value of base pointer

Extra segment base address + off set value of index registers/base
pointer

Stack segment base address + off set value of stack pointer

If segment value is given in hexadecimal then physical address
can be calculated as

Physical address=segment valuex10+offset value
For example CS=2345 ,offset of IP is1020 THEN
Pysical Address =2345x10+1020
=23450+1020
=24470

PROGRAMMING MODEL

Address field

Opcode

Destination
operand

Source
operand

comment

Opcode means operation code.

Address field is address of the instruction where the
instruction is stored in the memory.

Destination operand is the place where data to be
transferred.it may register / memory.

Source operand is the place from which data is transmitted

to destination apprehend . It may be memory / register.

Comment is description of programme statement .

Addressing modes of 8086

Every instruction of programme has to operate on data. The different way in which source
operand is denoted in an instruction are know as addressing modes

The addressing mode describes the types of operands and the way they are accessed for

executing an instruction. According to the flow of instruction execution, the instructions may
be categorized as

1. Sequential control flow instructions (Data Category)
2. Control transfer instructions(Branch Category)
Sequential control flow instructions are the instructions which after execution, transfer

control to the next instruction appearing immediately after it (in the sequence) in the
program.

For example

the arithmetic, logic, data transfer and processor control instructions are Sequential
control flow instructions.

The control transfer instructions on the other hand transfer control to some predefined
address or the address somehow specified in the instruction, after their execution.

For example

INT, CALL, RET & JUMP instructions fall under this category.

The addressing modes for Sequential flow instructions are
explained as follows. .

Immediate addressing mode
Direct addressing mode
Register addressing mode

Register indirect addressing mode

Register relative addressing mode

1
2
3
4
5. Indexed addressing mode
6
7. Based indexed addressing mode
8

. Relative based indexed

1. Immediate addressing mode:

In this type of addressing, immediate data is a part of instruction, and appears
in the form of successive byte or bytes.

Example: MOV AX, 0005H.

In the above example, 0005H is the immediate data. The immediate data may be 8- bit or
16-bit in size.

2. Direct addressing mode:

In the direct addressing mode, a 16-bit memory address (offset) directly specified in the
instruction as a part of it.

Example: MOV AX, [5000H].

3. Register addressing mode:

In the register addressing mode, the data is stored in a register and it is referred using the
particular register. All the registers, except IP, may be used in this mode.

Example: MOV BX, AX

4. Register indirect addressing mode:

Sometimes, the address of the memorylocationwhich
contains data or operands is determined in an indirect way,
using the offset registers. The mode of addressing is known
as register indirect mode.

In this addressing mode, the offset address of data is in either
BX or Sl or DI Register. The default segment is either DS or
ES.

Example: MOV AX, [BX].
5. Indexed addressing mode:

In this addressing mode, offset of the operand is stored one of
the index registers. DS & ES are the default segments for
index registers Sl & DI respectively.

Example: MOV AX, [SI]
Here, data is available at an offset address stored in Sl in DS.

6. Register relative addressing mode:

In this addressing mode, the data is available at an
effective address formed by adding an 8-bit or 16-bit
displacement with the content of any one of the
register BX, BP, SI & DI in the default(either in DS & ES)

segment.
Example: MOV AX, 50H [BX]
7. Based indexed addressing mode:

The effective address of data is formed in this addressing
mode, by adding content of a base register (any one of
BX or BP) to the content of an index register (any one
of Sl or DI).

Thedefault segment register may be ES or DS.
Example: MOV AX, [BX][SI]

8. Relative based indexed:

The effective address is formed by adding an 8 or 16-bit displacement with the sum of
contents of any of the base registers (BX or BP) and any one of the index registers, in a default
segment.

Example: MOV AX, 50H [BX] [SI]

Addressing Modes for control transfer instructions

For the control transfer instructions, the addressing modes depend upon whether the
destination location is within the same segment or in a different one.

It also depends upon the method of passing the destination address to the processor.
Basically, there are two addressing modes for the control transfer instructions,

They are Inter segment and intra segment addressing modes.

If the location to which the control is to be transferred lies in a different segment
other than the current one, the mode is called intersegment mode.

If the destination location lies in the same segment, the mode is called intra segment mode.

Addressing Modes for control transfer instructions:

1. Intersegment

 Intersegment direct

" Intersegment indirect
2. Intrasegment

* Intrasegment direct

" Intrasegment indirect
1. Intersegment direct:

In this mode, the address to which the control is to be transferred is in a different segment.
This addressing mode provides a means of branching from one code segment to another code
segment. Here, the CS and IP of the destination address are specified directly in the instruction.
Example: JMP 5000H, 2000H; jump to effective address 2000H in segment 5000H.
2. Intersegment indirect:

In this mode, the address to which the control is to be transferred lies in a different
segment and it is passed to the instruction indirectly, i.e. contents of a memory block
containing four bytes, i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The
starting address of the memory block may be referred using any of the addressing modes,
except immediate mode.

Example: JMP [2000H].

Jump to an address in the other segment specified at effective address 2000H in DS.

3. Intrasegment direct mode:

In this mode, the address to which the control is to be transferred lies in the same
segment in which the control transfers instruction lies and appears directly in the
instruction as an immediate displacement value. In this addressing mode, the displacement
is computed relative to the content of the instruction pointer.

The effective address to which the control will be transferred is given by the sum

of 8 or 16 bit displacement and current content of IP. In case of jump instruction, if

the signed displacement (d) is of 8-bits (i.e. -128<d<+127), it as short jump and if it is of 16
bits (i.e. -32768<d<+32767), it is termed as long jump.

Example: JMP SHORT LABEL.

4. Intrasegment indirect mode:

In this mode, the displacement to which the control is to be transferred is in the

same segment in which the control transfer instruction lies, but it is passed to the
instruction directly. Here, the branch address is found as the content of a register or a
memory location.

This addressing mode may be used in unconditional branch instructions.

Example: JMP [BX]; Jump to effective address stored in BX.

INSTRUCTION SET OF 8086

* Classified into 7 categories:

* 1] Data Transfer

e 2] Arithmetic

* 3] Logical

e 4] Control

e 5]Processor Control Instructions
* 6] String Manipulation

e 7] Interrupt Control

Data Transfer Instructions

» Note : Data Transfer Instructions do not affect any flags
» 1] MOV dest, src

» Note that source and destination cannot be memory location. Also source
and destination must be same type.

» 2] PUSH Src: Copies word on stack.

» 3] POP dest: Copies word from stack into dest. Reg.

» 4] IN acc, port : Copies 8 or 16 bit data from port to accumulator.
» a) Fixed Port

» b) Variable Port

» 5] OUT port, acc

Data Transfer Instructions Cont...

» 6] LES Reg, Mem: Load register and extra segment
register with words from memory.

» 7] LDS Reg,Mem: Load register and data segment
register with words from memory.

» 8] LEA Reg,Src: load Effective address.
(Offset is loaded in specified register)

» 9] LAHF: Copy lower byte of flag register into AH
reqgister.

» 10] SAHF: Copy AH register to lower byte of flag

Data Transfer Instructions Cont ...

* 11] XCHG dest, src: Exchange contents of source and destination.
e 12] XLAT: Translate a byte in AL.

This instruction replaces the byte in AL with byte pointed by BX.To
point desired byte in look up table instruction adds contains of BX
with AL (BX+ AL). Goes to this location and loads into AL.

Arithmetic Instructions

» 1]ADD dest,src
» 2] ADC dest,src: Add with carry
» 3] AAA : ASCII adjust after addition.

We can add two ASCIl numbers directly and use AAA after addition
so as to get result directly in BCD. (Works with AL only)

» 4] DAA : Decimal adjust accumulator.
(Works with AL only)

Arithmetic Instructions Cont...

>

5] SUB dest, src

6] SBB dest, src: Subtract with borrow.

7] AAS: ASCII adjust for subtraction
(same as AAA and works with AL only)

8] DAS : Decimal adjust after Subtraction.
(works with AL only)

9] MUL src

10] IMUL src: Multiplication of signed byte.

Arithmetic Instructions Cont...

e 11] AAM: BCD adjust after multiply.
(works with AL only)

e 12]DIV src
If any one attempts to divide by O, then ?

. 13
+ 14

*15]

IDIV: Division of signed numbers
AAD: BCD to Binary convert before Division.
DEC dest

Arithmetic Instructions Cont...

* 16] INC dest
* 17] CWD: Convert signed word to signed double word.

e 18] CBW : Convert signed byte to signed word.
(CBW and CWD works only with AL, AX and DX)
* 19] NEG dest: Forms 2’s complement.

Logical Instructions

» 1] AND dest, src

» 2] NOT dest: Invert each bit in destination

» 3] OR dest, src

P 4] XOR dest, src

» 5] RCL dest, count : Rotate left through Carry

Rotate as many times as directly specified in the instruction. For more no.of rotations,
count can be specified in CL register.

» 6] RCR dest, count : Rotate right through carry
» 7] ROL dest, count : Rotate left (into carry as well as into LSB)
» 8] ROR dest, Count : Rotate left (into carry as well as into MSB)

Logical Instructions Cont...

» 9] SAL/ SHL dest, count : Shift left and append 0s on
right.

* 10] SAR dest, count : Shift right retain a copy of the S-
bit and shift all bits to right.

* 11]SHR dest, count : Shift right append 0s on left

e 12] TEST dest, src: AND logically, updates flags but
source and dest are unchanged.

Logical Instructions Cont...

e 13] CMP dest, src

* CF, ZF and SF are used

Ex. CMP CX,BX

e CX =BX
e CX> BX
e CX<BX

CF
0
0
1

SF

CONTROL TRANSFER INSTRUCTIONS

* 1]CALL : Call a procedure
Two types of calls:
i) Near Call (Intrasegment)
ii) Far Call (Intersegment)
* 2] RET : Return execution from procedure

* 3] JMP : Unconditional Jump to specified destination. Two types
near and Far

CONTROL TRANSFER INSTRUCTIONS
Cont...

» 4] JA / INBE: Jump if above / Jump if not below

The terms above and below are used when we refer
to the magnitude of Unsigned number .

Used normally after CMP.
» 5] JAE / JNB / JNC
»6]JB/JC/INAE
» 7] JBE / JNA
» 8] JE/ JZ

CONTROL TRANSFER INSTRUCTIONS
Cont...

* 9] JCXZ: Jump if CX is Zero.

* 10] JG / JNLE: Jump if Greater /Jump if NOT less than
or equal.

The term greater than or less than is used in
connection with two signed numbers.

* 11] JGE / JNL:
* 12] JL / INGE:
* 13] JLE / JNG :
* 14]JNE / JNZ :

CONTROL TRANSFER
INSTRUCTIONS Cont...

* 15] JNO : Jump if no overflow
e 16] JNS : Jump if no sign

e« 17]JS

* 18] JO

* 19] JNP / JPO

« 20] JP / JPE

In all above conditional instructions the destination of
jump is in the range of -128 to + 127 bytes from the
address after jump.

CONTROL TRANSFER INSTRUCTIONS Cont...

» 21] LOOP: Loop to the specified label if CX is not equal
to Zero.

The count is loaded in CX reg. Every time LOOP is

executed, CX is automatically decremented - used in
delay programs

» 22] LOOPE/ LOOPZ: Loop while CX is not equal to zero
and ZF = 1.

» 23] LOOPNE / LOOPNZ: Loop while CX not equal to zero
and ZF = 0.

In all above LOOP instructions the destination of jump is

:_rbtcl)*\e range of -128 to + 127 bytes from the address after
P.

PROCESSOR CONTROL

] CLC: Clear Carry flag.

STC :Set carry Flag
CMC :Complement Carry Flag
CLD: Clear Direction Flag.

] STD: Set Direction Flag

CLI :Clear Interrupt Flag.
STI : Set Interrupt Flag.

] HLT: Halt Processing.

PROCESSOR CONTROL Cont...

» 9] NOP : No Operation
» 10] ESC: Escape

Executed by Co-processors and actions are
performed according to 6 bit coding in the
instruction.

» 11] LOCK : Assert bus lock Signal
This is a prefix instruction.

» 12] WAIT :Wait for test or Interrupt Signal.
Assert wait states.

STRING CONTROL

» 1] MOVS/ MOVSB/ MOVSW
Dest string name,src string name

This instn moves data byte or word from location in DS to location in
ES.

» 2] REP / REPE / REPZ / REPNE / REPNZ
Repeat string instructions until specified conditions exist.
This is prefix a instruction.

STRING CONTROL Contad...

» 3] CMPS / CMPSB / CMPSW
Compare string bytes or string words.

» 4] SCAS / SCASB / SCASW
Scan a string byte or string word.
Compares byte in AL or word in AX. String address is to be loaded in DI.

» 5] STOS / STOSB / STOSW
Store byte or word in a string.
Copies a byte or word in AL or AX to memory location pointed by DI.

» 6] LODS /LODSB /LODSW
Load a byte or word in AL or AX

P Copies byte or word from memory location pointed by Sl into AL or
AX register.

Interrupt Control

* 1]INT type
e 2] INTO Interrupt on overflow

* 3] IRET Interrupt return

ASSEMBLER DIRECTIVES

» 1] ASSUME

Used to tell assembler the name of logical segment. Ex. ASSUME CS: Code
here

» 2] END

» 3] DB

» 4] DW

» 5] DD Define Double Word
» 6] DQ Define Quad Word
» 7] DT Define Ten Bytes

ASSEMBLER DIRECTIVES Cont...

» 8] PROC Procedure
PROC DELAY NEAR
» 9] ENDP
» 10] ENDS
» 11] EQU
» 12] EVEN: Align on even memory address.
» 13] ORG
» 14] OFFSET
Ex: MOV BX, Offset of Data Here
» 15] PTR Pointer

ASSEMBLER DIRECTIVES Cont...

* 16] LABEL
Ex: AGAIN LABEL FAR
* 17] EXTRN

Tells the assembler that the names or labels following
this directive is in some other assembly module.

e 18] PUBLIC
Links modules together

ASSEMBLER DIRECTIVES Cont...

» 19] INCLUDE
Include source code from file.

» 20] NAME
To give specific name to module.

» 21] GROUP
Grouping of logical segments.

» 22] SEGMENT

» 23] SHORT
Operator that tells assembler about short displacement.

» 24] TYPE
Type of variable whether byte or word.

Wee =— 1
sy, -—1 2
AD; . 1 3
AD; «—] 4
Ay, — 5
AD,—15
AD, — 7
AD, ~—| 8
AD, — 9
AD, ~—1 10
AD, 11
AD,—| 12
AD, —] 13
AD, —] 14
AD, — 15
AD,~— 16
L o | 17
INTR -— 18
CLE — 1§ 19
VYeg «—1_ 20

S086

30
39
as
3r
3G
35
=4
33
az
31
30
29
28
27
26
25
24
23
22
21

IRETEREERRINEATEEEY

Q5s,

TEST
READY'
RESET

MIMN
MO IDVE

HOLDy

H L DA

WA IR
1oy

DT /M R!
DEM'

I~NTTA

Pin diagram of 8086 Microprocessor

Electronics Desik

8086 Microprocessor

Pins and Signals

Common signals

GMD +—
AD,,
AD,, =
AD,,
AD,,
"E'"Dﬂ:l 3
AD, +—
AD, =
AD; «—
AD, «—
AD, =
AD, =
AD, >
AD, =
AD, =
AD,
ML =
INTR —
CLK —

GND «—

S0 o~ 3 h Ak s

_'l_l._l._l._l.d_'l.
o o P L P .

17
18
19
20

8036

40
39

ar
36
35

33
32
31

29
28
27
26
25
24
23
22
21

— V.

s ADE
— AD, /5,
—+ AD,, /S,
— AD, /5,
= ﬂnisﬁ
— BHE/ &,
— MN/ MX
— RD

«— HOLD
<— HLDA
— WR
— M/ 0
—> DT/ R
— DEN
—= ALE
— [NTA
«— TEST
«— READY

<— RESET

(RQ/ GT,)
(RQ/GT))
(LOCK)
5.)

i
| &
k!
e

AD,-AD, (Bidirectional)
Address/Data bus

Low order address bus; these are

multiplexed with data.

When AD lines are used to transmit
memory address the symbol A is used
instead of AD, for example A;-A,..

When data are transmitted over AD lines
the symbol D is used in place of AD, for
exda I'I"IP'E Du'n?, DH'D“ or DQ'D ig=

A16/S31 A17/Sa Ar1g/Ssi Ao/ S

High order address bus. These are
multiplexed with status signals

= Micm1}mﬁwhns and Signals | Common signals

GMND «— 1 ~ aple— Vs
AD., < 2 39— AD,
AD,., =+ 3 38 'ﬂ"D"..- f S:I
F"D-]j i 4 3? — 'ﬂ"Dﬁ' '|l Sl’-
AD, = 5§ 36 — AD, /!5,
AD, <3 B 35— AD./S,
AD, « 7 34 — BHE! g,
AD, «— & 33— MN/ MX
AD. = g 32 — RD

AD, «—{ 10 3035 31 [HOLD
AD, < 11 30 == HLDA
AD, < 12 29 — WR
AD, « 13 28— M/ IO
AD, < 14 27— DTIR
AD, =—{ 15 26 — DEN
AD, < 16 25 — ALE
MM < 17 24 = INTA
INTR —= 18 23— TEST
CLK —+ 19 22 =— READY
GND =— 20 21— RESET

(RQ/GT,)
(RQ/GT)
(LOCK)
(S,

(5,

(S.)

(QS,)
(QS.)

BHE (Active Low) /S, (Output)
Bus High Enable/Status

It is used to enable data onto the most
significant half of data bus, Dz-D,;. 8-bit

device connected to upper half of the
data bus use BHE (Active Low) signal. It

is multiplexed with status signal 5,.

MN/ MX
MINIMUM / MAXIMUM

This pin signal indicates what mode the
processor is to operate In.

RD (Read) (Active Low)

The signal is used for read operation.
It is an output signal.
It is active when low.

BDBG Microprocessor

Pins and Signals

Common signals

AD,, =
AD,,
AD,, =
AD,, <
AD,
AD,
AD.
AD,
AD,
AD,
AD,
AD,
AD,
AD,
MM e

INTR —
CLK —

GND =—

S ooe =~ oo o

"

8086

SN

—
e

]
=

40
39
38
ar
36
35

33
32
31

29
28
27
26
25
24
23
22
21

— W

e—s AD.,
—* 'ﬂ"D'..- ! S:|
— AD., /S5,
— AD., 5,
— AD /5,
—s BHE/ 5,
— MN/ MX
— RD

—= HOLD
— HLDA
— WR

— M/ O
—=0OT/' R
— DEN
—= ALE
— [NTA
«— TEST
«—— READY

(RQ/GT,)
(RQ/GT)
{LOCK)
(S,)

(S}

(8.)

(QS,)
(QS.)

<— RESET

3/29/2016

SUkEnt B he sianal is active hiah.

TEST
TEST input is tested by the 'WAIT
instruction.
8086 will enter a wait state after

execution of the WAIT instruction and
will resume execution only when the
TEST is made low by an active hardware.

This is used to synchronize an external
activity to the processor internal
operation.

READY

This is the acknowledgement from the
slow device or memory that they have
completed the data transfer.

The signal made available by the devices
is synchronized by the 8284A clock
generator to provide ready input to the
8086.

s rq"“c"”'mmmhns and Signals Common signals

GMND <—
AD,, =3
AD,, <
AD,;
AD,, =
AD,, =
AD,
AD,
AD.
AD,
AD,
AD,
AD,
AD,
AD,
AD,
MM e

INTR —
CLK —

GMND <—

o I 6 = T P ¢ R L e RN

—

LI

=
L]

]
=

8086

40
39
38
ar
36
a5

33
32
31

29

28
27

26
25

24 >

23
22
21

{—"u"m

e—a A0

—* "E"D": ! S:|
— AD-.;- |Il S.-_
— AD., /S,

= BHE! S,
— MNS MX
— RD
e—s HOLD
e—s HLDA
— WR
— M/ 10

* DT/ R
— DEN
—* ALE
INTA
— TEST
«— READY

<— RESET

3/29/2016

* AD /S,

RESET (Input)

Causes the processor to Iimmediately
terminate its present activity.

The signal must be active HIGH for at
least four clock cycles.

(RQ/ GT,)
(RQ/GT,)

CLK

The clock input provides the basic timing
for processor operation and bus control
activity. Its an asymmetric square wave
with 23% duty cycle.

(LOCK)

=
(8,
(5.
(QS,)
{Q5.)

Sukant §

INTR Interrupt Request

This is a triggered input. This is sampled
during the last clock cycles of each
instruction to determine the availability
of the request. If any interrupt request is
pending, the processor enters the
interrupt acknowledge cycle.

This signal is active high and Ir1|1:~t=.trn|allv|||I

=] =

nchronized.

8006 Micsopracessor uns and Signals Min/ Max Pins

33 f— MN/ X

31
30
29
28
27
26
25
24

—r HOLD
—> HLDA
— WR
—* M/ 10
— DT/ R
—+ DEMN

—= ALE

— [NTA

The BO86 microprocessor can work in two
modes of operations : Minimum mode and
Maximum mode.

In the minimum_ mode of operation the
microprocessor do not associate with any
CO-processors and can not be used for
multiprocessor systems.

In the maximum mode the 8086 can work

in multi-processor or co-processor
configuration.

Minimum or maximum mode operations
are decided by the pin MN/ MX(Active low).

When this pin is high 8086 operates in

minimum mode otherwise it operates in
Maximum mode.

BOBG Microprocessor - = S)
* Pins and Signals Minimum mode signals

Pins 24 -31

For minimum mode operation, the MN/ MX is tied
to VCC (legic high)

BOB86 itself generates all the bus control signals

DT/R (Data Transmit/ Receive) Output signal from the
processor to control the direction of data flow
through the data transceivers

DEN (Data Enable) Output signal from the processor
used as out put enable for the transceivers

31 =+ HOLD
a0 k—s HLDA ALE (Address Latch Enable) Used to demultiplex the
29 |— WE address and data lines using external latches
28 — M/ IO : :
77— 0T/ B M/10 Used to differentiate memory access and I,/0
26 |— DEN access. For memory reference instructions, it is
25 | ALE high. For IN and OUT instructions, it is low.
24 —+ [NTA

WR Write control signal; asserted low Whenever
processor writes data to memory or I/ 0 port

INTA (Interrupt Acknowledge) When the interrupt
request is accepted by the processor, the output is
low on this line.

8086 Microprocessor

3
30
29
28
27
26
25
24

Pins and Signals Minimum mode signals

Pins 24 -31

For minimum mode operation, the MN/ MX is tied

to VCC (logic high)

8086 itself generates all the bus contreol signals

HOLD

l"—9‘1-1'IIIL|21| HLDA
= HLDA

— WR

— M/ O

— DT/ R

—+ DEN

—+ ALE

— [NTA

Input signal to the processor form the bus masters
as a request to grant the control of the bus.

Usually used by the DMA controller to get the
control of the bus.

(Hold Acknowledge) Acknowledge signal by the
processor to the bus master requesting the control
of the bus through HOLD.

The acknowledge i1s asserted high, when the
processor accepts HOLD.

8086 Microprocessor

Pins and Signals Maximum mode signals

During maximum mode operation, the MN/ MX is
grounded (logic low)

Pins 24 -31 are reassigned

Sy 51, 5: Status signals; used by the 8086 bus controller to
generate bus timing and control signals. These are

decoded as shown.
Simlus Signal
= Machine Cvele
5. 5 B
il L L] i Irerrupt acknowledge
31 = (RQ/GT,)
3':] F— [ﬁ.ll GT-} i 1] 1 Head 1090 o
28 —* (LOCK) 0 | v Write 10 port
b
gg L& :%.‘:: L] | | Hal
1

26 — (5.) I 0 i Code access
25 —(QS,)
24— (Q8)) I i | Head memory

I I i Wrile ety

I I 1 Passive Inactive

B0B6 Microprocessor

£
30
29
28
27
26

24

Pins and Signals

k— (RQ/ GT,)
—s (RQ/GT)
—* (LOCK)

Maximum mode signals

During maximum mode operation, the MN/ MX is
grounded (logic low)

50s @05,

Pins 24 -31 are reassigned

(Queue Status) The processor provides the status
of queue in these lines.

The queue status can be used by external device to
track the internal status of the queue in 8086.

The output on Q5, and 5, can be interpreted as
shown in the table.

Queue status

UHI

l"":'HII

Quene operation

i

iy

Bl operation
First 'hj-IL' of an 1r|‘u.'m||.' Iroim gueue
Empty the queue

Subsequent byte from gueue

——

8086 Microprocessor

3
30

28
27
26
25
24

Pins and Signals Maximum mode signals

«— (RQ/GT))
—s (RQ/ GT)
— (LOCK)
— (S))

e {E,:.

— (5.)

— (QS,)

—* (Q5,)

During maximum mode operation, the MN/ MX is

RQ/GTy,
RQ/TT,

LOCK

grounded (logic low)

Pins 24 -31 are reassigned

(Bus Request/ Bus Grant) These requests are used
by other local bus masters to force the processor

to release the local bus at the end of the
processor's current bus cycle.

These pins are bidirectional.

The request oni: 1, will have higher priority thani 1,

An output signal activated by the LOCK prefix
instruction.

Remains active until the completion of the
instruction prefixed by LOCK.

The B086 output low on the LOCK pin while
executing an instruction prefixed by LOCK to
prevent other bus masters from gaining control of
the system bus.

Macro

A Macro is a set of instructions grouped under a single unit. It is
another method for implementing modular programming in
the 8086 microprocessors (The first one was using
Procedures). ... The advantage of using Macro is that it avoids

the overhead time involved in calling and returning (as in the
procedures).

Interrupts

An interrupt is used to cause a temporary
halt in the execution of program.

» The meaning of ‘interrupts’ is to break the
sequence of operation.

» While the Microprocessor is executing a
program, an ‘interrupt’ breaks the normal
sequence of execution of
instructions, diverts its execution to some
other program called Interrupt Service
Routine (ISR).

anc_'.i’jf;f‘{‘h — = i.n'ﬁir(* |

ki
~

| = |

Software Interrupts
INT n

|

Maskable 256 Types of
software Interrupts

INT 00 to INT FF

Interrupts

The programmer The programiner cannot
can choose to mask control when a non maskable

specific interrupts |@linterrupt is served

and re-enable them

ler ' The processor has to stop

the main program to execute
he NMI Service Routine.

TIMING DIAGRAMS FOR 8086

The graphical representation of operation of microprocessor with clock cycles is
called as timing diagram

TIMING DIAGRAMS FOR 8086 IN MINIMUM MODE BUS CYCLE AND TIME
STATES

A bus cycle or machine cycle defines the sequence of events when the MPU
communicates with an external device, which starts with an address being
output on the system bus followed by a read or write data transfer. o

Types of bus cycles: Memory Read Bus Cycle, Memory Write Bus Cycle
Input/output Read Bus Cycle, Input/output Write Bus Cycle.

One cycle of clock is called a state or t-state. The bus cycle of the 8086
microprocessor consists of at least four clock periods.

These four time states are called T1, T2, T3 and T4.
This group of states is called a MACHINE CYCLE.

The total time required to fetch and execute an instruction is called an
instruction cycle. An instruction cycle consists of one or more machine cycle.

The following figure shows a memory read cycle of the 8086:

e During period T1,

o The 8086 outputs the 20-bit address of the memory location to be accessed on its multiplexed
address/data bus. BHE is also output along with the address during T1.

o At the same time a pulse is also produced at ALE. The trailing edge or the high level of this pulse is used
to latch the address in external circuitry.

o Signal M/IO is set to logic 1 and signal DT/R is set to the 0 logic level and both are maintained
throughout all four periods of the bus cycle.

e Beginning with period T2,

o Status bits S3 through S6 are output on the upper four address bus lines. This status information is
maintained through periods T3 and T4.

0 On the other hand, address/data bus lines ADO through AD7 are put in the high-Z state during T2.

o Late in period T2, RD is switched to logic 0. This indicates to the memory subsystem that a read cycle is
in progress. DEN is switched to logic 0 to enable external circuitry to allow the data to move from
memory onto the microprocessor's data bus.

e During period T3,

o The memory must provide valid data during T3 and maintain it until after the processor terminates the
read operation. The data read by the 8086 microprocessor can be carried over all 16 data bus lines.

e During T4,

o The 8086 switches RD to the inactive 1 logic level to terminate the read operation. DEN returns to its

inactive logic level late during T4 to disable the external circuitry.

MEMORY READ CYCLE FOR 8086 IN MINIMUM MODE

CLK

| T1 | T2 | T3 |

S

ADD/STATUS S;—-S53

BHE, Aqg— A15><

ADD/DATA

Bus reserved
A"ﬁ Ao > { < for data in

AD \

DEN \

DT/R \

The following figure shows a memory write cycle of the 8086:
e During period T1,

0 Tlhe address along with BHE is output and latched with the ALE
pulse.

o M/IO is set to logic 1 to indicate a memory cycle.

o However, this time DT/R is switched to logic 1. This signals
external circuits that the 8086 is going to

transmit data over the bus.
e Beginning with period T2,

o WR is switched to logic 0 telling the memory subsystem that a
write operation is to follow.

o The 8086 puts the data on the bus late in T2 and maintains the
data valid through T4. Data will be carried

over all 16 data bus lines.

o DEN enables the external circuitry to provide a path for data
from the processor to the memory

ITa IT, T, 1w 1T I, |

Clk
ALE / \
ADD/STATUS)Pk 3 — Aie) 57— 83 X
ADD/DATA [As—As | Valid data Dys— Dy X
h \ /

- \ /
pT/R_/ Vo

Write Cvcle Timing Diagram for Minimum Mode

R ——1__ I _]—_—L_
e il

T ey . N
g:.’-* - §.¢, Active)‘: Inactive ;><_

Ty —— (— ——

ADD/STATUS >< >< BHE S, — Sa P,

- i
ADD/MATA :>—<A15—Au X DATA OUT D45 — Do > 228
ADys — ADo

AMWC or \ j
AlOWC

MWTC or /
IowWe \

High

DT/R

DEN \ /7

WRITE CYCLE TIMING DIAGRAM FOR 8086

iy o e e o

MAXIMUM MODE TIMING DIGRAMS

Clk

ALE

52— 5o

Add/'Stats

Add/Data

MEDC

DT /K™

tq Omne bus cycle —_—
Ty | T | T | Ty | Ty |

/ \ /

LTI
Hﬁ..&n-mﬁ }:hi—i‘:: }' """""""""
------- (=R) (Dre— Dy peememenes

f \

Memoiryv Read Tuning i Maxunum Mode

/O INTERFACE

* Any application of a microprocessor based system requires the
transfer of data between external circuitry to the microprocessor and
microprocessor to the external circuitry. User can give information to
the microprocessor based system using keyboard and user can see
the result or output information from the microprocessor based
system with the help of display device. The transfer of data between
keyboard and microprocessor, and microprocessor and display device

is called input/output data transfer or I/O data transfer. This data
transfer is done with the help of 1/O port

* The generation of path between two devices to flow data,or
Interconnection of two devices is called interfacing.

Input port:

DO-D7
< INFUT PORT DATA FROM INPUT
(Tni-State Buffer) DEVICE (KEYBOARD)
DATA BUS
FNABLE
/TN

FIG.1 INPUT PFORT

t is used to read data from the input device such as
keyboard. The simplest form of input port is a
puffer. The input device is connected to the
microprocessor through buffer, as shown in the
fig.1. This buffer is a tri-state buffer and its output
is available only when enable signal is active. When
microprocessor wants to read data from the input
device (keyboard), the control signals from the
microprocessor activates the buffer by asserting
enable input of the buffer. Once the buffer is
enabled, data from the input device is available on
the data bus. Microprocessor reads this data by
initiating read command

Output port:

DO-D7 OUTPUT
\ I}Fl-’If-‘F_ TO OUTPUT DEVICE
3 @arcm | > (DISPLAY)
DATA BUS
CLE

FIG.2 OUTPUT PORT

* It is used to send data to the output device such as
display from the microprocessor. The simplest form
of output port is a latch. The output device is
connected to the microprocessor through latch, as
shown in the fig.2. When microprocessor wants to
send data to the output device is puts the data on
the data bus and activates the clock signal of the
latch, latching the data from the data bus at the
output of latch. It is then available at the output of
latch for the output device.

Interfacing Analog to Digital Data Converters

* In most of the cases, the PIO 8255 is used for interfacing the analog to digital
converters with microprocessor.

* [We have already studied 8255 interfacing with 8086 as an I/O port, in previous
section. This section we will only emphasize the interfacing techniques of analog
to digital converters with 8255.

* [The analog to digital converters is treated as an input device by the
microprocessor that sends an initializing signal to the ADC to start the analogy
to digital data conversation process. The start of conversation signal is a pulse of
a specific duration.

* [The process of analog to digital conversion is a slow

* [Process and the microprocessor have to wait for the digital data till the
conversion is over. After the conversion is over, the ADC sends end of conversion
EOC signal to inform the microprocessor that the conversion is over and the
result is ready at the output buffer of the ADC. The set asks of issuing an SOC
pulse to ADC, reading EOC signal from the ADC and reading the digital output of
the ADC are carried out by the CPU using 8255 I/O ports.

The time taken by the ADC from the active edge of SOC pulse till the active edge of EOC signal is
called as the conversion delay of the ADC.

[It may range anywhere from a few microseconds in caseof fast ADC to even a few hundred
milliseconds in case of slow ADCs.

[The available ADC in the market use different conversion techniques for conversion of analog
signal to digitals. Successive approximation techniques and dual slope integration techniques are
the most popular techniques used in the integrated ADC chip.

[General algorithm for ADC interfacing contains the following steps:
[_Ensure the stability of analog input, applied to the ADC.

[Issue start of conversion pulse to ADC

[Read end of conversion signal to mark the end of conversion processes.
[Read digital data output of the ADC as equivalent digital output.

[_Analog input voltage must be constant at the input of the ADC right from the start of conversion
till the end of the conversion to get correct results. This may be ensured by as ample and hold
circuit which samples the analog signal and holds it constant for specific time duration. The
microprocessor may issue a hold signal to the sample and hold circuit.

[If the applied input changes before the complete conversion process is over, the digital
equivalent of the analog input calculated by the ADC may not be correct.

ADC 0808/0809:

* The analog to digital converter chips 0808 and 0809 are 8-bit CMOS,
successive approximation converters. This technique is one of the fast
techniques for analog to digital conversion. The conversion delay is 100us
at a clock frequency of 640 KHz, which is quite low as compared to other
converters. These converters do not need any external zero or full scale
adjustments as they are already taken care of by internal circuits.

* [These converters internally have a 3:8 analog multiplexer so that at a
time eight different analog conversion by using address lines - ADD A, ADD
B, ADD C, as shown. Using these address inputs, multichannel data

Fig (1) and Fig (2) show the block diagrams
and pin diagrams for ADC 0808,/0809.

Fig (1) and Fig (2) show the block diagrams
and pin diagrams for ADC 0808,/0809

IARE_MPID_Lectures_Notes.pdf - Adobe Acrobat Reader DC
File Edit Sign Window Help

Home Tools IARE_MPID_Lecture... X

B % ® 8 Q

Search "Underline’

Fig (1) and Fig (2) show the block diagrams and pin diagrams for ADC 0808/0809.

Table.1 Export PDF

Analog I'P Address lines E Edit PDF

selected
PO
TP 1
P2
TIP3
TP 4
PS5
TP 6
P7

w

EE, Create PDF

|§_| Comment

English (India)
English (India) keyboard

English (United States)
US keyboard

— === oo eo|n
=l k=1 =l e E=1

—= =T o =|=|o|e

.f‘ Redact

§OC CLOCK O Protect
Y

T > EOC
1 Fill & Si
Controland | _ d’ : 'gn
Timing unit and

1
’__L, — I—E- Send far Camme

Convert, edit and e-sign PDF
forms & agreements

I

>

& Channel
Analog
Multiplexer

V

Free 7-Day Trial

1543
ENG
’ 16-05-2021 B

& Channel
Analog
Multiplexar

T ’
G B A
Address Lines

sS0C CLOCK

L SR

Control and
Timing unit and
S.AR. |

=

‘ 256 R
Register
ladder and
Switch tree

_r 4

Vier+ Vrer -

—= EQC
|
|
= Y =
a 1
QP
Latch
| | M
OfP
Enable

Fig.1 Block Diagram of ADC 0808/0809

Fig.2 Pin Diagram of ADC 0808/0809

CLK —

Voo —

Il'l.'lrrﬂ["‘—h-
GND

Oy -

w Co = o o h B Ld R —

—
=

"
12
13
14

ADC 0808
ADC 0809

28 | 1Pz

27 t=— /P

26 < |/Po

25 < ADD A
24 = ADDB
23 . ADD C
99 t=— ALE

29 = O;MSB
20 < Og

19 < Os

18 [« O4

17 f= Og LSB
16 [Vier
15 (< Oz

I/Py - /P,
ADD A, B.C
0,-0,

S0C

EOC

OE

CLK

Vee. GND
Voei+ and V

Analog inputs

Address lines for selecting analog inputs
Digital 8-bit output with O, MSB and O, LSB
Start of conversion signal pin

End of conversion signal pin

Output latch enable pin, if kigh enable outpui
Clock input for ADC

Supply pins +5V and GND

Reference voltage positive (+5 Volts maximum)
and Reference voltage negative (0V minimum)

Interfacing ADCO808 with 8086
Interfacing Digital

Fig.3 Timing Diagram Of ADC 0808.

o= Vet Vrer
+5 -
Y Y S5V J
4 o kv e
St]
el Frel N re— Clock ug
- : PA; - PA, K 0,-0
5 @i 7 ¢, L E9C ADC 0808
4 PCy |- FE = Analog
7 4 soc Pz [e— P
Py voltage
iy ok GND [
IORD ——> 8255 el e T B
+ 5V Zeb s
IOWR —>* 5 | B O ST ! A =
pBy o] 1
PBp | |

Interfacing ADCO0808 with 8086

Interfacing Digital To Analog Converters:

Interfacing Digital To Analog Converters:
The

* The digital to analog converters convert binary numbers into their analog
equivalent voltages. The DAC find applications in areas like digitally
controlled gains, motor speed controls, programmable gain amplifiers, etc.

 DACO0800 8-bit Digital to Analog Converter

* [The DAC 0800 is a monolithic 8-bit DAC manufactured by National
Semiconductor.

e |_It has settling time around 100ms and can operate on a range of power
supply voltages i.e. from 4.5V to +18V.

e Usually the supply V+is 5V or +12V.

* [The V-pin can be kept at a minimum of -12V

Pin Diagram of DAC 0800
Interfacing DACO800

Threshold -

Contral

LC
Ugnrt
o
leaut
B+
82
B
Ba

| @ o~ Ot B W R -

16
15
14
13
LI

11

10

Interfacing DACO800 with 8086 Ad 7523
8-Bit Multiplying DAC:

PA; - Phg

8255

Lo

0.01 yF
] L

1]

0.1uF ==

15

— 16
12V ot

3
1

- By

DACOEB0OD

14

4

2

13

Keyboard Interfacing

* In most keyboards, the key switches are connected in a matrix of Rows and Columns.
» [Getting meaningful data from a keyboard requires three major tasks:

e l.etectakeypress

e« 2.Debouncethekeypress.

* 3. Encode the keypress (produce a standard code for the pressed key).

* [logic,0"is read by the microprocessor when the key is pressed.

e Key Debounce:

 Whenever a mechanical push-bottom is pressed or released once,the mechanical
components of the key do not change the positionsmoothly; rather it generates a
transient response.

These may be interpreted as the multiple pressures and responded accordingly.

The rows of the matrix are connected to four output Port lines, &columns are connected to four
input Port lines.

When no keys are pressed, the column lines are held high by the pull-up resistors connected to +5v.
Pressing a key connects a row & a column.

To detect if any key is pressed is to output 0%s to all rows & then check columns to see it a pressed
key has connected a low (zero) to a column.

Once the columns are found to be all high, the program enters another loop, which waits until a low
appears on one of the columns i.e indicating a key press.

A simple 20/10 m sec delay is executed to debounce task.

After the debounce time, another check is made to see if the key is still pressed. If the columns are
now all high, then no key is pressed & the initial detection was caused by a noise pulse.

To avoid this problem, two schemes are suggested:
1. Use of Bistable multivibrator at the output of the key to debounce it.

2. The microprocessor has to wait for the transient period (at least for 10 ms), so that the transient
response settles down and reaches a steady state.

If any of the columns are low now, then the assumption is made that it was a valid key press.

The final task is to determine the row & column of the pressed key &convert this information to Hex-
code for the pressed key.

The 4-bit code from I/P port & the 4-bit code from O/P port (row &column) are converted to Hex-
code.

INTERFACING 4x4 KEYBOARD

* 0

— A V—— —
NN NN
— AV
R
SN N H R v
P e TR T
e AN N MY |
£ & £ £ i ¢ §
R 8
i

DISPLAY INTERFACE

Number to be displayed

Interfacing multiplexed 7-segment display

Y
4]

Py
Pl
Piya

PAy

FAgy
P

Eﬁ,ﬁ-ﬂ“

=

Interfacing of memory with 8086
MICroprocessor

this module you will learn:
What are the different types of memory
Memory structure & its requirement.

How to interface RAM & ROM with 8086
uUP 1in minimum & maximum mode.

Different types of address decoding.

* Memory 1s simply a device that can be used to store
the information .
The semiconductor memories are extensively used
because of their small size, low cost, high speed, high

reliability & ease of expansion of the memory size.

[t consist of mainly flip-tlop & some additional

circuitry such as buffers, one flip flop can hold one

bit of data.

* Memory capacity
» The no. of bits that a semiconductor memory
chip can store 1s called 1ts chip capacity.
* Memory Organization:
» Each memory chip contains 2V locations, where
N 1s the no. of address pins on the chip.
» Each location contains M bits, where M 1s the no.
of data pins on the chip.

» The entire chip will contain 2N x M bits.

» E.g. for 4K x 4, 2'2=4096 locations, each location

holding 4 bits, so N=12 & M=4.

1) ROM (Read Only Memory)

2) PROM (programmable memory)

3) EPROM (Erasable programmable ROM)

4) EEPROM (Electrically Erasable PROM) 500000 times
5) Flash memory EPROM

6) RAM (Random Access Memory)

Storage cells are made
of F/F

Don't require refreshing
to keep their data.

A cell handling one bit

requires 6 or 4
transistors each, which
1S tOO many

Used for cache memory
& battery backed
memory system

EPROM
2716
2732

27C64
27C128
27C256
27C512
27C010
27C020
27C040

Density(bits)

32K
64K

Capacity (bytes)

2K*8
4K*8
SK*8
16K*8
32K*8
64K *8
128K *8
256K *8
512K*8

SRANM Density(bits) Organization
4361 64K 64K *1

1363 64Kk 16 k+1
4364 . SK*8

43254 256K 64K *4
43256A 32K *8

s Allthe hagher sddress hines are decoded W slea the
131000A e 128K *8
¢ The memary chip & seleced only lor s specilied
i lew els on (hese hig ber onder address |ines
%o cach bocaion have fined addres
* Thas lechnigpee is expensive

= It meeds more handware than partial decoding .

14

EPROM

Density(bits)

Capacity (bytes)

2164
21256
21464

421000
424256
44100

44400
44160

416800
416400
416160

64K
256K
256K
M
1M
4M
aM
4M
16M
16M
16M

64 Kxl
256 Kxl
64 Kx4
1 Mxl
256 Kx4
4 Mxl
1 Mx4
256 Kx16
8 Mx2
4 Mx4
1 Mx16

Input buffer

EPROM
R/WW memory 2048x8

4096x8

Internal decoder

i
3
(]
"
=
e
=
=
—

Output buffer

1. Address Pins:

No of address pins No of memory location

X 256 location

Y 2" = 512 lecation

10 2198 = 1024 = 1K location

11 20 = 2048 = 2K location

12 M= 4K

13 V=8 K
14

15

16 - =Mh

17 ‘=128 K

18 = 256 K

2" = 512K

2% = 1024K = IM

2. Data pins: Number of flip flop in each location 1s 4/8,
then data pins 4/8.

3. Control pins:
ROM/ EPROM will consist of only RD (OE)
RAM will have control pins RD & WR.

4. Commons pins: CS (chip select) .
CS is generated using:
1. NAND gate
1. 3 to 8 decoder
1. PAL IC

* In general all the address lines are not used by the
memory devices to select particular memory
locations.

* The remaining line are used to generate chip select
logic.

* Following two techniques are used to decode the
address:

1) Absolute or Full decoding

2) Linear or Partial decoding

All the higher address lines are decoded to select the

memory chip.

The memory chip is selected only for the specified

logic levels on these higher order address lines.
So each location have fixed address.

This technique 1s expensive

It needs more hardware than partial decoding.

This technique 1s used in the small system
All the address lines are not used to generate chip
select logic

Individual High order address lines are used to

decode the chip select for the memory chips.

Less hardware 1s required.
Drawback is address of location is not fixed, so each

location may have multiple address.

Q. 1: Interface 32 KB of RAM memory to the 8086

microprocessor system using absolute decoding with the
suitable address.

Step_1: Total RAM memory = 32 KB
Half RAM capacity = 16 KB
hence,
number of RAM IC required =2 ICs of 16 KB
SO,

EVEV Bank =1 ICs of 16 KB RAM
ODD Bank =1 ICs of 16 KB RAM

Even bank Odd bank
RAM 1(16KB RAM 216KB

Step_2: Number of address lines required = 15 address lines

Step_3: Address decoding table

MEMORY
Ic

HEX

ADDRESS

BINARY ADDRESS

sl Aad

A

Aj;

A

Ao

As

A

A

A

6 K x 8
RAM-(1)

OO0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

O7FFE

0

0

0

0

I

I

l

|

|

I

I

|

I

0

6 K x 8
RAM-(3)

SO0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

OFFFE

0

0

0

0

To decoder

Tol6 KIC

0

Step_3: Generation of chip select logic

Ao _

4"‘ I8

A 17

Ajs

}-
’..
A ’-
’.

M/TO

M/10

1C 74244

butter Loy
BHE
AL

o/« JI LATCH

197
I'.Hﬂ- i.l\ .H._ 8“3“

MM/

D,-D, A,-A, RD WR DDy ArA, RD - WR

CSE —>

16 Kx8 RAM-1 Even |’) 16Kx8 RAM-2 Odd
CSO

Q. 2: Interface 32 K word of memory to the 8086 microprocessor
system . Available memory chips are 16 K x 8 RAM. Use
suitable decoder for generating chip select logic.

Step_1: Total memory =32 K word =32*%2 K = 64 K
IC available = 16 K
hence,

number of RAM IC required =64 K x 8/ 16 Kx8 =4 ICs
SO,

EVEV Bank =2 ICs of 16 Kx8 RAM
ODD Bank =2 ICs of 16 Kx8 RAM

Odd bank

RAM lilok RAM 2016k
RAM 3 16k RAM 4 1ok

Step_2: Number of address lines required = 15 address lines

Step_3: Address decoding table

MEMORY
IC

HEX

ADDRESS

BINARY ADDRESS

. 1]

Ag

Aiz

A

.'\.II

As

\. L]

A

.'\.—.

6 K x8
RAM-(1)

(0. 0.0 0.8

0

0

0

0

()

()

0

()

0

0

0

0

07FFE

0

0

0

1

l

1

l

1

0

6 K x8
RAM-(3)

SO00

0

0

0

0

0

0

0

0

0

0

0

0

0

OFFFE

0

0

0

Tol6 KIC

0

Step_3: Generation of chip select logic

Ayg Ay M/10

Decoder
741.8373

8284 clock
senerator

M /10O

ALE

BHE/S.
A /S-A LS,
AD,,-AD,

16 Kx8 RAM-1 Even
+

16Kx8 RAM-3 Even

16Kx8 RAM-2 Odd

16 Kx8 RAM-4 Odd

Q. 3: Interface the following memory ICs with the 8086
microprocessor system in minimum mode configuration.
ROM 4K-2 Numbers
EPROM 64K-1 Numbers
RAM 32K- INumber . Use partial decoding.

EVEV Bank =1 ICs of 4 KB ROM
ODD Bank =1 ICs of 4 KB ROM

EVEV Bank =1 ICs of 32 KB EPROM
ODD Bank =1 ICs of 32 KB EPROM

EVEV Bank =1 ICs of 16 KB RAM
ODD Bank =11ICsof 16 KB RAM

ok | oumm
ROM _1 (4KB) ROM _2 (4KB)

EPROM _1 (32KB) EPROM _2(32KB)

RAM _1(16KB) RAM _2(16KB)

Step 2:

Number of address lines required for ROM = 13 address lines
Number of address lines required for EPROM = 16 address lines
Number of address lines required for RAM = 15 address lines

Step_3: Address decoding table

1o decoder

To RAM IC

BINARY ADDRESS
MEMORY | oo
IC .-U!I!]-;t.l-_h.'s Aw A o Asal Ao Azl Al Aol Ael As| Arl Asl As| Aul Aa] Azl Al Ao
4Kx8 | FFFFE | 1 1 11112122 l2|2fafaf2f2]1]o0
ROM-(1)
FE000 | 1 1 1/1/o0lolololololololololo]o]o
" 10 KOM IC R
ZKx8 | prrrE | 1 0 111 /2f2/2l2l2l2l2l2l2l2l1]0O
EPROM-
D Eoooo | 1 0 olololololololololololo|lo]o]|O
o EPROM 1C ’
6K x8 | Do00o | 1 1 olo/lolo|lo|lolol/o/o|lo|lo|lolo|o]o0
RAM-(1)
D7FFE | 1 1 1112221l l2l2l2l2l2l2]1]0

Step_3: Generation of chip select logic

M/

Decoder
741.8373

M/10

IC 74244
buffer

\LI
LATCH
8282
(2 or 3)

BHE/ S,
\ /S, -A LSS,
\D,-AD,

DI/R

D,-D, A;-A; RD WR WR

4Kx8 ROM-1 Even
4

4Kx8 ROM-3 Even

16Kx8 RAM-2 Odd

16K x8 RAM-4 Odd

8284 clock
generator

.".-Iq.'.\.“
D,-D

Transcei

vir
).-1)

MODULE-IV

(INTRODUCTION TO
I\/IICROCONTROLLER)

8001

MICROCONTROLLER

« A microcontroller is a small and low-cost microcomputer,
which is designed to perform the specific tasks of embedded

systems like displaying microwave’'s information, receiving
remote signals, etc.

 The general microcontroller consists of the processor, the
memory (RAM, ROM, EPROM), Serial ports, peripherals
(timers, counters), etc.

* 8051 microcontroller is designed by Intel in 1981. It is an 8-bit
microcontroller. It is built with 40 pins DIP (dual inline package).

* It is an Electronic IC.

Then What 1s a Microcontroller ?

® A smaller computer
® On-chip RAM, ROM, I/O ports...

® Example : Motorola’s 6811, Intel’s 8051,
Zilog’s Z&8 and PIC 16X

CPU | RAM | ROM

A single chip
Serial

/O Sl Microcontrollet
Port

Port

How 1s it different from a
Microprocessor ??

B General-purpose microprocessor

CPU tor Computers
No RAM, ROM, I/0O on CPU chip itself
Example ! Intel’s x86, Motorola’s 680x0

CPU Data Bus

General-

Serial
e CcoOM
Micro- Pl
processor e

Address Bus

APPLICATIONS OF MICROCONTROLLER

Personal intformation products: Cell phone, pager,
watch, pocket recorder, calculator

Laptop components: mouse, keyboard, modem,
Prees ioziocl) gejtiridl eziccl psitesiey crizicusr

Home appliances: door lock, alarm clock,
thermostat, air conditioner, TV remote, VCR,
small refrigerator, exercise equipment,
washer/dryer, microwave oven

Industrial equipment: Temperature/pressure
controllers, Counters, timers, RPM Controllers

@Oy SERVA ORI AT I CSICATS I (Il SSRC TG

Microprocessor Vs Microcontroller:

- INData bus
Caemceral

I!ll. ll—_['li'!l:‘-i.l.r:
PeA v Tro—

| S W e =R)

Address bus

Microcontroller

CPU RAM ROM

Senal

Timer COM
Port

Microprocessor

Rezd- by
Mlemary {ROM)

Read-Write
Memony

Sarnial
Interface

PR Crogero

Systerm Bus

1O Poere

Micro Controller

Read-VWrite
Mermory

Read-Only
Pl rmory

microprocessor

1,70 Part Serial Interface

MMicroproces=sor is heart of Computer systermnm.

Micro Controller is a heart of embedded system.

It is just a processor. Memory and 1/0 components
have to be connected externally

Micro controller hrucessnr along with

internal memory and 1,0 components

Since memory and IO has to be connected externally,
the circuit becomes large.

Since memory and IS0 are present internally, the
circuit is small.

Cannot be used in compact systems and hence
inefficient

Can be used in compact systems and henee it is an
efficient technigue

Cost of the entire system increases

Cost of the entire system is low

Due to external components, the entire power
consumption is high. Hence it is not suitable to used
with dewvices running on stored power like batteries.

Since external components are low, total power
consumption is less and can be used with devices
running on stored power like batteries.

Most of the microprocessors do not have power saving
featmres.

Most of the micro controllers have power saving modes
like idle mode and power saving mode. This helps to
reduce power consumption even further.

Since memory and IO components are all external,
each instruction will need external operation, hence it
iz relatively slower.

Since components are internal, most of the operations
are internal instruction, hence speed is fast.

Microprocessor have less number of registers, hence
more gperations are memory based.

Micro controller have more number of registers, hence
the programs are easier to write.

Microprocessors are based on von Newrmarnn
model farchitecture where program and data are stored
in same memaory module

Micro controllers are based on Harvard architecture
where program memory and Data memory are separate

Mainly used in personal computers

Used mainly in washing machine, MP3 playvers

TYPES OF MICVEOCONTROLLEERS

Types of Microcontrollers

Memory/Dewvices

|
I |
Embedded External
mMetmnory

I
A VLSI core

CVHDLfvenlog

Famuily

Instruchon set
|

format)
| |

g051 Motorola PIC

Hitatchi Texas

ARM Others

Siemens

Important Features of 8051

4K bytes ROM
128 bytes RAM
Four 8-bit I1/0O ports

Two 16-bit imers
Serial interface
64I< external code memory space

64I< data memory space

MCS-51 “Family” of Microcontollers

Feature 8031 8051 8052 8751
ROM NO 4kB 8kB 4kB UV Eprom

RAM (Bytes) 128 128 256 128

TIMERS 2 2 : 2

[/0O PINS 32 32 § 32

SERIAL PORTS 1

INTERERUPT
SOURCES

Block Diagram of 8031

« 8051 microcontroller is designed by Intel in 1981. It is an 8-bit
microcontroller. It is built with 40 pins DIP (dual inline package),

4kb of ROM storage and 128 bytes of RAM storage, 2 16-bit
timers.

* |t consists of are four parallel 8-bit ports, which are
programmable as well as addressable as per the requirement.

* An on-chip crystal oscillator is integrated in the microcontroller

having crystal frequency of 12 MHz

* 32 1/0 Pins (Input / Output Pins) — Arranged as 4 Ports: PO, P1, P2 and
P3.

8- bit Stack Pointer (SP) and Processor Status Word (PSW).
e 16 — bit Program Counter (PC) and Data Pointer (DPTR).
 Two 16 — bit Timers / Counters — TO and T1.

* Control Registers — SCON, PCON, TCON, TMOD, IP and IE.

* Serial Data Transmitter and Receiver for Full — Duplex Operation —
SBUF.

* Interrupts: Two External and Three Internal.

e Oscillator and Clock Circuit.

* CPU (Central Processing Unit)

* It is the heart of the Microcontroller that mainly comprises of an
Arithmetic Logic Unit (ALU) and a Control Unit (CU) and other
important components. The CPU is the primary device in
communicating with peripheral devices like Memory, Input and
Output.

* Clock Generator (Oscillator)

* A clock signal allows the operations inside the microcontroller and
other parts to be synchronous. A Clock Generator is an integral part of
the Microcontroller’s Architecture and the user has to provide an
additional Timing Circuit in the form of a Crystal

* Input and Output Ports

* |/O Ports or Input / Output Ports provide the microcontroller, a
physical connection to the outside world. Input Ports provide a
gateway for passing on the data from the outside world with the help
of sensors.

* The data from the input ports is manipulated (depending on the
application) and will determine the data on the output port.

e Output Ports allow microcontroller to control external devices (like
motors and LEDs). Generally, all ports in microcontrollers have dual
functionality i.e. they can act as both input and output port (not at
the same time though).

* Memory -

* A Microcontroller needs program memory to store program/instructions to
perform defined tasks. This memory is termed as ROM. Furthermore the
Microcontroller also requires data memory to store the operands/data on a
temporary basis. This memory is known as RAM. The 8051 Microcontroller is built
with 4 Kb on-chip Read Only Memory (ROM) and 128 bytes Random Access
Memory (RAM).

Address Bus —

A bus of the Microcontroller can be defined as a group of wire which can act as a

medium for the transfer of data. There are two buses present in the 8051
Microcontroller. While we are already aware of the Data Bus, let us know about
the Address Bus of the 8051 Microcontroller. The address bus, which is used to
address memory locations, is 16-bit wide. Furthermore, the address bus can also
be used to transfer data from the CPU (Central Processing Unit) to the

memory. Hence, for obvious reasons the address bus is unidirectional.

Interrupts —

The most powerful attribute of the 8051 Microcontroller is the concept of Interrupts. The
interrupt is a mechanism to —

Temporarily suspend the ongoing program,
Pass the control to a subroutine,

Execute the subroutine,
Resume the ongoing/main program.

Interrupts can be of various types, such as, Software and Hardware interrupts, Non-
maskable and maskable interrupts, etc. Now the 8051 Microcontroller incorporates five
interrupts. These are :

INTO — External Hardware Interrupt.

TFO — Timer O Overflow Interrupt.

INT1 — External Hardware Interrupt.

TF1 — Timer 1 Overflow Interrupt.

R1/T1 - Serial communication Interrupt.

* Input/Output Ports —

 The 8051 Microcontroller needs to be connected to the peripheral devices
in order to control their operations. The I/O Ports are responsible for the
connection of the Microcontroller to its peripheral devices. There are
total Four 8-bit Input/Output Ports present in this Microcontroller.

e Additionally, these are some important features of 8051 microcontroller
given as follows :

* Two 16-bit Timers and Counters.

* A Data Pointer and a Program Counter of 16-bit each.
e 128 User defined Flags.

* Four Register banks.

* 31 General Purpose Registers which are of 8-bit each.
* Pin diagram of 8051 Microcontroller —

Unit

i Latcho . — 1 1o
Stlm:h ‘ » Buffer 0 : Port 0 ——s JOto7
pointer |
|
.| Program !
counter Latch 1 —— e D]» I/C
PC .—‘ E{JEETII | ql—p- Oto7
incrementer :
I
— DPTR Latch2 |——. T]> o
[l ort 2 i
. ! oto7
e f— Buffer 2 | —
.| address :
rag.;l:er — Latch3 —— e
_____ i orta |
BOME @9 | o

L. Interrupt,

Instruction
register

Special purpose
register

timer, serial

port and

memory

control

- Architecture of 8051 Microcontroller

=

ctronics Desk

Operation of each block:-

AULATOR(ACC):- itis used for data
transfer and arithmetic operations. After any
operation result is stored in ACC and can be

accessed through its SFR address of OEOH.

B REGISTER:- it is used to store the upper 8 bit
result of multiplication and divisions. It is used

as temporary register and can be accessed
through its SFR address of OFOH.

ALU:
It 1s 8 bit unit. It performs arithmetic operation as addition, subtraction,
multiplication, division,

increment and decrement
. It performs logical operations like AND, OR and EX-OR operations
Program counter(PC):

The Program Counter (PC) 1s a 2-byte address which tells the 8051 where
the next instruction to execute 1s found in memory.

It 1s used to hold 16 bit address of internal RAM, external RAM or
external ROM locations.
When the 8051 1s initialized PC always starts at 0000h and 1s incremented
each time an 1nstruction 1s executed.
It 1s important to note that PC 1sn't always incremented by one and never
decremented.

Operation of each block:-

EESTACK POINTER(SP):- This is an 8 bit register. SP
1S incremented before the data is stored onto the
stack using PUSH /CALL instructions execution.
During PUSH, first SP is incremented and then
copy the data. In the POP operation, initially copy
the data and then decrement the SP.

DATA POINTER(DTPR):- DTPR is a 16 bit
register. It consists of h}{gher byte (DPH) and a
lower byte (DPL). DPTR is very useful for string
operations and look up table operations. With a 16
bit DPTR, a maximum of 64K of off chip data
memory and 64k of off chip memory can be

addressed.

* Stack pointer(SP): It 1s 8-bit register. It 1s byte addressable. Its
address 1s 81H. It 1s used to hold the internal RAM memory location
addresses which are used as stack memory. When the data 1s to be
placed on stack by push instruction, the content of stack pointer 1s

incremented by 1, and when data 1s retrieved from stack, content of
stack of stack pointer 1s decremented by 1.

Internal RAM

Internal RAM has memory 128-byte. See 8051 hardware for further internal RAM design.

Internal RAM is organized into three distinct areas: 32 bytes working registers from address 00h to 1Fh
16 bytes bit

addressable occupies RAM byte address 20h to 2Fh, altogether 128 addressable bits General purpose
RAM from 30h to 7Fh.

Internal ROM

Data memory and program code memory both are in different physical memory but both have the same

addresses.

An internal ROM occupied addresses from 0000h to OFFFh. PC addresses program codes from 0000h
to OFFFh.

Program addresses higher than OFFFh that exceed the internal ROM capacity will cause 8051
architecture to

fetch codes bytes from external program memory.

: * Program status word
The PSW Register (PSW): this is a special

- Program Status Word is a “bit addressable” 8-bit register [LLlpleilelg N =L@ ale

that has all the flags. consists of different status
MSB LsB bits that reflect the current
e e state of microcontroller.
Symbol Position Function .
cY PSW.7 | Carry Flag * It contains carry(CY),
AC PSW.6 Auxiliary Carry Flag. For BCD H
o axillary ca rry(AC) and two
FO PSW.5 | Flag 0. Available to the user for general reg|StOrS bank SEleCt b|t$
purposes.
RS1 PSW.4 | Register bank select bits. Set by (RS1 and RSO), over flow
software to determine which registe | |
EE | S | ecllee b deinimie tich ogiter flag(OV), a pal.’lty bit(P)
oV PSW.2 | Overflow Flag and 2 user defined status
PSW.1 | Not used fla gS.
P PSW.0 Parity Flag. Even Parity.

Processor Status Word

PSW. 7 PSW.G PSW.S PSW. 4 PSW. 2 PSW. 2 PSW. 1 PSW.0
Y AC FO RSl RS0 oW F
= Register bank Select bit O
= Register bank Select bat 1
RS1 RSO i el Register Bank Status
Bank
0 0 0 e Register Bank 0 1s selected
O 1 1 o~ Register Bank 1 is selected
1 0 = Register Bank 2 i1s selected
1 1 - Register Bank 3 i1s selected

www .. CircuitsToday.com

Oscillator and clock generator:

All operations in a microcontroller are synchronized by the help of an oscillator
clock.

The oscillator clock generates the clock pulses by which all internal operations are
synchronized.

A resonant network connected through pins XTAL1 and XTAL2 forms up an
oscillator.

For this purpose a quartz crystal and capacitors are employed.

The crystal run at specified maximum and minimum frequencies typically at 1 MHz
to 16 MHz.

Special function Registers(SFR):

8051 microcontroller has 11 SFR divided in 4 groups:
A. Timer/Counter register: 8051 microcontroller has 2-16 bit Timer/counter registers called Timer-
reg-TO And

Timer/counter Reg-T1.Each register is 16 bit register divide into lower and higher byte register as
shown below:

These register are used to hold initial no. of count. All of the 4 register are byte addressable.

1. Timer control register: 8051 microcontroller has two 8-bit timer control register i.e. TMOD and
TCON register.
1) TMOD Register: it is 8-bit register. Its address is 89H. It is byte addressable.
It used to select mode and control operation of time by writing control word.
2). TCON register: It is 8-bit register. Its address 1s 88H. It is byte addressable.

Its MSB 4-bit are used to control operation of timer/ counter and LSB 4-bit are used for
external interrupt control.

TMOD Registers

C/T | M1 | MO C/T | M1 | MO

GATE
GATE

|
TIMER 1 TIMER 0

* Gate : When set, timer only runs while INT(0,1) is high.
C/T : Counter/Timer select bit.

M1 : Mode bit 1.
MO : Mode bit 0.

M1, M0 | MODE

13-bit timer mode
16-bit timer mode

0
1
0 | B-bit auto-reload mode
1 | split mode

el ==

TCON Register:

- [.,."_

| B R | i | N Fap

| B ‘

= TF: Overflow flag

— Set by hardware on Timer/Counter overflow

— Cleared by hardware when processor vectors fo interrupt routine
= TR: Run control bit

— Set'Cleared by software to turn Timer/Counter onsoff

= 1E: Interrupt Edge flag

— Set by hardware when external interrupt edge detected

— Cleared when interrupt processed

= IT: Interrupt Type control bit

— Set/Cleared by software to specify
falling edgedow level triggered external interrupts

TFI: Timer I overflow flag. TRI: Timer I run control bit.
TFO: Timer 0 overflag. TRO: Timer 0 run control bit.
IE1: External interrupt I edge flag. ITI1: External interrupt I type flag.
TE0: External interrupt 0 edge flag. IT0: External interrupt 0 type flag.

2.. Serial data register: 8051 micro controller has 2 serial data register viz. SBUF and SCON.
1. Serial buffer register (SBUF): it is 8-bit register. It 1s byte addressable .

Its address 1s 99H. It is used to hold data which is to be transferred serially.
2. Serial control register (SCON): it is 8-bit register. It is bit/byte addressable.
Its address is 98H. The 8-bit loaded into this register controls the operation
of serial communication.
3. Interrupt register: 8051 puC has 2 8-bit interrupt register
1. Interrupt enable register (IE): it is 8-bit register. It 1s bit/byte addressable. Its address 1s ASH.
it 1s used to enable and disable function of interrupt.
2. Interrupt priority register (IP): It is 8-bit register. It is bit/byte addressable.
Its address is B8H.it 1s used to select low or high level priority of each individual interrupts.
4. Power control register (PCON): 1t is 8-bit register. It 1s byte addressable .Its address 1s 87H.

its bits are used to control mode of power saving circuit, either idle or power down mode

and also one bit is used to modify baud rate of serial communication.

4. Power control register (PCON): 1t 1s 8-bit register. It 1s byte
addressable .Its address 1s 87H.
its bits are used to control mode of power saving circuit, either i1dle

or power down mode
and also one bit 1s used to modify baud rate of serial
communication.

Register PCON

(MSBE) (LSB)
7 6 5 4 3 2 1 o
Direct Address 87H | SMOD | e | i = | GF1, | crFo, | PpD ‘l IDL ‘l

Mot Bit Addressable

General Purpose Flag Bits For User
Power Management Bits
1 = Power Down Mode
1 = Idle Mode

www. CircuitsToday.com

Operation of each block:-

R PO RT2, PORT3 LATCHES AND
DRIVERS:- Each latch and corresponding
drivers of port 0-3 is allotted to the
corresponding on chip I/ O port.

Difference between Von Neumann and
Harvard Architecture

 Von Neumann Architecture

* Von Neumann Architecture is a digital computer architecture whose
design is based on the concept of stored program computers where
program data and instruction data are stored in the same memory.
This architecture was designed by the famous mathematician and
physicist John Von Neumann in 1945.

Von Neumann Architecture

Perl=airn Pl rmiaco iy SwTteerm

AAvcilclre == Cr=at= & Irmnm=troaccsiticorm

CCe=rmitr=al FProccessirnceg Lhmiat

ey r=Aaticori=l
ReOgistaers
AAcuccitFarTretices =racd

L_coecpic= L ¥rmaiit

Frocgr=arrmy Choeouaryibenr

eovrnEral itk

Irmppouest/ " T et eat S =tteram

“ern Plesrcarmmm=ararn Ao hiteseacostioar=

Harvard Architecture

* Harvard Architecture is the digital computer architecture whose
design is based on the concept where there are separate storage and
separate buses (signal path) for instruction and data. It was basically
developed to overcome the bottleneck of Von Neumann Architecture.

Harvard Architecture

P@Einm Mermonry SwysStherm

IMmstruacticom
Acvddrress

ImMmstruacticom

Data Aaddress

Dhat=

Central Processimg LMt

O peraticomal
Registers
Luritihhrmetic =armd

Logic ILmit
Frogramm Counter

ool Lhmat

Imnput/"COUtput Swysterm

Harwward Aarchitectuare

It is ancient computer architecture based on
stored program computer concept.

Same physical memory address is used for
instructions and data.

There is common bus for data and instruction
transfer.

Two clock cycles are required to execute single
instruction.

It is cheaper in cost.

CPU can not access instructions and read/write
at the same time.

It is used in personal computers and small
computers.

Difference between Von Neumann and Harvard Architecture :

It is modern computer architecture based on
Harvard Mark | relay based model.

Separate physical memory address is used for
instructions and data.

Separate buses are used for transferring data and
instruction.

An instruction is executed in a single cycle.

It is costly than van neumann architecture.

CPU can access instructions and read/write at the
same time.

It is used in micro controllers and signal
processing.

RISC Architecture Basics

» The word RISC stands for ‘Reduced Instruction Set Computer".
« Itis such a design of the CPU that follows simple instructions and is really speedy.

 Basically, it is a subset of a number of instructions. In simple words, each command performs a really
simple and small jobs.

* Insuch a computer, the set of instructions is simple and easy to implement.

» Therefore, it becomes easy to implement such commands that are really complex and difficult to
execute as single instructions. Every instruction is of almost the same length.

* In short, it divides complex instructions into simple instructions using Piplelining. Pipelining is a
multi stage process to execute instructions.

« Normally,it can execute a single instruction in one machine cycle.

RISC

Prodgram
PMemory

IR |

Jr cwr

Smp le mstnacthors
Cree atmaction = COre CWAY
PIM loxrger

Pipelining in RISC

» This method is a pipelining which is mainly increase the speed of the RISC machines.

* It is a very crucial technique. Reduced Instruction Set Computer is a Architecture which is
designed in such a way that it carries out only a few commands in parallel simultaneously. Due
to the small size if the instructions, the chips used in this sort of architecture need a very few
number of transistors.

* In RISC very less decoding is required. Plus, the data types in the hardware are also less. The
general purpose register is the same one for all.

* The instruction set is uniform. And the addressing nodes are really simple.

 Finally when a job is being performed, RISC saves the number of cycles in which it is being
executed by eliminating the unnecessary part of the code.

Characteristic of RISC Architecture

* There are a lot of characteristics related to the RISC architecture, some of them are as follows:

. Simple set of instructions which are easy to decode and implement.

. The size of one instruction comes under the size of a single word.

. Only one clock cycle is required to execute a single instruction, so it is a fast process.
. The quantity of general purpose register is greater.

The addressing modes are quite simple.

The variable data types are very less.

Its main idea is to achieve pipelining

No VAW =

» Example — Let's suppose we are to perform addition operation on two 8-bit numbers:

* The load command will be used to load the data in the registers and then the addition operator will
be used on them and the result will be stored in the location of the output.

CISC Architecture Introductin

» The word CISC is abbreviated as “Complex Instruction Set Computer”.

* Itis such a design of the CPU that executes a job using only a single command. The command contains
multi-step operations that program want to execute.

» Moreover, CISC machines have relatively smaller programs.
* Whereas, the number of compound instruction size is huge.

« Therefore, it requires a lot of time in execution. In this type of architecture, each instruction set is very well
protected in various steps.

 This means that there are extra three hundred instructions related to each set of instruction. Due to this,
the instructions take time in their execution.

« Their time may vary from two to ten machine cycles, depending on the size of the instruction set.
Furthermore, CISC architecture doesn’'t implement pipelining normally as it is hard to.

FrocraSm
Me mory Me mory

Main Features of CISC

* If we see from the prospective of compilers, CISC machines are good for them.

» Because the range of innovative instructions are easily obtained in a single instruction set. They execute
the compound instructions in only a single and complex set of instructions.

« CISCis able to get processes at low-level. Hence, it is easier this way to have addressing nodes that are
huge and a lot of different data types in machine hardware.

» Despite of all this CISC works less efficiently than the way RISC works.

 This is mainly because CISC is unable to remove the portion of the code that is not required and so a lot
of cycles are wasted by them when the instruction set is executed.

* Plus, their microprocessor chips are very difficult to manufacture and program. They are really complex.

Characteristic of CISC

* There are a lot of characteristics related to the CISC architecture, some of them are as follows:
1. The instruction set is complex. Hence. is its decoding.

2. Instructions are normally large due to their complexity. Instructions are normally bigger than one word
size.

3. Usually, the compound instructions take greater time than a single clock cycle in their execution.

4. The number of general purpose registers are less. Because this, it performs most operations in the
memory itself.

5. The addressing modes are normally complex.
6. The data types are numerous.
« Example — Let's suppose we are to perform addition operation on two 8-bit numbers:

* Only one instruction is used for the execution of this operation. The ADD operation will simply perform
the required task. All the tasks will be done by this single command.

RISC vs CISC

This very equation is normally used to check the performance of any compute

time time _ _ cycles instructions

program cycle instruction program

This formula clearly tells that the performance of a RISC based architecture is way better than the one
operating using CISC architecture. CISC and RISC are two entirely different types of computer architectures.
Some of their differences are as follows:

Difference between RISC and CISC Comparison Chart

CISC

RISC

Memory unit is present to implement the instructions

There is no memory unit and registers store data

It is microprogramming unit

It has a complex design of compiler

Its compiler design is easy

Compiler design is complex

Its calculations are slower yet precise

Perform mathematical calculations faster

Their decoding is difficult

Decoding of its instructions is easier

Instructions are complex so it takes time in execution

It is faster as its instructions are simple

External memory mandatory requirement

No external memory requirment

Pipelining is difficult to implement

Pipelining is easy to implement

Their processors often stall

There is no stalling normally

Code expansion is easier

The expansion of code can be an issue

Utilize more disk space

Consumes less disk space

Its examples include:include VAX, PDP-11, Motorola 68k and your
desktop PCs

Its examples include:DEC Alpha, ARC, AMD 29k, Atmel AVR, Intel
i860, Blackfin, i960, Motorola 88000, MIPS, PA-RISC, Power, SPARC,
SuperH, and ARM

The pin diagram of 8051 microcontroller

looks as follows

Nt
P1O[]1 40 [] Vee
Pii[]2 39 [J P0.0 (ADD)
P12[13 38 [] P01 (AD1)
P13[]4 8051 37 [P0.2 (AD2)
P14[]5 36 [] P0.3 (AD3)
P15[]6 35 [] PO0.4 (AD4)
P16 17 34 [] P05 (AD5)
P17[]8 33 [] PO0.6 (ADB)
RST[]9 32 [] P0.7 (AD7)
(RXD) PS.O[]10 31 [] EA/VPP
(TXD) P3.1 [11 30 [1 ALE/PROG
(INTO) P32[]12 29 [] PSEN
(INT1) P33 [113 28 [P27 (A15)
(TO) P3.4] 14 27 [P26 (A14)
(T1) PAS[] 15 26 [] P25 (A13)
(WR) P36 []16 25 [P24 (A12)
(RD) P3.7 [17 24 [P23 (A11)
XTAL2[]18 23 [] P22 (A10)
XTAL1 119 22 [P21 (A9)
GND [20 21 [] P20 (A8)

Pins 1 to 8 — These pins are known as Port 1. This port doesn’t serve any other functions. It is
internally pulled up, bi-directional 1/0 port.

Pin 9 - It is a RESET pin, which is used to reset the microcontroller to its initial values.

Pins 10 to 17 - These pins are known as Port 3. This port serves some functions like interrupts,
timer input, control signals, serial communication signals RxD and TxD, etc.

Pins 18 & 19 - These pins are used for interfacing an external crystal to get the system clock.

Pin 20 - This pin provides the power supply to the circuit.

Pins 21 to 28 — These pins are known as Port 2. It serves as |/O port. Higher order address bus
signals are also multiplexed using this port.

Pin 29 - This is PSEN pin which stands for Program Store Enable. It is used to read a signal from

the external program memory.

Pin 30 - This is EA pin which stands for External Access input. It is used to enable/disable the
external memory interfacing.

Pin 31 - This is ALE pin which stands for Address Latch Enable. It is used to demultiplex the
address-data signal of port.

Pins 32 to 39 - These pins are known as Port 0. It serves as |/O port. Lower order address and
data bus signals are multiplexed using this port.

Pin 40 - This pin is used to provide power supply to the circuit.

Microcontrollers 8051 Input Output Ports

* 8051 microcontrollers have 4 /O ports each of 8-bit, which can be configured as
input or output. Hence, total 32 input/output pins allow the microcontroller to be
connected with the peripheral devices.

* Pin configuration, i.e. the pin can be configured as 1 for input and O for output as
per the logic state.

* Input/Output (I/0) pin - All the circuits within the microcontroller must be connected to one
of its pins except PO port because it does not have pull-up resistors built-in.

* Input pin - Logic 1 is applied to a bit of the P register. The output FE transistor is turned off
and the other pin remains connected to the power supply voltage over a pull-up resistor of
high resistance.

Port 0 - The PO (zero) port is characterized by two functions -

* When the external memory is used then the lower address byte (addresses AOA7) is applied
on it, else all bits of this port are configured as input/output.

 When PO port is configured as an output then other ports consisting of pins with built-in pull-

Iup:c resistor connected by its end to 5V power supply, the pins of this port have this resistor
ert out.

Input Configuration

If any pin of this port is configured as an input, then it acts as if it “floats”, i.e. the input has unlimited input resistance and in-determined
potential.

Output Configuration

When the pin is configured as an output, then it acts as an “open drain”. By applying logic 0 to a port bit, the appropriate pin will be
connected to ground (0V), and applying logic 1, the external output will keep on “floating”.

In order to apply logic 1 (5V) on this output pin, it is necessary to build an external pullup resistor.
Port 1

P1is a true I/O port as it doesn’t have any alternative functions as in PO, but this port can be configured as general I/O only. It has a built-in
pull-up resistor and is completely compatible with TTL circuits.

Port 2

P2 is similar to PO when the external memory is used. Pins of this port occupy addresses intended for the external memory chip. This port
can be used for higher address byte with addresses A8-A15. When no memory is added then this port can be used as a general
input/output port similar to Port 1.

Port 3
In this port, functions are similar to other ports except that the logic 1 must be applied to appropriate bit of the P3 register.

Pins Current Limitations

When pins are configured as an output (i.e. logic 0), then the single port pins can receive a current of 10mA.

When these pins are configured as inputs (i.e. logic 1), then built-in pull-up resistors provide very weak current, but can activate up to 4 TTL
inputs of LS series.

If all 8 bits of a port are active, then the total current must be limited to 15mA (port PO: 26mA).

If all ports (32 bits) are active, then the total maximum current must be limited to 71mA.

8051 Microcontroller Memory Organization

* 8051 Microcontroller Memory Organization. The 8051
Microcontroller Memory is separated in Program Memory (ROM)
and Data Memory (RAM). The Program Memory of the 8051
Microcontroller is used for storing the program to be executed i.e.
instructions. The Data Memory on the other hand, is used for storing

temporary variable data and intermediate ...

PROGRAM MEMORY (ROM) OF 8051 MICROCONTROLLER

* In 8051 Microcontroller, the code or instructions to be executed are stored
in the Program Memory, which is also called as the ROM of the
Microcontroller. The original 8051 Microcontroller by Intel has 4KB of
internal ROM.

* |[n case of 4KB of Internal ROM, the address space is 0000H to OFFFH. If the
address space i.e. the program addresses exceed this value, then the CPU
will automatically fetch the code from the external Program Memory.

e For this, the External Access Pin (EA Pin) must be pulled HIGH i.e. when
the EA Pin is high, the CPU first fetches instructions from the Internal
Program Memory in the address range of 0000H to OFFFFH and if the
memory addresses exceed the limit, then the instructions are fetched from
the external ROM in the address range of 1000H to FFFFH.As shown in fig

INTERNAL ROM AND EXTERNAL ROM ORGANIZATION OF 8051

+5V

t

(EA Pinis 1)

OFFFH

Q000H

INTERNAL

PROGRAM

MEMORY
(ROM)

4K

FFFFH

1000H

EXTERNAL
PROGRAM
MEMORY
(ROM)

64K

There is another way to fetch the instructions: ignore the Internal ROM and fetch all the instructions only
from the External Program Memory (External ROM). For this scenario, the EA Pin must be connected to GND.
In this case, the memory addresses of the external ROM will be from O000H to FFFFH.as shown in fig

FEFFH
EA EXTERNAL
‘— PROGRAM
= MEMORY
(EA Pin s 0) 8051 MICROCONTROLLER [*™==>| (rom)
0000H

B 4
MERM{

I i
/m“ﬁ\
¢ \

DATA MEMORY (RAM) OF 8051 MICROCONTROLLER

The Data Memory or RAM of the 8051 Microcontroller stores temporary data and intermediate results that
are generated and used during the normal operation of the microcontroller. Original Intel’s 8051
Microcontroller had 128B of internal RAM.

But almost all modern variants of 8051 Microcontroller have 256B of RAM. In this 256B, the first 128B i.e.
memory addresses from O0H to 7FH is divided in to Working Registers (organized as Register Banks), Bit —
Addressable Area and General Purpose RAM (also known as Scratchpad area).

In the first 128B of RAM (from O0H to 7FH), the first 32B i.e. memory from addresses O0H to 1FH consists of
32 Working Registers that are organized as four banks with 8 Registers in each Bank.

The 4 banks are named as BankO, Bank1, Bank2 and Bank3. Each Bank consists of 8 registers named as RO —
R7. Each Register can be addressed in two ways: either by name or by address.

To address the register by name, first the corresponding Bank must be selected. In order to select the bank,
we have to use the RSO and RS1 bits of the Program Status Word (PSW) Register (RSO and RS1 are 37 and
4t bits in the PSW Register).

The next 16B of the RAM i.e. from 20H to 2FH are Bit — Addressable memory locations. There are totally 128
bits that can be addressed individually using OOH to 7FH or the entire byte can be addressed as 20H to 2FH.

The final 80B of the internal RAM i.e. addresses from 30H to 7FH, is the general purpose RAM area which

are byte addressable.
These lower 128B of RAM can be addressed directly or indirectly.

7FH FFH EEH
80 FOH|E
General Y
Purpose bon | Psw
Registers
BEBH| IP
30H ! - 1288 for
16 ABH|IE SFRs G
Bit-Addressable | aon|r2 (Special 128B Additional
Registers 7H|SBUF Function Memory
20H I registers)
1FH
THo
i7h T
10H TSN
OFH PCON
08H
Bt
SP
ooH PO BOH
Lower 128B (O0OH - 7FH) Upper 128B (B80H - FFH)
(Direct and Indirect (Direct Addressing) (Indirect Addressing)

Addressing)

* The upper 128B of the RAM i.e. memory addresses from 80H to FFH is
allocated for Special Function Registers (SFRs). SFRs control specific
functions of the 8051 Microcontroller. Some of the SFRs are I/O Port
Registers (PO, P1, P2 and P3), PSW (Program Status Word), A
(Accumulator), IE (Interrupt Enable), PCON (Power Control), etc.

* SRFs Memory addresses are only direct addressable. Even though some
of the addresses between 80H and FFH are not assigned to any SFR, they
cannot be used as additional RAM area.

* [n some microcontrollers, there is an additional 128B of RAM, which
share the memory address with SFRs i.e. 80H to FFH. But, this additional
RAM block is only accessed by indirect addressing.

INSTRUCTION SET OF 8051 MICROCONTROLLER

Instruction Groups

= Thea 2051 has 255 instructions

— Eweary 8-bil opcodsae from 00 to FF is usad aexcept
for A5_

= The instructions are grouped inloc S groups
— Arthmatc
— Logic
— Data Transfar

— Boalaan
— Branching

DATA PROGRAM
TRANSFER ARITHMETIC LOGICAL BOOLEAN BRANCHING
MOV ADD ANL CLR LinMP
MOVC ADDC ORL SETEB AJTMP
MOVX SUBB R MOV SIMP
PUSH INC CLR JC JZ
PrOP DEC CPL JINC JINZ
AXCH MUL RL JB CINE
XCHD DIV RILC JNB DINZ
DA A RR JIBC NOP
RRC ANL LCALL
SWAP ORL ACALL
CPL RET
RETI

8051 MICROCONTROLLER
INSTRUCTION SET

Arithmetic Instructions
« ADD

— B-bit addition batween the accumulator (A and a
sacond opearand.

* The resull i= always in the accumulator.

* The C¥F fag is sebresef apprapriately.

= ADDC

— H-bit additron between the accumulator, a second
aperand and the pravious value of tha CY flag.
+ Usefuwl for 18-bilt addilion m bao sileps.

+ The CF flag is sebfresei apprapriately.

Arithmetic Instructions

* DA

— Decimal adjust the accumulator.

+ Format the accumulator inta a proper 2 digil packed BCO
Aumb-er.

* Qperates anly on the accumulalor.
+ Works only after the ADD instruction.

* SUBB

— Subtract with Borrow.

+ Subtract an aperand and the previous value of the
barmaw (carry] flag from the accumulator.
M e M - <opsrands - CY.
The result is abvays saved in the accumulatar.

The CY flag is setresed appropriately.

Arithmetic Instructions
* NG

— Incrament thie oparand by one.

* The operand can be a regisier, a direct addres=s, an
imdirecl address, the data poimler.

= DEC

— Decremant the operand by ona.

*+ The operand can be a registier, a direct addres=s, an
mdirec| address.

= MUL AE f DIV AB

— Multiply A by B and place result n AB.
= Divide & by B and place result in A:B.

Logical Operations

= XEL
— Waorks on byltes only.

* CPLfCLR

— Complamant { Clear.

— Waork anm the accumulataor or a bil.
« LLRE F1.2

Logical Operations
* RL/RLC /fRR/RRC

— Roftate the accumulatar.
* RL and BER withoul the carry
* RLC and RRC rolate thraugh the carry.

= SWAF A

— Swap the upper and lower nibblas of tha
accumulator.

= Mo compare instruction.

= Built nto conditional branching instructions.

Data Transfer Operations

= MOV

— 1-bit data transfar mvolving thae CY flag
* MOV C, b
* M OW bik, C

* MOV

— 16-bit data transfar involving the DPTR
* MOV DOPTR, #data

Data Transfer Instructions

* MOVC
- Move Code Byle

* Load the accumulator with a byle from program memary.

* Must use indexed addressing

* MOVC A EA+DPTR
« MOWVC A EA+PC

Data Transfer Instructions

* PUSH fPOP

— Push and Pop a data byte onto the stack.

— The data byte is idantified by a direct address from
tha internal RAM locations.

* PUSH OPL
* POP 20H

Data Transfer Instructions

« XCH

Exchange accumulalor and a byle variable
* XCH A Rn

« MCH A, direcl

« MCH A ERI

* XCHD

Exchange lower digit of accumulatar with the lowsr digit of
the memory location spacifved.

« XCHD A ERI

+ The lower 4-bils of the accumlalor are exchanped wilh the
lovever 4-hils af the nlemal memory location identified indrecily
by the index regisher.

* The upper d-bits of each are nal modified.

Boolean Operations

This group of instructions is associated with the
single-bit operations of the 8051.

This group allows manipulating the individual bits
of bit addressable registers and memaory

locations as well as the CY flag.

— The P, OV, and AC flags cannot be directly
alterad.

This group includes:

— Sal, clear, and, or complament, move.
— Condifional jumps.

Boolean Operations

« CLK
Clear & bil ar the Y flag.
« GLR P1.1
* LR C

* SETHB

Sel a bit ar the CY flag.

* SETH A2
« SETH C

* CPL

Complement a bil or the CY flag.

=« GPL 40H - Complement bil 40 of the bil
addres=able memary

Boolean Operations

« DRL / AML
= OR /F AND a bit with the CY flag.
« gRL &, X4 - {JR bit 20 af bit addressable
memory wilth the CY flag
« AML G, /i34H , AMD complement of bit 34 of bit
addressable memory wilh the CY
flag.
* MOV
— Diata transfer betwean a bit and the CY flag.
* MOV G, AFH . Gopy the CY flag to bil 3F of the

bit addres=zable memory.
= MOV P12, C . Copy the CY flag to bit 2 of P1.

Boolean Operations
* JC FJNC

— Jump to a relaflive address if CY is sal / clearad.

« JB/ JMB

= Jump 1o a relative address if a bit 15 set / cleared.
* JH ARCC 2, <|labels

* JBC

— Jump to a relative address if a bit 15 set and clear
tha bit.

Branching Instructions

* The 8051 provides four differant types of
unconditicnal pump instructions:

shart Jump = SJMP

= Uses an B-bit signed affs=l relatve ta the 1+ byte of the next
mslniclion.

Lang Jump = LJMP
« Uses 3 16-bit address.

* 3 byie insinuclion capable of referenang any location in the
anire 84K of program memary.

Branching Instructions

— Absolute Jump - AJMP

« Usas an 11-bif address.

+ 2 byte instruction

The upper 3-bits of the address combine wilh the B-bit

apoode o form the 1° byte and the lower 8-bits of the
addrass formn the 2= byle.

* The 11-bit address is substifulad for the lower 11:bils af
the PC o calculale the 16-bit address of the target.

The location referenced must be within the 2K Byte
memory page canfaining the AJMP instruction.

— Indirect Jump - JMP
* JMP @A+ DPTR

Branching Instructions

* The 8051 provides 2 forms for the CALL
instruction:
— Absolute Call - ACALL
* Usmz an 11-bif address similar 1o AJKMP

* The subroutine must be within the samea ZK page.

- Long Call - LCALL
+ Usmz 5 16-bif address zimilar ta LIMP

* The subroutine can be anywhara.

— Both forms push the 16-bit address of the naxi
instruction on the stack and update the stack
pointar.

Branching Instructions

* The 8051 provides 2 forms for the return
instruction:

— Refurn from subroutine — RET

* Pap the return address from e stack and conlinues
axecution thars.

- Returm from ISV - RETI

* Pap ke refurn address from the stack.

* Restore the interruplt logic 1o accepl addidional interrupis
al the same prarity level as the one just processed.

« Conlinue execufion at the address retneasved from the
=lack.

* The PSW is nol avlomatically resiored.

Branching Instructions

* The 8051 supports 5 different conditional jump
instructions.

— AlLL conditional jump instructions use an &-bit
signed offset.

— Jump on Zero — JZ 7 JNE
« Jumpifthe A=s=0{Al=0
The check s done al the limes of the iIrstnuclion exsscubion.

— Jump aon Carry — JC § JNC
* Jump if the C flag is sat ! cleared.

Branching Instructions

— Jump on Bit — JB / JMNB

« Jump il the specified bit is sat { clearad.

+ Any addressable bit can be specified.

— Jump if the Bit is set then Clear the bit — JBC

* Jump il the specified bit is sat.
* Then clear tha biL

Branching Instructions

* Decrement and Jump if Not Zero = DJNZE

— Deaecremeant tha first oparand by 1 and jump to tha
location kdantthed by the second operand if thea

resulting valua i not zero.

= DJIMZ o, rel
* DJMZE dir=cl, resl

* Mo CQpearation
— NOP

DATA

TRANSFER
INSTRUCTIONS

A, #Data

Immediate

A, Rn Register
A, Direct Direct
A (DR Indirect
En, #Data Immediate
BEn. A Register
Rn. Direct Rn € (Direct) Direct
Diirect, A (Direct) < A Direct
Direct, En (Direct) < Rn Direct
Directl, Direct2 (Directl) < (Direct2) Diirect
Diirect, (@R (Direct) € @Ri Indirect
Drirect, #Data (Direct) < #Data Direct
R, A R < A Indirect
@Ri, Direct (@Ri < Direct Indirect
@Ri, #Data Ri < #Data Indirect
DPTE. #Datald DPTER < #Datal6 Immediate
MOWVC A, @A+DPTR A 4 Code Pointed by A+DPTR. Indexed
A (@RA+PC A < Code Peointed by A+PC Indexed
A, [@Ri A % Code Pointed by Ri (8-bit Address) Indirect
MOWVX A @DPTR A < External Data Pointed by DPTR Indirect
R, A @RI € A (External Data 8-bit Addr) Indirect
@DPTR. A @DPTR < A (External Data 16-bit Addr) Indirect
PUSH Direct Stack Pointer SP < (Direct) Direct
PO Direct (Direct) € Stack Pointer SP Drirect
XCH BEn Exchange ACC with Rn Register
Drirect Exchange ACC with Direct Byte Drirect
[A Exchange ACC with Indirect F.AM Indirect
MCHD AL (@RI Exchange ACC with Lower Order Indirect RAM Indirect

ARITHMATIC
INSTRUCTIONS

A. #Data A <
A. Rn A€ A+ Rn Register
A Direct A €< A + (Direct) Direct
A. @Ri A< A+ @RI Indirect
ADDC A #Data A < A + Data+ C Immediate
A Rn A e A +Fn+C Register
A, Direct A €< A + (Direct) + C Direct
A @Ri A A+@RL+C Indirect
SUBB A #Data A < A —Data—C Immediate
A, Rn A€ A—-FRn—C Register
A, Diarect A < A — (Direct) — C Direct
A. (@R A€ A—@RI-—-C Indirect
Multiply A with B
MUL AB (A < Lower Byte of A*B and B -
< Higher Byte of A*B)
Divide A by B
DIV AB (A < Quotient and B < -
Remainder)
DEC A A e A — 1 Register
En BEn< En—1 Register
Direct (Direct) < (Direct) — 1 Direct
wR1 (@Ri < @Ri— 1 Indirect
INC .y A A+ 1 Register
En Rn < Rn + 1 Register
Direct (Direct) < (Direct) + 1 Direct
R @Ri < (@Ri+ 1 Indirect
DPTR DPTR < DPTR + 1 Register
DA A Decimal Adjust Accumulator —

LOGICAL
INSTRUCTIONS

IVITIEIMNONIC |

— — 1

P e — N ==
Instirmaiction

Cr1p

A €< A AND Data

ANL A #Data
A.Rn A < A AND Rn Register
A, Direct A < A AND (Direct) Direct
AL (@R1 A € A AND @Ri Indirect
Direct. A (Direct) € (Direct) AND A Direct
Direct. #Data (Direct) < (Direct) AND #Data Direct
ORL A #Data A < A OR Data Immediate
AL Rn A € A ORRnN Register
A Direct A < A OF (Direct) Direct
A. @Ri1 A< A OR @Ri Indirect
Direct. A (Direct) < (Direct) OR. A Direct
Direct, #Data (Direct) < (Direct) OR #Data Direct
XEL A #Data A < A XRL Data Immediate
A.Rn A < A XRL Rn Register
A IDirect A < A XRI (Direct) Dyirect
A, @Ri A € A XRL @Ri Indirect
Direct. A (Direct) < (Direct) XRL A Direct
Direct. #fData (Direct) < (Direct) XRL #Data Direct
CLR A A< O0OH -
CPL A A< A --
RL A Rotate ACC Left —
RILC A Rotate ACC Left through Carry --
R . Rotate ACC Right -
RRC A Rotate ACC Right through Carry --
SWAP A Swap Nibbles within ACC -

BOOLEAN
INSTRUCTIONS

C _ (::: Carrj.r Bit)

Bat Bit < l';'l (Bit = Direct Bit)
SET C C < 1
Bit Bit < 1
CPL C it B
Bit Bit < Bat
ANL C., /Bit C €< C. Bit (AIND)
C. Bit C < C . Bit (AND)
ORIL. C., /Bt C < C + Bit (OR)
C. Bit C € C + Bit (OR)
MNONV C., Bit C €< Bit
Bit, C Bit < C
JC rel Jump is Carry (C) is Set
JINC rel Jump 1s Carry (C) 1s INot Set
JB Bit. rel Jump is Direct Bit 1s Set
JINB Bit, rel Jump 1s Direct Bit 1s Not Set
TBC Bit =] Jump 1s Direct Bit 1s Set and

Clear Bit

PROGRAMME
BRANCHING

INSTRUCT

ONS

Ab sc}lut; : éllbfoltfﬂ;e Call

Gt PC + 2 -> (SP): ADDRI11 > PC
\ T \ T Long Subroutine Call
Lo L P 1 PC + 3 2 (SP); ADDRI16 =2 PC
P Return from Subroutine
i B (SP) = PC
RETI -- Return from Interrupt
A TP ADDR11 Absolute Jump
ADDR11 = PC
TNV \ T Long Jump
= Etlo ADDRI16 =2 PC
Short Jump
SIMG e PC + 2 + rel > PC
JMNP A + DPTR A+ DPTR —> PC
JZ rel If A=0, Jump to PC + rel
JINZ rel If A = 0, Jump to PC + rel
INE S) Compare (Direct) with A. Jump
< By DHTSCE, Tal to PC + rel 1f not egual
) Compare #Data with A. Jump to
SRl PC + rel if not equal
! Compare #Data with BEn. Jump
Bn, #Data, rel to PC + rel if not egual
:) Compare #Data with (@Ri. Jump
@R, #Data, rel to PC + rel if not equal
DINZ el Decrement RJ:]. Jump to PC + rel
if not zero
Direct 1=l Decrement (Dueci), Jump to PC
+ rel if not zero
NOP No Operation

ADDRESSING MODES OF 8051

¢ Addressing mode: The way instruction is provided
* 8051 provides total 5 addressing modes

 They are 1) Immediate

e 2)Direct

* 3)Register

* 4)Register Indirect

* 5)Indexed

* 1)) Immediate addressing mode: In this addressing mode the source is constant
* Immediate data must be proceeded by sign” # “

e This addressing mode can be used to load information into any one of regiter.
* syntax mov A, #25H; load 25h into A

. mov Rn, #30; Load decimal value into Rn register(n=0 to 7)

. mov DPTR, #4521H; load DPTR=4521H

¢ 2) Direct Add ressing MOode: This mode used to access RAM locations of 8051(30-7F)

* This mode the direct address of memory location is provided in instruction to fetch the operand. Only internal RAM and
SFR's address can be used in this type of instruction.

syntax : MOV A, 30H ; Content of RAM address 30H is copied into Accumulator.
. : MOV 30H, A; Content of Accumulator. is copied into RAM address 30H

¢ 3) Regilsteg Addressing modes: Register addressing mode involves use of registers to hold the data to be
manipulate

e Syntax: mov A,Rn; copy the content of Rn into A
. Mov Rn, A; copy the content of A into Rn

. ADD A,Rn,; add the content of Rnto A

* 4) RegiSter Indirect AddreSSing modes:Here the address of memory location is indirectly

provided by a register. The '@’ sign indicates that the register holds the address of memory location i.e. fetch the
content of memory location whose address is provided in register.

syntax: MOV A,@R0 => Copy the content of memory location whose address is given in RO register.

* 5). Indexed Addressing mode:

* This addressing mode is basically used for accessing data from look up table. Here the address of memory is indexed
1.e. added to form the actual address of memory.

syntax: MOVC A,@A+DPTR => here 'C' means Code. Here the content of A register is added with content of DPTR
and the resultant is the address of memory location from where the data is copied to A register.

Types of Interrupts in 8051 Microcontroller

 The 8051 microcontroller can recognize five different events
that cause the main program to interrupt from the normal
execution. These five sources of interrupts in 8051are:

1.Timer O overflow interrupt- TFO
2.Timer 1 overflow interrupt- TF1
3.External hardware interrupt- INTO
4.External hardware interrupt- INT1
5.Serial communication interrupt- RI/TI

The Timer and Serial interrupts are internally generated by the microcontroller, whereas the external interrupts are
generated by additional interfacing devices or switches that are externally connected to the microcontroller. These
external interrupts can be edge triggered or level triggered. When an interrupt occurs, the microcontroller executes
the interrupt service routine so that memory location corresponds to the interrupt that enables it. The Interrupt
corresponding to the memory location is given in the interrupt vector table below.

Interrupt Numbser Interrupt Descriphion

EXTERNAL T

TIMERICOUNTER [
EXTERNAL INT 1

TMERTOUNTER 1
JERIAL FORT

B N R T —

https://www.elprocus.com/peripherals-interfacing-to-the-microcontroller-8051-in-electronics/

Interrupt Structure of 8051 Micro controller

Upon ‘RESET all the interrupts get disabled, and therefore, all these interrupts must be enabled by a
software. In all these five interrupts, if anyone or all are activated, this sets the corresponding
interrupt flags as shown in the figure. All these interrupts can be set or cleared by bit in some special
function register that is Interrupt Enabled (IE), and this in turn depends on the priority, which is
executed by IP interrupt priority register.

interrupt structure of 8051 microcontroller

HEOH PRORIT Y
N TERFLIFT

E REES5TER IF FESEISTER

IMTY
I TERFIPT
PO LING
TEY P LENG E
i
T
EMABRLE l,:s_
s PR Ty
IMDPILAL fﬂmmﬁf}

INTERFRLIFT
ENMAELEE

Interrupt Enable (IE) Register

* Interrupt Enable (IE) Register: This register is responsible for
enabling and disabling the interrupt. It is a bit addressable
register in which EA must be set to one for enabling interrupts.
The corresponding bit in this register enables particular interrupt
like timer, external and serial inputs. In the below IE register, bit

corresponding to 1 activates the interrupt and 0 disables the
interrupt.

Interrupt Enable (IE) Register

EA

ES

ET1

EXA

ETO

EXO

EA

IE.7

IE.G
IE.S
IE 4
IE3
IE.2
IE.1

IE.O

- - ES ETA1 EXA1 ETO EXO

Disables all interrupts, If EA=0, no interrupt will be acknowledged. If
EA=1, interrupt source iIs individually enable or disabled by setting or
clearing its enable bit.

Not implemented, reserved for future use™.

Mot implemented, reserved for future use™.
Enable or disable the Serial port interrupt.
Enable or disable the Timer 1 overflow interrupt.
Enable or disable External interrupt 1.

Enable or disable the Timer 0 overflow interrupt.

Enable or disable External interrupt 0.

Interrupt Priority Register

* Interrupt Priority Register (IP): It is also possible to change
the priority levels of the interrupts by setting or clearing the
corresponding bit in the Interrupt priority (IP) register as shown
in the figure. This allows the low priority interrupt to interrupt the
high-priority interrupt, but prohibits the interruption by another
low-priority interrupt. Similarly, the high-priority interrupt cannot
be interrupted. If these interrupt priorities are not programmed,

the microcontroller executes in predefined manner and its order
IS INTO, TFO, INT1, TF1, and Sl.

Interrupt Priority Register

(MSB) (LSB)
IP7 IP6 IP.5 IP.4 IP.3 P2 IP.1 IP.0

Direct address B8H -- -- PT2 PS PT1 PX1 PTO PX0
Bit address BF BE BD BC BB BA BY B8

Clear for giving low priority for external interrupt 1 (INT1) <—

Set for giving high priority for external interrupt 1 (INT1) <—

Clear for giving low priority for external interrupt O (INTO) <—

Set for giving high priority for external interrupt O (INTO) -—

« TCON Register: In addition to the above two registers, the
TCON register specifies the type of external interrupt to the
8051 microcontroller, as shown in the figure. The two external
interrupts, whether edge or level triggered, specify by this

register by a set, or cleared by appropriate bits in it. And, it is
also a bit addressable register.

Direct address 88H TF1

(MSE) (LSB)

TCONF TCOMG TCOMS TCON4 TCOM3 TCONZ TCONA TCON.O
TR1 TFO TRO E1 m1 E0 | 170
aF 2D aC i) A 39 28

Bit address &F

Thiz bit iz =&t by the processor when there i= an interrupt at INT1

Thiz bit iz cleared by the processor when thereis. ajump to ISR of INT1

Set this bit (0} for an interrupt generated by a low level signal at INT1
Clear this bit (1) for an interrupt generated by a falling edge =sional at INT1

Thiz bit iz set by the processor when there iz an interrupt at INTO

Thiz bit iz cleared by the processor when there is a jump to ISR of INTO

Set this bit (0} for an interrupt generated by a low level signal at INTO

Clear this bit (1) for an interruot generated by a falling edge =signal at INTO

Interrupt Programming in 8051

* 1.Timer Interrupt Programming

 Timer O and Timer 1 interrupts are generated by the timer register
bits TFO and TF1. These interrupts programming by C code involves:

» Selecting the timer by configuring TMOD register and its mode of
operation.

 Choosing and loading the initial values of TLx and THx for
appropriate modes.

* Enabling the IE registers and corresponding timer bit in it.
« Setting the timer run bit to start the timer.

» Writing the subroutine for the timer for time required and clear timer
value TRx at the end of subroutine.

https://www.elprocus.com/basics-and-structure-of-embedded-c-program-with-examples-for-beginners/

e 2.External Hardware Interrupt Programming

* 8051 microcontrollers consists of two external hardware
iInterrupts: INTO and INT1 as discussed earlier. These are
enabled at pin 3.2 and pin 3.3. These can be edge triggered or
level triggered. In level triggering, the low at pin 3.2 enables the
interrupt, while at pin 3.2 — the high to low transition enables the
edge triggered interrupt. This edge triggering or level triggering
Is decided by the TCON register that has been discussed
above. The programming procedure in 8051 is as follows:

* Enable the corresponding bit of external interrupt in IE register.

* If it is level triggering, just write the subroutine appropriate to
this interrupt, or else enable the TCON register bit
corresponding to the edge triggered interrupt — whether it is
INTO or INT1.

https://www.elprocus.com/how-to-program-the-microcontroller/

* 3.Serial Communication Interrupt Programming

» Serial communication interrupts come into picture when there is a
need to send or receive data. Since one interrupt bit is set for both Tl
gSTrar]sfer Interrupt) and RI (Receiver Interrupt) flags, Interrupt
_?rvmet routine must examine these flags to know the actual
interrupt.

* The logical OR operation of these two flags (Rl ands Tl) causes this
interrupt, and it i1s cleared by the software alone. Here, a special
register SCON is used for controlling communication operation by
enabling the corresponding bits in it.

« Configure the |E register for enabling serial interrupt
» Configure the SCON register for receiving or transferring operation

» Write subroutine for this interrupt with appropriate function and clear
Tl or RI flags with in this routine.

https://www.elprocus.com/communication-based-projects-engineering-students/

MODULE-V
8051 REAL TIME CONTROL

« A microcontroller is a small and low-cost microcomputer,
which is designed to perform the specific tasks of embedded

systems like displaying microwave’'s information, receiving
remote signals, etc.

 The general microcontroller consists of the processor, the
memory (RAM, ROM, EPROM), Serial ports, peripherals
(timers, counters), etc.

* 8051 microcontroller is designed by Intel in 1981. It is an 8-bit
microcontroller. It is built with 40 pins DIP (dual inline package).

* It is an Electronic IC.

MCS-51 “Family” of Microcontollers

Feature 8031 8051 8052 8751
ROM NO 4kB 8kB 4kB UV Eprom

RAM (Bytes) 128 128 256 128

TIMERS 2 2 : 2

[/0O PINS 32 32 § 32

SERIAL PORTS 1

INTERERUPT
SOURCES

« 8051 microcontroller is designed by Intel in 1981. It is an 8-bit
microcontroller. It is built with 40 pins DIP (dual inline package),

4kb of ROM storage and 128 bytes of RAM storage, 2 16-bit
timers.

* |t consists of are four parallel 8-bit ports, which are
programmable as well as addressable as per the requirement.

* An on-chip crystal oscillator is integrated in the microcontroller

having crystal frequency of 12 MHz

* 32 1/0 Pins (Input / Output Pins) — Arranged as 4 Ports: PO, P1, P2 and
P3.

8- bit Stack Pointer (SP) and Processor Status Word (PSW).
e 16 — bit Program Counter (PC) and Data Pointer (DPTR).
 Two 16 — bit Timers / Counters — TO and T1.

* Control Registers — SCON, PCON, TCON, TMOD, IP and IE.

* Serial Data Transmitter and Receiver for Full — Duplex Operation —
SBUF.

* Interrupts: Two External and Three Internal.

e Oscillator and Clock Circuit.

Interrupts —

The most powerful attribute of the 8051 Microcontroller is the concept of Interrupts. The
interrupt is a mechanism to —

Temporarily suspend the ongoing program,
Pass the control to a subroutine,

Execute the subroutine,
Resume the ongoing/main program.

Interrupts can be of various types, such as, Software and Hardware interrupts, Non-
maskable and maskable interrupts, etc. Now the 8051 Microcontroller incorporates five
interrupts. These are :

INTO — External Hardware Interrupt.

TFO — Timer O Overflow Interrupt.

INT1 — External Hardware Interrupt.

TF1 — Timer 1 Overflow Interrupt.

R1/T1 - Serial communication Interrupt.

* Input/Output Ports —

 The 8051 Microcontroller needs to be connected to the peripheral devices
in order to control their operations. The I/O Ports are responsible for the
connection of the Microcontroller to its peripheral devices. There are
total Four 8-bit Input/Output Ports present in this Microcontroller.

e Additionally, these are some important features of 8051 microcontroller
given as follows :

* Two 16-bit Timers and Counters.

* A Data Pointer and a Program Counter of 16-bit each.
e 128 User defined Flags.

* Four Register banks.

* 31 General Purpose Registers which are of 8-bit each.
* Pin diagram of 8051 Microcontroller —

Special function Registers(SFR):

8051 microcontroller has 11 SFR divided in 4 groups:
A. Timer/Counter register: 8051 microcontroller has 2-16 bit Timer/counter registers called Timer-
reg-TO And

Timer/counter Reg-T1.Each register is 16 bit register divide into lower and higher byte register as
shown below:

These register are used to hold initial no. of count. All of the 4 register are byte addressable.

1. Timer control register: 8051 microcontroller has two 8-bit timer control register i.e. TMOD and
TCON register.
1) TMOD Register: it is 8-bit register. Its address is 89H. It is byte addressable.
It used to select mode and control operation of time by writing control word.
2). TCON register: It is 8-bit register. Its address 1s 88H. It is byte addressable.

Its MSB 4-bit are used to control operation of timer/ counter and LSB 4-bit are used for
external interrupt control.

TMOD Registers

C/T | M1 | MO C/T | M1 | MO

GATE
GATE

|
TIMER 1 TIMER 0

* Gate : When set, timer only runs while INT(0,1) is high.
C/T : Counter/Timer select bit.

M1 : Mode bit 1.
MO : Mode bit 0.

M1, M0 | MODE

13-bit timer mode
16-bit timer mode

0
1
0 | B-bit auto-reload mode
1 | split mode

el ==

TCON Register:

- [.,."_

| B R | i | N Fap

| B ‘

= TF: Overflow flag

— Set by hardware on Timer/Counter overflow

— Cleared by hardware when processor vectors fo interrupt routine
= TR: Run control bit

— Set'Cleared by software to turn Timer/Counter onsoff

= 1E: Interrupt Edge flag

— Set by hardware when external interrupt edge detected

— Cleared when interrupt processed

= IT: Interrupt Type control bit

— Set/Cleared by software to specify
falling edgedow level triggered external interrupts

TFI: Timer I overflow flag. TRI: Timer I run control bit.
TFO: Timer 0 overflag. TRO: Timer 0 run control bit.
IE1: External interrupt I edge flag. ITI1: External interrupt I type flag.
TE0: External interrupt 0 edge flag. IT0: External interrupt 0 type flag.

2.. Serial data register: 8051 micro controller has 2 serial data register viz. SBUF and SCON.
1. Serial buffer register (SBUF): it is 8-bit register. It 1s byte addressable .

Its address 1s 99H. It is used to hold data which is to be transferred serially.
2. Serial control register (SCON): it is 8-bit register. It is bit/byte addressable.
Its address is 98H. The 8-bit loaded into this register controls the operation
of serial communication.
3. Interrupt register: 8051 puC has 2 8-bit interrupt register
1. Interrupt enable register (IE): it is 8-bit register. It 1s bit/byte addressable. Its address 1s ASH.
it 1s used to enable and disable function of interrupt.
2. Interrupt priority register (IP): It is 8-bit register. It is bit/byte addressable.
Its address is B8H.it 1s used to select low or high level priority of each individual interrupts.
4. Power control register (PCON): 1t is 8-bit register. It 1s byte addressable .Its address 1s 87H.

its bits are used to control mode of power saving circuit, either idle or power down mode

and also one bit is used to modify baud rate of serial communication.

4. Power control register (PCON): 1t 1s 8-bit register. It 1s byte
addressable .Its address 1s 87H.
its bits are used to control mode of power saving circuit, either i1dle

or power down mode
and also one bit 1s used to modify baud rate of serial
communication.

Register PCON

(MSBE) (LSB)
7 6 5 4 3 2 1 o
Direct Address 87H | SMOD | e | i = | GF1, | crFo, | PpD ‘l IDL ‘l

Mot Bit Addressable

General Purpose Flag Bits For User
Power Management Bits
1 = Power Down Mode
1 = Idle Mode

www. CircuitsToday.com

Types of Interrupts in 8051 Microcontroller

 The 8051 microcontroller can recognize five different events
that cause the main program to interrupt from the normal
execution. These five sources of interrupts in 8051are:

1.Timer O overflow interrupt- TFO
2.Timer 1 overflow interrupt- TF1
3.External hardware interrupt- INTO
4.External hardware interrupt- INT1
5.Serial communication interrupt- RI/TI

The Timer and Serial interrupts are internally generated by the microcontroller, whereas the external interrupts are
generated by additional interfacing devices or switches that are externally connected to the microcontroller. These
external interrupts can be edge triggered or level triggered. When an interrupt occurs, the microcontroller executes
the interrupt service routine so that memory location corresponds to the interrupt that enables it. The Interrupt
corresponding to the memory location is given in the interrupt vector table below.

Interrupt Numbser Interrupt Descriphion

EXTERNAL T

TIMERICOUNTER [
EXTERNAL INT 1

TMERTOUNTER 1
JERIAL FORT

B N R T —

https://www.elprocus.com/peripherals-interfacing-to-the-microcontroller-8051-in-electronics/

Interrupt Structure of 8051 Micro controller

Upon ‘RESET all the interrupts get disabled, and therefore, all these interrupts must be enabled by a
software. In all these five interrupts, if anyone or all are activated, this sets the corresponding
interrupt flags as shown in the figure. All these interrupts can be set or cleared by bit in some special
function register that is Interrupt Enabled (IE), and this in turn depends on the priority, which is
executed by IP interrupt priority register.

interrupt structure of 8051 microcontroller

HEOH PRORIT Y
N TERFLIFT

E REES5TER IF FESEISTER

IMTY
I TERFIPT
PO LING
TEY P LENG E
i
T
EMABRLE l,:s_
s PR Ty
IMDPILAL fﬂmmﬁf}

INTERFRLIFT
ENMAELEE

Interrupt Enable (IE) Register

* Interrupt Enable (IE) Register: This register is responsible for
enabling and disabling the interrupt. It is a bit addressable
register in which EA must be set to one for enabling interrupts.
The corresponding bit in this register enables particular interrupt
like timer, external and serial inputs. In the below IE register, bit

corresponding to 1 activates the interrupt and 0 disables the
interrupt.

Interrupt Enable (IE) Register

EA

ES

ET1

EXA

ETO

EXO

EA

IE.7

IE.G
IE.S
IE 4
IE3
IE.2
IE.1

IE.O

- - ES ETA1 EXA1 ETO EXO

Disables all interrupts, If EA=0, no interrupt will be acknowledged. If
EA=1, interrupt source iIs individually enable or disabled by setting or
clearing its enable bit.

Not implemented, reserved for future use™.

Mot implemented, reserved for future use™.
Enable or disable the Serial port interrupt.
Enable or disable the Timer 1 overflow interrupt.
Enable or disable External interrupt 1.

Enable or disable the Timer 0 overflow interrupt.

Enable or disable External interrupt 0.

Interrupt Priority Register

* Interrupt Priority Register (IP): It is also possible to change
the priority levels of the interrupts by setting or clearing the
corresponding bit in the Interrupt priority (IP) register as shown
in the figure. This allows the low priority interrupt to interrupt the
high-priority interrupt, but prohibits the interruption by another
low-priority interrupt. Similarly, the high-priority interrupt cannot
be interrupted. If these interrupt priorities are not programmed,

the microcontroller executes in predefined manner and its order
IS INTO, TFO, INT1, TF1, and Sl.

Interrupt Priority Register

(MSB) (LSB)
IP7 IP6 IP.5 IP.4 IP.3 P2 IP.1 IP.0

Direct address B8H -- -- PT2 PS PT1 PX1 PTO PX0
Bit address BF BE BD BC BB BA BY B8

Clear for giving low priority for external interrupt 1 (INT1) <—

Set for giving high priority for external interrupt 1 (INT1) <—

Clear for giving low priority for external interrupt O (INTO) <—

Set for giving high priority for external interrupt O (INTO) -—

« TCON Register: In addition to the above two registers, the
TCON register specifies the type of external interrupt to the
8051 microcontroller, as shown in the figure. The two external
interrupts, whether edge or level triggered, specify by this

register by a set, or cleared by appropriate bits in it. And, it is
also a bit addressable register.

Direct address 88H TF1

(MSE) (LSB)

TCONF TCOMG TCOMS TCON4 TCOM3 TCONZ TCONA TCON.O
TR1 TFO TRO E1 m1 E0 | 170
aF 2D aC i) A 39 28

Bit address &F

Thiz bit iz =&t by the processor when there i= an interrupt at INT1

Thiz bit iz cleared by the processor when thereis. ajump to ISR of INT1

Set this bit (0} for an interrupt generated by a low level signal at INT1
Clear this bit (1) for an interrupt generated by a falling edge =sional at INT1

Thiz bit iz set by the processor when there iz an interrupt at INTO

Thiz bit iz cleared by the processor when there is a jump to ISR of INTO

Set this bit (0} for an interrupt generated by a low level signal at INTO

Clear this bit (1) for an interruot generated by a falling edge =signal at INTO

Interrupt Programming in 8051

* 1.Timer Interrupt Programming

 Timer O and Timer 1 interrupts are generated by the timer register
bits TFO and TF1. These interrupts programming by C code involves:

» Selecting the timer by configuring TMOD register and its mode of
operation.

 Choosing and loading the initial values of TLx and THx for
appropriate modes.

* Enabling the IE registers and corresponding timer bit in it.
« Setting the timer run bit to start the timer.

» Writing the subroutine for the timer for time required and clear timer
value TRx at the end of subroutine.

https://www.elprocus.com/basics-and-structure-of-embedded-c-program-with-examples-for-beginners/

Tmer(mode] for blinking LY D wsing imtermupt method
rinclede=reg®l.h-
thit Blink Led = P20; LED comnected 1o port 2 Lerodh pdn
vald timerd_ISHE (vokd) Isterrupt 1 internape &o, 1 for Thmer O
i

Blink Led=-Ehink Led: Blimk LED on intermapt
THE=OxFL{; loadimg initial vaboes to timer
TL=0x66:

i

vold main()

I
TAOD = (x]: mode 1 of Timerd
TH®¥ = KFC; imitial valies lasded 1o rimer
TLD = Oxié;
ETh=1: enable timer O indermapd
TRO = 1: start timer
uhile(1); dio mothing

e 2.External Hardware Interrupt Programming

* 8051 microcontrollers consists of two external hardware
iInterrupts: INTO and INT1 as discussed earlier. These are
enabled at pin 3.2 and pin 3.3. These can be edge triggered or
level triggered. In level triggering, the low at pin 3.2 enables the
interrupt, while at pin 3.2 — the high to low transition enables the
edge triggered interrupt. This edge triggering or level triggering
Is decided by the TCON register that has been discussed
above. The programming procedure in 8051 is as follows:

* Enable the corresponding bit of external interrupt in IE register.

* If it is level triggering, just write the subroutine appropriate to
this interrupt, or else enable the TCON register bit
corresponding to the edge triggered interrupt — whether it is
INTO or INT1.

https://www.elprocus.com/how-to-program-the-microcontroller/

Edge trigger external interrupt
void main()

I

L

ITO =1; /Configure interrupt 0 for falling
edge on INTOD

EX0=1; /Enable EX0 Interrupt

EA =1; /Enable Global Interrupt Flag

j
void ISR_ex((void) interrupt 0
i
<=hodyv of interrupt=
i

External Hardware Interrupt Programming

External
Hardware
Interrupt
Programming

* 3.Serial Communication Interrupt Programming

» Serial communication interrupts come into picture when there is a
need to send or receive data. Since one interrupt bit is set for both Tl
gSTrar]sfer Interrupt) and RI (Receiver Interrupt) flags, Interrupt
_?rvmet routine must examine these flags to know the actual
interrupt.

* The logical OR operation of these two flags (Rl ands Tl) causes this
interrupt, and it i1s cleared by the software alone. Here, a special
register SCON is used for controlling communication operation by
enabling the corresponding bits in it.

« Configure the |E register for enabling serial interrupt
» Configure the SCON register for receiving or transferring operation

» Write subroutine for this interrupt with appropriate function and clear
Tl or RI flags with in this routine.

https://www.elprocus.com/communication-based-projects-engineering-students/

i Sending 'E° throwzh =erial part with 94040 band race msing Serial Isderrupt

void mammi)
i
THMOD = i
TH] = ixFD: haud raie far 9G04 bps
SOON = i
TRI=1;
EA=];
while(l);
' -Serial
vold ISK_Serialivesd) inbenmups 4 interrupt
| programming
INT1==1}
\
SBLF = 'E";
Ti=iy;
}
ulss
Rl =0

Interfacing

Interfacing is one of the important concepts in microcontroller
8051 because the microcontroller is a CPU that can perform
some operation on a data and gives the output. However to
perform the operation we need an input device to enter the data
and in turn output device displays the results of the operation.

Interfacing is the process of connecting devices together so that
they can exchange the information and that proves to be easier to
write the programs. There are different type of input and output
devices as for our requirement such as LEDs, LCDs, 7segment,
keypad, motors and other devices.

Interfacing the Keyboard to 8051
microcontroller

* The key board here we are interfacing is a matrix keyboard.

This key board is designed with a particular rows and co

umns.

These rows and columns are connected to the microcontroller

through its ports of the micro controller 8051. We normal

y use

8*8 matrix key board. So only two ports of 8051 can be easily

connected to the rows and columns of the key board.

* When ever a key is pressed, a row and a column gets shorted

through that pressed key and all the other keys are left
open. When a key is pressed only a bit in the port goes

high. Which indicates microcontroller that the key is pressed.
By this high on the bit key in the corresponding column is

identified.

* Once we are sure that one of key in the key board is pressed
next our aim is to identify that key. To do this we firstly check for
particular row and then we check the corresponding column the

key board.

. To check the row of the pressed key in the keyboard, one
of the row is made high by making one of bit in the output port
of 8051 high . This is done until the row is found out. Once we
get the row next out job is to find out the column of the pressed
key. The column is detected by contents in the input ports with
the help of a counter. The content of the input port is rotated
with carry until the carry bit is set.

* The contents of the counter is then compared and displayed in
the display. This display is designed using a seven segment
display and a BCD to seven segment decoder IC 7447.

. The BCD equivalent number of counter is sent through
output part of 8051 displays the number of pressed key.

Circuit diagram of INTERFACING KEY
BOARD TO 8051.

KEY PAD [—+ MICRO | — migpy ay
CONTROLER

Keyboard is organized in a matrix of rows and
columns as shown in the figure. The
microcontroller accesses both rows and
columns through the port.

¥ ‘ﬁj Y| Y | Y| v P P0.0 p2.0| i o i_‘
o | 15

.Y ? LA B AR A = poz 2 ':ini

¥ i Y| Y| ¥ ¥ S e LA ="
w vl Yl ¥ % » PO 8051 =

' s1o Pzl IE b

7 I

PORT P1 por ; : ‘_j-

1.The 8051 has 4 1/0O ports PO to P3 each with 8 I/O pins, P0.0 to P0.7,P1.0 to
P1.7, P2.0 to P2.7, P3.0 to P3.7. The one of the port P1 (it understood that P1
means P1.0 to P1.7) as an I/P port for microcontroller 8051, port PO as an O/P
port of microcontroller 8051 and port P2 is used for displaying the number of

pressed key.
2.Make all rows of port P0 high so that it gives high signal when key is pressed.

2. See if any key is pressed by scanning the port P1 by checking all columns

for non zero condition.
3. If any key is pressed, to identify which key is pressed make one row high at

a time.
4. Initiate a counter to hold the count so that each key is counted

5. Check port P1 for nonzero condition. If any nonzero number is there in
[accumulator], start column scanning by following step 9.

6. Otherwise make next row high in port P1.

7. Add a count of 08h to the counter to move to the next row by repeating
steps from step 6.

8. If any key pressed is found, the [accumulator] content is rotated right
through the carry until carry bit sets, while doing this increment the count in
the counter till carry is found.

9. Move the content in the counter to display in data field or to memory
location

10. To repeat the procedures go to step 2.

Program to interface matrix keyboard to microcontroller 8051

Start of main program: to check that whether any key is pressed
start: mov a,#00h

mov pl,a ;making all rows of port p1 zero

mov a,#0fh

mov pl,a ;making all rows of port p1 high
press: mov a,p2

jz press ;check until any key is pressed

after making sure that any key is pressed

mov a,#01h ;make one row high at a time
mov r4,a
mov r3,#00h ;initiating counter

next: mov a,r4

mov pl,a ;making one row high at a time

mov a,p2 ;taking input from port A

jnz colscan ;after getting the row jump to check
column

mov a,r4

rla ;rotate left to check next row

mov r4,a

mov a,r3

add a,#08h ;increment counter by 08 count

mov r3,a

sjmp next ;jump to check next row

after identifying the row to check the colomn following steps are followed

colscan: mov r5,#00h

in: rrca ;rotate right with carry until get the carry
jc out ;jump on getting carry
incr3 ;increment one count
jmpin
out: mov a,r3
daa ;decimal adjust the contents of counter

before display
mov p2,a
jmp start ;repeat for check next key

Alphanumeric Displays

" BAALLLLLLLLLLLLLEE

1 x 16 Display

2 x 16 Display

LCD DIS PLAY

LCD INTERFACING WITH 8051 MICROCONTROLLER

punols) -q37 el

NG +037 GEEL

L uld ejeq EAt

9 Uld ejeq RN

G Uld eleq Rt

f uld ejeq ER0

¢ Uld eleq CREt

7 uld ejeq CRAL

| Uld eleq ERAN

0 Uld eleq CRIE!
8eu] e

sjlivypesy Bt

19885 18)sibay ST

|01JU07 Jsenuon GEEEN

= J0A

IR E® SSA

* A Brief Note on 16x2 LCD
16x2 Liquid Crystal Display which will display the 32 characters
at a time in two rows (16 characters in one row). Each character
in the display is of size 5x7 pixel matrix. This matrix differs for
different 16x2 LCD modules,. There are 16 pins in the LCD
module, the pin configuration us given below

PIN NAME FUNCTION

NO

1 VSS Ground pin

2 VCC Power supply pin of 5V

3 VEE Used for adjusting the contrast commonly attached to the potentiometer.

4 RS RS is the register select pin used to write display data to the LCD (characters), this pin has to be high when
writing the data to the LCD. During the initializing sequence and other commands this pin should low.

5 R/W Reading and writing data to the LCD for reading the data R/W pin should be high (R/W=1) to write the data to
LCD R/W pin should be low (R/W=0)

6 E Enable pin is for starting or enabling the module. A high to low pulse of about 450ns pulse is given to this pin.

7 DBO

8 DB1

9 DB2

10 DB3

11 DB4 DBO-DB7 Data pins for giving data(normal data like numbers characters or command data) which is meant to be
displayed

12 DB5

13 DB6

14 DB/

15 LED+ Back light of the LCD which should be connected to Vcc
16 LED- Back light of LCD which should be connected to ground.

So by reading the above table you can get a brief idea how to display a character.
For displaying a character you should enable the enable pin (pin 6) by giving a pulse
of 450ns, after enabling the pin6 you should select the register select pin (pin4) in
write mode. To select the register select pin in write mode you have to make this pin
high (RS=1), after selecting the register select you have to configure the R/W to
write mode that is R/W should be low (R/W=0).

 Follow these simple steps for displaying a character or data
* E=1; enable pin should be high

* RS=1; Register select should be high

 RIW=0; Read/Write pin should be low.

* To send a command to the LCD just follows these steps:

* E=1; enable pin should be high

* RS=0; Register select should be low

 RIW=0; Read/Write pin should be low.

Interfacing 16x2 LCD with 8051 Circuit

Diagram

16 = 2 LCOD MODULE JHD 1824

Wss Woo WEE

DBS pp7y LED-+ LED-

RS RAW E DBO DB1 DBZ DB3 DB4 DBS
I IET=

i

Rz
10k

=1
250 ohm

+5%

BN +5W +5W 50
L]
|
31 40
Ea Weo
il +| C3
51 T
'l_ 10uF/10W s s 115
3| RrsT P3.a |14
P33 [13
R3
2 oo 8051
L P10 |1
R
P12z |2
o P13 |4
I:.
| 191 seraLt P14 | =
23pF | =1 Ppis | B
— P16 | T
2 11.0592MHz= =
4 £ — XTALZ e
33pF aND
I

Interfacing 16x2 LCD module to 8051

whww_circuitstoday com

WwVIHTTTITIIAITWO,: 1TITIT Al oUVITIT MYITOoTL LUTNTITTATIUOo VWU VWi UV d opJUT ULV l[doih 1T UITT LV, 1TTOU LUliiidliiVUo Al VTl y nipulialit 1Vl Ulopidylliy vawad il v/,

The list of commands given below:

COMMAND FUNCTION

OF For switching on LCD, blinking the cursor.
1 Clearing the screen

2 Return home.

4 Decrement cursor

6 Increment cursor

E Display on and also cursor on

80 Force cursor to beginning of the first line
Co Force cursor to beginning of second line
38 Use two lines and 5x7 matrix

83 Cursor line 1 position 3

3C Activate second line

0C3 Jump to second line position 3

0C1 Jump to second line positionl

EXTERNAL MEMORY INTERFACING WITH 8051
MICROCONTROLLER

PIN DIAGRAMME OF 8051 MICROCONTROLLER

e
P1.01 40 O vCC
P11]2 39 [P0.0 (ADD)
P1.2]3 38 [PO.1 (AD1)
Pi1.3] 4 37 [0 PO.2 (AD2)
P1.4]5 36 [P0.3 (AD3)
Pi1.5]6 35 [0 P0.4 (AD4)
P17 34 [PO.5 (ADS)
P1.70]8 33 [P0O.6 (ADS)
RST]9 32 [PO.7 (AD7)
(RXD) P3.0] 10 2051 31 [EANVPP
(TXD) P3.1] 11 30 [0 ALE/PROG
(INTO) P3.2 |12 29 |11 PSEN
(INT1) P3.3] 13 28 [0 P2.7 (A15)
(TO) P3.4 [| 14 27 |1 P2.6 (A14)
(T1) P3.5] 15 26 [1 P2.5 (A13)
(WR) P3.6 | 16 251 P2.4 (A12)
(RD) P3.7 O 17 24 [P2.3 (A11)
XTALZ2] 18 23 [0 P22 (A10)
XTAL1] 19 22 0 P21 (A9)
GMND] 20 21 |1 P2.0 (A8)

40 - PIN DIP

* PSEN: PIN 29
1.This is an output pin.
2.PSEN stands for “program store enable.”

3.Connect this PSEN pin to the OE pin of the ROM to enable access to
data.

4.1t is an active low output signal.

5.1t is used to enable/read external program memory (ROM).

1. When [PSEN] = 0, then external program memory becomes enabled, and
microcontroller reads the content of external memory location.

2. Therefore, it is connected to (OE) of external ROM. It is activated twice every
external ROM memory cycle.

3. When [PSEN] =1, then the data cannot be read from any external program
memory, then the microcontroller has to depend on the on-chip ROM to
store the program code.

* ALE: PIN 30

1.Port O of 8051 can be used to access the address bus and the data
bus.

2.The ALE pin is used for de-multiplexing the address and the data by
connecting to the G-pin of the 74LS373 latch.

3.1t is also Active High

https://technobyte.org/ports-8051-functions-specifications-four/

* EA: PIN 31
1.EA is the External Access pin of 8051 microcontrollers.

2.The EA pin is connected to GND to indicate that the code is stored
completely in the external program memory (64kB).

3.To use both on-chip ROM (4kB) and external ROM (60kB) together,
the EA pin is connected to the +5V VCC supply.

4.The overline represents active-low operation, i.e. Turns ON when a low
pulse/signal is provided.

* RD: P3.7

* RD is used as a read control signal pin.
* WR: P3.6

 WR is used as a write control signal pin.

8051 Program Memory

FFFFH

60K Bytes
External
Program

1000H

AND

OFFFH
4K Bytes

Internal
Program

FFFFH

>OR—-

=WVcc

64 K Bytes
External
Program Memory

E—A=Gnd

* All memory chips have one or more than one pins called the Chip
Select (CS) pins (Chip Enable (CE) pins). These pins are commonly
active-low pins, and we have to activate it to access the chip it
belongs to.

* In connecting a memory chip to the 8051, note the following points:
1.The data bus of the 8051 is connected directly to the data pins of the
memory chip.

2.Control signals RD (read) and WR (memory write) from the 8051 are
connected to the OE (output enable) and WE (write enable) pins of
the memory chip.

3.In the case of the address buses, while the lower bits of the address
from the 8051 go directly to the memory chip address pins, the upper
ones are used to activate the CS/CE pin of the memory chip via an
additional decoding circuitry. The latter is known as Chip Select Logic.

* The 74LS138 latch this is chip select logic ckt

e 74LS138 as a decoder circuit
1.The three inputs A, B, and C generate eight active low outputs YO — Y7

2.We connect each of the Y output to CS of a memory chip, allowing us
control over eight memory blocks via a single 74LS138.

3.In the 74LS138, the inputs to A, B, and C activates the output. Also,
there are three additional inputs, G2A, G2B, and G1.

4.G2A and G2B are the enable input pins and are active low. G1 is the
enable input pin that is active high.

5.1f anyone of the inputs G1, G2A, or G2B is not connected to an
address signhal, they must be activated permanently either by VCC or
ground, depending on the activation level.

* Port 0 and Port 2

1.These ports provide a 16-bit address to access External Memory.
2.P0O: Multiplexed lower order address/data bus: ADO-AD7.

3.P2: Higher-order address bus: A8-A15.

4.When ALE = 0, PO facilitates data path

5.When ALE =1, PO facilitates address path

6.We can address 2216 = 64Kb memory (i.e. 64Kb code memory and
64Kb data memory) by these 16 address lines from AO to A15.

7.To extract the address from the PO pins, we connect PO to a 74LS373
and use the ALE pin to latch the address.

e STEPS to interface external program ROM with 8051

1.Step 1: Connect EA pin to ground

2.Step 2: Connect the PSEN to the CE and OE.

3.Step 3: Then, Port 2 (P2.0—P2.7) to A8 — A12 pins of ext. ROM.
4.Step 4: Connect ALE to G of 74LS373 latch to enable it.

5.Step 5: Next, connect the OC of 74LS373 to GND.

6.Step 6: Connect Port O (P0.0 — P0.7), which consists of both address
and data multiplexed into Port O to 1D — 8D pins of 74LS373 latch to
demultiplex it and 1Q — 8Q of the latch to AO — A7 of ext. ROM.

7.Step 7: Connect Port O (P0.0 — P0O.7) to DO — D7 of the ext. ROM.
8.Step 8: VPP of ext. ROM to VCC.

Now you might be wondering what does Ax, Dx, or ADx mean.
ADx- Multiplexed address and data lines.

Ax — The address lines determine the location from which the data is to be
accessed or be sent.

Dx- The data lines are used to send/receive the data to/from the external
memory.

Let’s take an example. Suppose we want to activate the chip connected to
output YO of the decoder.

Based on the simple working of a decoder, we know that the values of A, B,
and C pins (A13, A14,A15) need to be 1 each. So for ABC = “000” we select
the YO output, and the chip connected to it is now accessible.

But what range of addressable memory does this occupy? That will depend
on the values of the entire 16-bit address line taken as a whole. Note that
A15 also has to be 0 at all times since it is connected to G2A, the enable
input pin that’s active low. With these four values fixed (A15A14A13A12 =
“0001”), we can now vary the remaining pins from 0 to 1 each to get the
final address range accessible via output pin YO.

https://technobyte.org/priority-encoders-decoders-binary-encoders/

Circuit diagram to interface external program ROM with 8051

Interfacing of External program Memory

Ex-1

Interface 8 KBytes of Program ROM to 8051 microcontroller.

Sol: 8K Bytes memory requires 13 address lines. i.e. AD - A12

ALE

ADO-
AD7J

AB-Al2

h O o

Y

Al1S
Al4
Al3

G1
K ADsaAD? A 74373 M
Latch ATAT V[AD-A7
DO-D7 > DO-D7
i >.A8—A12
= 8 K Bytes
vicc [L Program ROM
Gl G2A G2B
Y o
C 7a1s138 Y] s
18 38
A Decoder
Y4

Memory Map

Al1Ss laia a1z la12|lair a0 A9 | A8 | A7 | Aas | ASs | Ada | A3 | A2 | a2 A0 | Address

Starting

Address o 0o o 0 o 0 o o o 0 o o o o o o 0000H

2.‘
o 1 0001H

Ending
Address o o o

1FFFFH

From the above table, we can see that the address range of YO is from O000H to
1FFFH.

EXTERNAL DATA MEMORY OF 8051

. 8051 Data Memory

FFH FFFFH |
SFRs

80H 64 K Bytes

7FH | 3128 pytes AND— External

Internal | Data

RAM

OOH PEME VRIS

O000H

STEPS to interface external RAM with 8051

1.Step 1: Connect RD to OE of ext. RAM.
2.Step 2: Connect WR to WE of ext. RAM.

3.Step 3: Connect active low input of NAND gate to CE of external RAM,
where the input to NAND gate are address lines A15, A14, and A13.
We’ve given 0 1 0 to these lines to access the 8000H location of the
external RAM.

Interfacing of External Data Memory

Ex. Interface 4 KBytes of external RAM to 8051 microcontroller.
Sol :4 KBytes memory requires 12 address lines i.e. AD - A11.

C 7aLs138 Y

B 3:8

A Decoder
Y

- 00

Memory Map

A15 |A14 |A13 |A12 |A11 |AL0 A7 ”\“I” Address

Starting
Address | 0 (0] 1]/1/0,0 0 0/ 0|0 3000H

znl
location | O |0 /1 /110, 0 0 0/ 0|0 3001H
o

Ending
Address | O |0 1|11]|1 1 1111 3FFFH

From the above table, we can see that the address range of Y1 is from 3000H to 3FFFH.

* Interfacing external program ROM, data ROM and external RAM with the 8051

* Next, let’s interface both program ROM and data RAM to 8051, Let’s say we want to interface
16KB data RAM, 16KB program ROM, and 16KB of data RAM, then we’ll have to follow the
following steps:

1.Step 1: Calculate the number of address lines required to access 16KB of data, that is 214 = 16KB.
Here, we require 14 address lines A0 — A13.

2.Step 2: Decide the location of RAM and ROM, here we are going to interface program ROM from
OO00OH and data RAM from 8000H.

3.Step 3: Select the decoder circuit, here we’re going to select 74LS138 decoder.

4.Step 4: We do not need a decoder circuit for program ROM, but we have to connect the 74L5138
decoder to data ROM and data RAM.

5.Step 5: Connect G1 to VCC, G2A, and G2B to ground.
6.Step 6: Connect input A and B to P2.6 and P2.7 respectively, and the input C to ground.

7.Step 7: We connect external program and data ROM, for that we can use an AND gate with its
input being signal from RD (to access external data space) and PSEN (to access external program
space) and output to OE of external ROM.

8.Step 8: To interface the external RAM, we connect both RD and WR to WE and OE respectively of
external RAM

Interface 4K byte EPROM and 4K byte RAM to 8051

74373

)
T=

—18B

Gl G2A Gr8

| T
¥
1€ 7aLs138 Y

38

A Decoder

¥4

Memory Map - Program ROM

Al4 Al3 mlm AlD| A9 | AB | A7 | AB | AS | A | A3 | A2 Address
Starting
- olo|lolo/lo|lolo|o|lo|lo|lo|lo|o]| o 0O0OH
2™ Locatio
1 olo|lolo/lo|lo/lo|olo|lolo|lolo] o 0001H
:::“‘ olo|lolalalalalala|lalalalala OFFFH
ress
Memory Map - Data RAM
M‘IAIBIAII All |lA10| A9 | AB | A7 | AB | AS IM ”Iﬂ Al Address
Starting
s oli1/lo/lo/olo/lo/lolo|olo|olo] o 2000H
2™ Location
ol1/ 0o0/lo/olo/lo/olo/lolo|lo 0ol o 2001H
Ending
Pl olalolalalalalalalalalalala 2FFFH

ADC Interfacing with 8051

* The data we process in a microcontroller normally deals with digital signals. But there may a situation where we
have to deal with external inputs such as analog signals. All most all the input signals from physical sensors are of
analog signals. In such cases, we can interface the microcontroller with an external device such as an ADCO0808 to
convert the analog signal to a digital signal. Because our microcontrollers can only understand 0 and 1. In this
article, we look into the details of ADC interfacing with 8051.

* In the present time, there are lots of microcontrollers in the market which has inbuilt ADC with one or more
channels, E.g.: PIC18F4550, LPC1768, etc. And by using their ADC registers we can interface. Unfortunately,
8051 doesn’t have an internal module so we will go for an external ADC. which 1s ADC0808.

ADCO0808 :

ADCO0808 is a commonly used External 8 bit ADC and it has 28 pins. It can measure up to eight ADC values from 0 to 5 volt
since it has eight channels. when voltage reference is +5V, its Step size will be 19.53mV. That is, for every increase of 19.53mV
on the input side there will be an increase of 1 bit at the output side.

ADCO0808 needs an external clock to operate. The ADC needs some specific control signals for its operations like start
conversion and bring data to output pins. When the conversion is complete the EOC pins go low to indicate the end of a
conversion and that the data 1s ready to be picked up.

Features

Easy interface to all microprocessors

Operates ratio metrically or with 5 V DC or analog span adjusted voltage reference
No zero or full-scale adjust required

8-channel multiplexer with address logic

OV to 5V input range with single 5V power supply

Outputs meet TTL voltage level specifications

28-pin molded chip carrier package

Pin diagram

ADCO0808

IN3

IN4

INS

ING

IN7
START
EOC
=5
OUTPUT ENABLE
CLOCK
Vec
Veer (+)
GND
=7

ADC0808

w 00 =4 o N s W Ry =

o W R = D

28
27
26
29
24
23
22
21
20
19
18
17
16
13

IN2

IN1

IND
ADD A
ADD B
ADD C
ALE

2= TMsB
2-2
2-3

2=8| sp
Vrer (=)

Pin Description

Analog Input Pin 3
Analog Input Pin 4
Analog Input Pin 5
Analog Input Pin 6
Analog Input Pin 7

Start conversion; input pin; a low to
high pulse is given

End of conversion; output pin; goes
low when the conversion is over

Digital output bit

Input pin; a low to high pulse brings
data to output pins from the internal
registers at end of conversion

Clock input; to provide external clock
Supply voltage; 5V
Positive reference voltage

Ground (0v)

(S S N =
N | = | O

IN3
IN4
INS
IN6
IN7

START

EOC

D3

Output Enable

Clock Input
Vcce

Vref+

GND

Digital output bit
Digital output bit D5
Digital output bit D6

Digital output bit D7

Address latch enable; Input
pin; low to high pulse is required ALE
to latch in the address

Address line C Address C

Channel Selection :
We can select any input channel by using the Address lines ADD A, ADD B and ADD C. As you can see in the below table, We
can select the input line INO by keeping all three address lines ADD A, ADD B and ADD C Low.

ADC CHANNELNAME ____JADDC ___JADDB ____|ADDA
INO LOW LOW Low
IN1 LOW LOW HIGH
IN2 LOW HIGH LOW
IN3 LOW HIGH HIGH
IN4 HIGH LOW LOW
INS HIGH LOW HIGH
ING HIGH HIGH LOW

IN7 HIGH HIGH HIGH

Steps to be followed to interface ADC (ADC0808) with 8051

8.

9.

Start

Select the channel using Address pins.

A Low — High transition on ALE to latch in the address.
A Low — High transition on Start to reset the ADC’s SAR.
A High — Low transition on ALE.

A High — Low transition on start to start the conversion.
Wait for End of cycle (EOC) pin to become high.

Make Output Enable pin High.

Take Data from the ADC’s output

10. Make Output Enable pin Low.

11. Stop

Working:

In this project we have interfaced three channels of ADC0808. And for demonstration we have used three variable resistors. When we power
the circuit then microcontroller initialize the LCD by using appropriate command, gives clock to ADC chip, selects ADC channel by using
address line and send start conversion signal to ADC. After this ADC first reads selected ADC channel input and gives its converted output to
microcontroller. Then microcontroller shows its value at Ch1 position in LCD. And then microcontroller changes ADC channel by using
address line. And then ADC reads selected channel and send output to microcontroller. And show on LCD as name Ch2. And like wise for
other channels.

1lex2 LCD

ADCOoOsS08

Working of ADC0808 is much similar to working of ADC0804. In this, first microcontroller provides a 500
KHz clock signal to ADC0808, using the Timer 0 interrupt, as ADC requires clock signal to operate. Now
microcontroller sends a LOW to HIGH level signal to ALE pin (its active-high pin) of ADC0808 to enable
the latch in the address. Then by applying HIGH to LOW Level signal to SC (Start Conversion), ADC
starts analog to digital conversion. And then wait for the EOC (End of Conversion) pin to go LOW. When
EOC goes LOW, it means analog to digital conversion has been completed and data is ready to use.
After this, microcontroller enables the output line by applying a HIGH to LOW signal to OE pin of
ADCO0808.

ADCO0808 gives ratio metric conversion output at its output pins. And the formula for radiometric
conversion is given by:

Vil (Vts-V2)= D/ (Dnax-Diin)
WHERE

V., is input voltage for conversion
V,, is full scale Voltage

V, is zero voltage

D, is data point being measure

D
D

is Maximum data limit

max

min 1S Minimum data limit

sl 1

RESPACK-3

100k

‘embetronicx.com
[TIfIIffl ., Aocoss U2OVREF(+) o
I l Q_GAS
| I VREF() |2
U1 VREF(+) 12
A2 b yrare PO.0/ADD 2 71 outs ALE |
ow Wi Mbetronicx.com B0.1/AD1 36 1 14 ouT? ADDC 23
488 9%, s58833885 PO.2/AD2 (X 21 ours ADD B (2
18_{ yrar2 PO.3/AD3 gg | 12 OuTS ADDA 22—
Aol aolel efolefc]efots PO4AD4 (=5 12 ours :
PO SADS (22 = ours N7 -
3 PO6IADS (22 2 our2 NG (-
2 Rey P0.7/AD7 21 ouri N5 (-
INg |
www.embatronicx.com Sy L ING f——
P2.1/A9 |22 I g 22
% B 57
= P22IAD = & =] START INT ==
= FaEN PL3IAM (=22 ——paLock IND |2
2 ne P2.4AT2 |22
EA P2 5/AT3 [—=
P2 BlA14 —gg I
P2.TIAS [—E—
L = B3 gRxD =1L www.embetronicx.com
= P11 PLIMD (—1
4 S P3 2D f—a
mu % P13 P33T % LAELLLLY A
P14 P3.4TD f—=
2 P15 P3SITY [
P16 P3EAR |
81 p7 P3 7/RD [

ATBICET

8051 Interfacing DAC

- Microcontroller are used in wide variety of applications like for
measuring and control of physical quantity like temperature,
pressure, speed, distance, etc.

- In these systems microcontroller generates output which is in
digital form but the controlling system requires analog signal as
they don't accept digital data thus making it necessary to use
DAC which converts digital data into equivalent analog voltage

- Digital to Analog Converter is a device used to convert digital
pulses to analog signals.

In the figure shown, we use 8-bit DAC 0808. This IC converis
digital data into equivalent analog Current. Hence we require an
| to V converter to convert this current into equivalent voltage.

- DACO0O808 provides 256 discrete voltage (or current) levels of
output.

DACO808

- In the MC1408 (DACO808), the digital inputs are converted

to current (l,,), and by connecting a resistor to the |_,; pin,
we convert the result to voltage.

- The total current provided by the |, pin is a function of the

binary numbers at the DO — D7 inputs of the DAC0808 and
the reference current (Il .f), and is as follows:

- where DO is the LSB, D7 is the MSB for the inputs, and | _f
Is the input current that must be applied to pin 14. The | _f
current is generally set to 2.0 mA.

DO , D1, D2, D3, D4, D5, D6 D7
VouVrfi=+—+ =+ =+ttt]

256
Ex:
1. IF data =00H [00000000], Vref= 10V
0. 0.0. 0 0 0 0 0
Uﬂ:ln[§+3+i+ﬁ+ﬁ+ﬁ4+1zs+m

Therefore, V=0
Volts.

2. If data is 80H [10000000], Vref= 10V

1 0 (1] 0 0 0 (0] 0
Vu:m[i"' s 8 16 32Tea T 128" 255]
Therefore, V=5

Interfacing Diagram

LL

0. 1uF Vout = 3

o 10V

SERIAL COMMUNICATION IN 8051

serial communication of data in one of the most widely used microcontroller (8051). Lot of applications require microcontrollers to
either accept the data in serial form or o/p the data in serial form.

Microcontrollers can communicate data in either parallel form or serial form. In parallel communication, data is transferred over more
than one wire for example if 8 wires of one microcontroller are connected to any other peripheral device or another microcontroller
then at a particular time 8 data bits are transferred. On the other hand in serial communication, data is transferred in bit by bit
manner over a single wire. For example if a microcontroller 1 is transferring data to another microcontroller 2 in serial form then TXD
pin of microcontroller 1 will be connected to RXD pin of microcontroller 2 and data is transferred from microcontroller 1 to
microcontroller 2 in bit by bit manner over a single wire. If microcontroller 2 wants to send some data to microcontroller 1 then for
that TXD pin of microcontroller 2 must be connected to RXD pin of microcontroller 1 and again data bits will be transferred over a
single wire. So it is clear that for full duplex communication of data two wires are involved and for simplex communication only one
wire will be involved.

Parallel communication requires more number of wires than serial communication but it has higher speed of data transfer as more
than one bit is transferred at a given time. Serial communication is preferred when the distance b/w transmitter and receiver is large
and it is required to save the cabling cost and reduce h/w complexity but definitely this comes at the cost of reduced speed of data
transfer.

Parallel vs. Serial

» Parallel Communication (Printer)

— Fast, but distance cannot be great. .
One byte at a time or more

— Expensive

» Serial Communication (Telephone line)
— Long distance
— cheaper

@ne bit/data line

Serial v/s Parallel Communication %

Parallel Communication Serial Communication

Often 8 or more lines (wire conductors) The datais sent one bit atatimeona
are used to transfer data. Multiple bits single line (wire)
are transferred at a time.

Preferred for short-distance Preferred over long-distance
communication communication

Costly as more resources are required Comparatively cheaper
Speed of data transfer is high Slow

Example: SPI1, 12C, UART Example: PCI

Basics of Serial Commmunication

Serial communication uses single data line making it much cheaper
Enables two computers in different cities to communicate over the
telephone

Byte of data must be converted to serial bits using a parallel-in-serial-
out shift register and transmitted over a single data line

At the receiving end there must be a serial-in-parallel-out shitt
register

If transferred on the telephone line, it must be converted to audio
tones by modem for short distance ‘

Modes of Serial Communication

SII'I"IP|E'I M

Half Duplex | Transmitter ™, ~~] Receiver |
;
I Recevear I_/ - \qTrans.mlrtarI

Full Duplex | Transmitter |—-.| Receiver |
| Receivear I--—lTranﬁrmnarl

* Serial communication can be classified on the basis how transmission
OCcCurs.

e 1. Simplex: In simplex, the hardware such that data transfer takes
place in only one direction. Ex: Computer to Printer communication

e 2. Half Duplex: The half duplex transmission allows the data transfer
in both direction but not simultaneously. Ex: Walkie talkie

3. Full Duplex: It allows the data transfer in both direction
simultaneously. Ex: Telephone lines Data transfer schemes

* The data in the serial communication may be sent in two formats:

Basics of Serial Communication

\

* Serial Communication can be
v" Asynchronous
v" Synchronous
Synchronous Commumnication
* Synchronous methods transfer a block of data (characters) at a time
* The events are referenced to a clock
* Example: SPI bus, 12C bus

Asynchronous Communication

Asynchronous methods transfer a single byte at a time

There is no clock. The bytes are separated by start and stop bits.
* Faample: UART

Basics of Serial Communication

\

* To support serial communication, special interfaces are built in the¥
microcontroller.

* The microcontrollers use special IC chips called UART (universal
asynchronous receiver-transmitter) and USART (universal

synchronous asynchronous receiver-transmitter)
* 8051 chip has a built-in UART

Data Framing in Asynchronous Serial
Communication

* Data 1s transmitted 1n os and 1s

* To have a sense of synchronization between transmitter and
recelver and to make sense of the data, transmitter and receiver
agree on a set of rules 1.e protocol, which describes

v how the data is packed
v how many bits constitute a character

v when the data begins and ends

Data Framing in Asynchronous Serial
Communication

Start and stop bits

\

Each character is placed between start and stop bits. This is called
framing.

Start bit is always one bit, stop bit can be one, two or one and half
bits

In 8051 serial port, when there is no transmission, the TxD line is
held high. This is called mark.

Start bit is always a o (low), stop bit(s) is 1 (high)

LSB is sent out first

Data Framing in Asynchronous Serial
Communication

Framing ASCIT A

space | 0P O f 1 oioioioio

Poge

goes out last D7 DO goes out first

* The transmission begins with a start bit, followed by the LSB(D),
then the rest of the bits until MSB (D_), and finally, the one stop
bit indicating the end of the character

* When there is no transfer, the signal is 1 (high), which is referred
fesis mark

* Asynchronous: [Asynchronous formats are character oriented.

* |n this type the bits or character or data word are sent at constant rate,
but characters can come at any rate (asynchronously) as long as they do
not overlap.

* When no characters are being sent a line stays high at logicl called mark,
logicO is called space.

* The beginning of a character is indicated by start bit which is always low.

* This is used to synchronize the transmitter and receiver. [_After the start
bit the data bits are sent with least significant bit first followed by one or
more stop bits (active high).

* The stop bits indicate the end of character.

* The combination of start but, character and stop bits is known as frame.
The start and stop bits carry no information, but are required because of
asynchronous nature of data.

e Synchronous:

* The start and stop bits in each frame of asynchronous format
represents wasted overhead bytes that reduce overall character rate.
These start and stop bits can be eliminated by synchronizing receiver
and transmitter.

* They can be synchronized by having a common clock signal.

e Such a communication is called synchronous serial communication.
In this transmission synchronous bits are inserted instead of start and
stop bits

* The data rate can be expressed as bit/sec or character/sec.
 The term bit/sec is also called baud rate.

owefowe] | | | [[|
Data

Synchronous transmission format

S.No

Asynchronous

Synchronous

1. Transmitters and receivers are not Transmitters and receivers are synchronized by clock.
synchronized by clock.
2. Bits of data are transmitted at constant Data bits are transmitted with synchronization of clock.
rate.

3. Character may arrive at any rate at Character is received at constant rate.
receiver.

4, Data transfer is character oriented. Data transfer takes place in blocks

5. Start and stop bits are required to Start and stop bits are not required to establish communication of

establish communication of each each character. Synchronization bits are required to transfer the

character. data block.

6. Used in low-speed transmission at about Used in high speed transmissions.

speed less than 20 Kbits/sec.

 Data Transfer

* |[n 8051 microcontroller serial communication of data is performed
with the help of following special purpose registers-

* SBUF (Serial buffer register)

* SCON (serial control register)

e TMOD (Timer mode register)

* TCON (Timer control register)
 TH1 (Timerl register higher byte)

» Before going further it is extremely important to first understand these
registers and their importance with reference to serial
communication.

UART(universal asynchronous transmitter and receiver)

« UART stands for a universal asynchronous transmitter and receiver.
« UART Protocols is a serial communication with two wired protocols.

« The data cable signal lines are labeled as Rx and Tx. Serial communication is commonly used for transmitting
and receiving the signal.

« TXand RX are connected between two devices. (eg. USB and computer)
It is transferred and receives the data serially bit by bit without clock pulses.
« The UART takes bytes of data and sends the individual bits in a sequential manner.

« UART is a half-duplex protocol. Half-duplex means transferring and receiving the data but not at the same time.
Most of the controllers have hardware UART on board.

It uses a single data line for transmitting and receiving the data.

It has one start bit, 8-bit data and one-stop bit mean the 8-bit data transfer one’s signal is high to low.
« UART commonly built in microcontrollers

« Ex: Emails, SMS, Walkie-talkie.

TSI R R E R R R R R R R R FOEEEEEEEEEE YT

UART
BLOCK DIAGRAM

Baud Rate
Generator

'*

*rsrsssssrnessnannssnsnnnensnnnnnsnne”

.

The Universal Asynchronous Receiver Transmitter (UART) block diagram has two main components.
They are the receiver and transmitter. These two components are coupled with a baud rate generator.

This is used mainly for speed generation when the receiver and transmitter section has to receive or
transmit data.

The receiver section consists of shift register, control logic and a receive hold register.
Likewise, transmitter section also has a shift register, control logic and a transmit hold register.

The transmitter hold register contains the data to be transmitted. The shift registers in the two
components move the data bits left or right till the data transmission or receive operation is completed.

A write or read logic is used to indicate when the read and write operation must be done.
The baud rate generator is used to generate speeds ranging from 110 bps to 230400 bps.
The micro-controllers typically use a baud rate of 9600 bps to 115200 bps.

UART Communication Process

DATA BUS UVART 1 UART 2 DATA BUS
bit O - UART » bhit O
) Communication .
Bit 1 - e » bit 1
bit 2 » > bit 2
bit 3 > T > » hit 3
o « \ > bit 4
bit 5 > - > it 5
bit B B > hit 6
bit 7 » > bit 7

Universal Asynchronous Receiver Transmitter communication takes place through two mediums i.e.
transmitting UART and receiving UART.

The data flow is from both receiving (Rx) and transmitting (Tx) pins of Universal Asynchronous
Receiver Transmitter and only two cables are required for this purpose.

Universal Asynchronous Receiver Transmitter communication happens asynchronously i.e. clock or
other timing signals are absent.

Instead of that, UART has special start and stop bits that are added to the beginning and end of the
data packet respectively. These bits assist the receiving UART in identifying the actual received data.

The above figure shows a typical Universal Asynchronous Receiver Transmitter (UART)
communication process.

The controlling device transfers data to the transmitting UART through a data bus. This controlling
device can be a CPU of a micro-controller or microprocessor, memory units like ROM or RAM. The
transmitting UART receives data through parallel mode of communication.

The data is converted into a data packet by adding the start, stop and parity bits by the Universal
Asynchronous Receiver Transmitter (UART). It is then converted from parallel to serial form using a
shift register and is transmitted bit wise from the Tx pin.

This serial data is received by the Rx pin and identifies the actual data through the start and stop
bits. Data integrity is verified using the parity bit. The data is again converted into parallel mode
using shift register and is dispatched to the controller at the receiving end.

https://electricalfundablog.com/asynchronous-transmission-communication-characteristics-process-of-data-flow-advantages-and-disadvantages/

UART Protocol Data Flow

3
1 Mark

Do D2 | D3 DS | DE | DY | Pa
| JA— - BpACce

/%’7\

Start bit Data bits Parity it Stop bit(s)

Advantages:

7 Only two Wires

No Clock Signal necessary

Has Parity bit for error checkin
Structure of data packet can be changed

Widely used

"
’

-

~

Disadvantages:

» Size of data frame is limited to a maximum of 9 bits
» Doesnot Support multiple slave or multiple master systems
» Buadrate of each UART must be within 10% of each other

Disadvantages:

» Size of data frame is limited to a maximum of 9 bits

» Doesnot Support multiple slave or multiple master systems I
» Buadrate of each UART must be within 10% of each other

Applications:

» Commonly included in microcontrollers, used in devices including GPS units modems wireless
communication and Bluetooth modules and many more.,

External communication interfaces RS 232

* RS232 Protocol — Basics
« RS232 is one of the most widely used techniques to interface external equipment with computers.

« RS232 is a Serial Communication Recommended Standard Number developed by the Electronic Industry
Association (EIA) and Telecommunications Industry Association (TIA).

« RS232 defines the signals connecting between DTE and DCE. Here, DTE stands for Data Terminal Equipment
and an example for DTE is a computer.

« DCE stands for Data Communication Equipment or Data Circuit Terminating Equipment and an example for
DCE is a modem.

« RS232 was introduced in 1960’s and was originally known as EIA Recommended Standard 232. RS232 is one
of the oldest serial communication standards with ensured simple connectivity and compatibility across different
manufacturers. Originally, the DTEs in RS32 are electromechanical typewriters and DCEs are modems.

« RS232 uses serial communication, where one bit of data is sent at a time along a single data line. This is
contrast to parallel communication, where multiple bits of data are sent at a time using multiple data lines.

* An RS-232 link was designhed to connect the terminal to a modem,
which in turn accesses the phone lines that connect to the remote
computer.

* But, now a days, an RS-232 port is more likely to connect a PC to an
embedded system or to connect two embedded systems.

* The standard designhates 25 lines in the interface, but RS-232 ports
rarely sup- port more than the nine signals.

* RS232 uses 9 pin (DB9) or 25 pin(DB25) both “D” shaped connectors
available in a male or female form both.

DB9 and DB25 Connectors

Pin Number Pin Number Signal Source Type Description

(9-pin D-sub) |[(25-pin D-sub)

1 CD DCE control Carrier detect

2 RX DCE data Receive data

3 b TX DTE data Transmit data

4 DTR DTE control Data terminal
ready

5 SG - - Signal ground

6 DSR DCE control Data set ready

7 RTS DTE control Request to send

8 CTS DCE control Clear to send

9 RI DCE control Ring Indicator

- unused - - -

Pin

14

15
16
17

18 -

18

21

24
25

2

»
¢

&

TETY

JPP)
XX

oo

oo

DB9 Connector

&
5

O~NOOO s ON -

—rr
N =0 ©

L

|
=y
w

DB25 Connector

The Computer and Modem communicate with each other using RS232
interface and the communication between the modems is established using

telecommunication links.

|
|
|
]
l 4
1
|
1
[

RS252 Communieation RSa52 Communication

> Telecommunication

-
T ———

I
i
|
|
| 4
|
|
|
|
I

DTE

RS232 Protocol

(Transmutter) (Recetver)

* How RS232 Works?

In RS232, the data is transmitted serially in one direction over a single data line.

In order to establish two way communication, we need at least three wires (RX, TX and GND) apart from
the control signals. A byte of data can transmitted at any time provided the previous byte has already
been transmitted.

RS232 follows asynchronous communication protocol i.e. there is no clock signal to synchronize
transmitter and receiver. Hence, it uses start and stop bits to inform the receiver when to check for data.

There is a delay of certain time between the transmissions of each bit. This delay is nothing but an
inactive state i.e. the signal is set to logic ‘1’ i.e. -12V (if you remember, logic ‘1" in RS232 is -12V and
logic ‘0" is +12V).

First, the transmitter i.e. the DTE sends a Start bit to the receiver i.e. the DCE to inform it that data
transmission starts from next bit. The Start bit is always ‘0’ i.e. +12V. The next 5 to 9 characters are data
bits.

If parity bit is used, a maximum of 8 bits can be transmitted. If parity isn’t used, then 9 data bits can be
transmitted. After the data is transmitted, the transmitter sends the stop bits. It can be either 1 bit or 1.5
bits or 2 bits long. The following image shows the frame format of the RS232 protocol.

https://www.electronicshub.org/wp-content/uploads/2017/07/RS232-Frame-Format.jpg

frame format of the RS232 protocol.

0 b b . " s P S1 S2
* 11315
. / Pat:it‘j’ Stop Bits
Start Bt Data Bits Bt

RS-422

« RS-422 uses a twisted pair differential signal (more on this
below) for receiving and transmitting data. It runs in full-duplex
mode, with each transmission direction using two wires apiece.
Putting on our math hats, this means that it requires a total of
four wires. It is regularly used in a point to point (two devices
talking to each other similar to your standard RS-232
connection) or multi-drop topology. When set up in the latter
configuration, it can connect one driver with up to ten receivers
on a single bus, often through a daisy chain.

https://en.wikipedia.org/wiki/Twisted_pair

RS-485

* Like RS-422, RS-485 also uses a twisted pair differential signal for receiving
and transmitting data. However, this is most commonly done over a single
twisted pair, which requires (as you probably guessed) two wires. The RS-
485 standard was created to handle the problem of allowing several
devices to talk to each other, and accordingly, it supports a multi-point
topology. It can manage up to 32 devices, and the use of repeaters can
increase this number to 256. This standard allows a reliable signal to persist
under a higher load, which makes it a popular interface for industrial
applications, including a variety of automation systems.

e RS-485 can run in full-duplex mode and when it does, it essentially
becomes RS-422. In fact, you can often take hardware utilizing RS-485 and
successfully drop it into an RS-422 setup. However, the reverse is not true,
as RS-422 cannot operate in half-duplex mode, and therefore is unable to
support multi-point topologies.

RS422 vs RS485

RS422 and RS485 are hardware only standards. These Standards do not define how data is to be sent, AKA
the protocol, nor do they define any speed, AKA Bits Per Second (bps). They exist ONLY to supplement other
complete communication protocols, such as RS232, and allow these communication standards extend their
communication in terms of physical distance and high speed while maintaining a robust reliability in doing so.

What both RS422 and RS485 buses standards have in common that they both use hardware differential
signalling techniques to allow a combination of high speed communication over long distances who ground
potential differences can be non zero. However from a communication direction point of view, RS422 is not
compatible with RS485, but RS485 can be made compatible with RS5422.

FUNCTIONAL KEY BUS DIFFERENCE

The biggest difference between RS422 and RS485 is how they communicate with devices on a single pair of
differential wires.

RS422: Each Bus only offers One-way communication. A single transmitting (master) device to one or more
receiving (slave) devices on a smt_ﬂe pair of wires. Two-way communication requires TWO RS422 buses in
parallel.” One for each direction. Hence a two-way RS422 bus requires 4 wires.

RS485: Each Bus offers Two-way communication. Multiple devices can share a single pair of wires. Each
device has a transceiver allowing both transmitting and recelvmgbcapabllltles. This allows point to point two
way communication between any given device anywhere on the bus to any OTHER device anywhere on the
RS485 bus. Hence two-way communication requires, at a minimum, ONE RS485 bus.

HARDWARE: RS422 vs RS485 TRANSCEIVER CHIP SIMILARITIES
These chips allow a given device to access the RS422 or RS485 bus respectively. Both chips contains a transceiver. A
transceiver contains both a transmitter and receiver in one part. One side of the chip_interfaces with standard logic
signals from the local device it is connect to while the other side connect to the bus. The transmitter take a digital
signal from the device and translates it so it can drive the bus with the digital data. The receivers listens to the bus
digital data for the signal on the bus and translates back into a digital signal for the device.

HARDWARE: RS422 vs RS485 TRANSCEIVER CHIP DIFFERENCES

RS422 CHIP.

1) The transceivers are fully isolated from each other driving TWO independent one WaI-Y RS422 bus's in OPPOSITE
directions. The transmitter drives one bus and the receiver receives from a 2nd bus. Hence this is a 4 wire bus.

2) At a minimum, two RS422 chips are required to make a complete two way RS422 bus. The transmitter of the first
chip drives the receiver of the 2nd chip and the tranmitter of the 2nd chip drives the receiver of the first chip.

3) RS422 transmitter and receivers are always on and always connected to the RS422 bus. They cannot be
disconnected.

4) The transmitter is ALWAYS driving the bus to a known data state (mark or space)
5) Each RS422 bus can only be driven by one transmitter.

6) Multiple RS422 receivers can monitor the a given RS422 bus.

- RS485 CHIP:

1) The transceivers are fully connected to each other internally working with ONE RS485 bus.

2) RS485 transceivers have Enable and Disabled functions. The RS485 transmitter and receivers can be
DISCONNECTED from the RS485 bus.

3) The ability to disable e tranmitter allows RS85 transceiver can drive the bus.

Unlike RS422 drivers, RS485 drivers have a enable pins on the transceivers which allows the chip to isolate

itself from the bus. This is what make bi-directional communication possible.

THE DIFFERENTIAL SIGNALLING ADVANTAGE

RS422 and RS485 require three wires to send data. Two in the form of a twisted pair for data signalling and one for DC
ground.

The digital signal data is converted from a standard logic signal reference to ground to become represented by the VOLTAGE
POLARITY DIFFERENCE BETWEEN THE TWO SIGNAL WIRES. Twisted Pair wire offers the properties of low mutual inductance
between the two wires.

Differential Signalling Performance Benefits

1) takes the ground wire out of the high speed communication path by making no longer Representative of the signal

ground. Why?

1a) Eliminate Ground Wire Inductance. Inductance is an electrical property that in high speed communication restricts the
speed of communication.

1b) Differences in Earth Ground potentials. The ground wire's only purpose now is to make the two earth ground potential
difference between the devices establish a "common low ground voltage" within the range the RS422 and RS485 chips can
operate with without being damaged. Why? Earth Ground or true OV is a relative value. It is relative to where your standing
on Earth. One can take a volt meter and stick the ground probe into the earth your standing one and hold the positive probe in
you hanc and you will measure something close to zero volts. Take that same meter connect to your same earth ground and
extend the positive lead a long distance to the location of the other device and you would read a much LARGER NON ZERO
voltage. should be noted when there are two devices separated by long distance, they will NOT have the same earth ground
reference point. It made even worse by high power devices that leak current to Earth Ground.

2) takes the ground wire out of the high speed communication path.

2) reject noise from other adjacent wires since the ground is not involved. All noise is common mode which simply means that
it appear on both differential wires at the same time.

Difference between interrupt
and polling

* The main difference between interrupt and polling is that in
interrupt, the device notifies the CPU that it requires attention
while, in polling, the CPU continuously checks the status of the

devices to find whether they require attention.

* In brief, an interrupt is asynchronous whereas polling
IS synchronous.

INTERRUPT
VERSUS

POLLING
INTERRUPT POLLING

An event that is triggered An activity of sampling the
by external components status of an external device
other than the CPU that by a client program as a

alerts the CPU to perform a synchronous activity
certain action

When an interrupt In polling, the CPU
occurred, the interrupt provide the service
handler executes

Can occur at any time Occurs at regular intervals
H EH B B @B B E Nl DN E N EEE NN

H I I I I I N N N N NN NN NN E W
Interrupt-request line Command ready bit
indicates that device needs a indicates the device needs
service a service
H H E E H B B E N E E D EEEEE B ENE®B H I I N N N N NN BN NN EE NN Em
Does not waste much CPU W astes lot of CPU

cycles cycles

It is inefficient when the It is inefficient in polling, when
device interrupts the CPU the CPU rarely finds requests
frequently from the devices

Wisit www PEDIA A .com

	Slide Number 1
	Slide Number 2
	Slide Number 3
	MICROPROCESSOR AND MICROCONTROLLER
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Instruction Set of 8085
An instruction is a binary pattern designed inside a microprocessor to perform a specific function.
	Slide Number 65
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Slide Number 74
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Arithmetic Instructions
	Addition
	Subtraction
	Increment / Decrement
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Logical Instructions
These instructions perform logical operations on data stored in registers, memory and status flags.
	AND, OR, XOR
	Rotate
Each bit in the accumulator	can be shifted	either left	or right to the next position.
	Compare
	Complement
The contents of accumulator can be complemented.
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Branching Instructions
The branching instruction alter the normal sequential flow.
	Branching Instructions
	Branching Instructions
	Jump Conditionally
	Branching Instructions
	Branching Instructions
	Call Conditionally
	Slide Number 130
	Branching Instructions
	Return Conditionally
	Branching Instructions
	Restart Address Table
	Slide Number 135
	Control Instructions
	Control Instructions
	Control Instructions
	Control Instructions
	Control Instructions
	RIM Instruction
	Control Instructions
	SIM Instruction
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148
	2 Two-Byte Instructions

In a two-byte instruction, the first byte specifies the operation code and the second byte specifies the operand. Source operand is a data byte immediately following the opcode. For example:

Table 2.2 Example for 2 byte Instruction
	Slide Number 150
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Slide Number 158
	Slide Number 159
	Slide Number 160
	Slide Number 161
	Stack&subroutines
	Slide Number 163
	Slide Number 164
	Slide Number 165
	Slide Number 166
	Slide Number 167
	Slide Number 168
	Slide Number 169
	Slide Number 170
	Slide Number 171
	Slide Number 172
	Slide Number 173
	Slide Number 174
	Slide Number 175
	Slide Number 176
	Slide Number 177
	Slide Number 178
	Slide Number 179
	Slide Number 180
	Slide Number 181
	Slide Number 182
	Slide Number 183
	Slide Number 184
	Slide Number 185
	Assembler	Directives (cont..)
	Assembler	Directives (cont..)
	Slide Number 188
	Assembler	Directives (cont..)
	Assembler	Directives (cont..)
	Assembler	Directives (cont..)
	Slide Number 192
	Slide Number 193
	Slide Number 194
	Slide Number 195
	Slide Number 196
	Slide Number 197
	Slide Number 198
	Slide Number 199
	Slide Number 200
	Slide Number 201
	Slide Number 202
	Slide Number 203
	Slide Number 204
	Slide Number 205
	Slide Number 206
	Slide Number 207
	Slide Number 208
	Slide Number 209
	Slide Number 210
	Slide Number 211
	Slide Number 212
	Slide Number 213
	Slide Number 214
	Slide Number 215
	Slide Number 216
	Slide Number 217
	MODULE –III��8086 ARCHITECTURE��
	 INTRODUCTION
	 Microprocessor
	 Motherboard
	Slide Number 222
	Slide Number 223
	Slide Number 224
	�Intel 8086��Architecture & Programming
	Features of 8086 Microprocessor
	Features Continued …
	�Features Continued …
	Main components present in the microprocessor
	Slide Number 230
	Slide Number 231
	Slide Number 232
	Slide Number 233
	Internal Architecture of 8086
	Slide Number 235
	Slide Number 236
	Slide Number 237
	Execution unit
	Contd..
	Memory Segmentation
	Slide Number 241
	�Advantages of memory segmentation
	PHYSICAL MEMORY ORGANISATION
	Slide Number 244
	Slide Number 245
	Case 2: When a byte of data at an odd address (such as X+1) is to be accessed
	Case 3: When a word of data at an even address (aligned word) is to be accessed:
	Case 4: When a word of data at an odd address (misaligned word) is to be accessed, then the 8086 need two bus cycles to access it: �a) During the first bus cycle, the odd byte of the word (in the high bank) is addressed �
	REGISTER ORGANISATION IN 8086 MP
	Slide Number 250
	Slide Number 251
	Slide Number 252
	Slide Number 253
	Slide Number 254
	Slide Number 255
	Slide Number 256
	Slide Number 257
	Slide Number 258
	Slide Number 259
	Slide Number 260
	Slide Number 261
	�Generation of 20 bit physical address
	Slide Number 263
	PROGRAMMING MODEL
	Slide Number 265
	Slide Number 266
	Slide Number 267
	Slide Number 268
	Slide Number 269
	Slide Number 270
	Slide Number 271
	Slide Number 272
	�INSTRUCTION SET OF 8086
	�Data Transfer Instructions
	�Data Transfer Instructions Cont…
	�Data Transfer Instructions Cont …
	�Arithmetic Instructions
	�Arithmetic Instructions Cont…
	�Arithmetic Instructions Cont…
	�Arithmetic Instructions Cont…
	�Logical Instructions
	�Logical Instructions Cont…
	�Logical Instructions Cont…
	�CONTROL TRANSFER INSTRUCTIONS
	�CONTROL TRANSFER INSTRUCTIONS Cont…
	�CONTROL TRANSFER INSTRUCTIONS Cont…
	CONTROL TRANSFER INSTRUCTIONS Cont…
	CONTROL TRANSFER INSTRUCTIONS Cont…
	PROCESSOR CONTROL
	PROCESSOR CONTROL Cont…
	�STRING CONTROL
	STRING CONTROL Contd…
	�Interrupt Control
	�ASSEMBLER DIRECTIVES
	�ASSEMBLER DIRECTIVES Cont…
	ASSEMBLER DIRECTIVES Cont…
	ASSEMBLER DIRECTIVES Cont…
	Slide Number 298
	Slide Number 299
	Slide Number 300
	Slide Number 301
	Slide Number 302
	Slide Number 303
	Slide Number 304
	Slide Number 305
	Slide Number 306
	Slide Number 307
	Slide Number 308
	Macro
	Slide Number 310
	Slide Number 311
	TIMING DIAGRAMS FOR 8086
	Slide Number 313
	MEMORY READ CYCLE FOR 8086 IN MINIMUM MODE
	Slide Number 315
	Slide Number 316
	Slide Number 317
	Slide Number 318
	I/O INTERFACE �
	Input port: �
	Slide Number 321
	Output port:
	Slide Number 323
	Interfacing Analog to Digital Data Converters
	Slide Number 325
	ADC 0808/0809:
	Fig (1) and Fig (2) show the block diagrams and pin diagrams for ADC 0808/0809.
	Fig (1) and Fig (2) show the block diagrams and pin diagrams for ADC 0808/0809
	Fig.1 Block Diagram of ADC 0808/0809
	Fig.2 Pin Diagram of ADC 0808/0809
	Interfacing ADC0808 with 8086 �Interfacing Digital
	Interfacing Digital To Analog Converters: �The
	Pin Diagram of DAC 0800 �Interfacing DAC0800
	: I���Interfacing DAC0800 with 8086 Ad 7523 8-Bit Multiplying DAC: ���
	Keyboard Interfacing � �
	Slide Number 336
	INTERFACING 4×4 KEYBOARD
	DISPLAY INTERFACE
	Interfacing multiplexed 7-segment display
	Interfacing of memory with 8086 microprocessor
	Slide Number 341
	Slide Number 342
	Slide Number 343
	Slide Number 344
	Slide Number 345
	Slide Number 346
	Slide Number 347
	Slide Number 348
	Slide Number 349
	Slide Number 350
	Slide Number 351
	Slide Number 352
	Slide Number 353
	Slide Number 354
	Slide Number 355
	Slide Number 356
	Slide Number 357
	Slide Number 358
	Slide Number 359
	Slide Number 360
	Slide Number 361
	Slide Number 362
	Slide Number 363
	Slide Number 364
	Slide Number 365
	Slide Number 366
	Slide Number 367
	Slide Number 368
	Slide Number 369
	Slide Number 370
	Slide Number 371
	APPLICATIONS OF MICROCONTROLLER
	Slide Number 373
	Slide Number 374
	Slide Number 375
	Slide Number 376
	Slide Number 377
	Slide Number 378
	Slide Number 379
	Slide Number 380
	Slide Number 381
	Slide Number 382
	Slide Number 383
	Slide Number 384
	Slide Number 385
	Slide Number 386
	Slide Number 387
	Slide Number 388
	Slide Number 389
	Slide Number 390
	Slide Number 391
	Slide Number 392
	Slide Number 393
	 Oscillator and clock generator:
	Special function Registers(SFR):
	Slide Number 396
	Slide Number 397
	Slide Number 398
	4. Power control register (PCON): it is 8-bit register. It is byte addressable .Its address is 87H.� its bits are used to control mode of power saving circuit, either idle or power down mode � and also one bit is used to modify baud rate of serial communication.�
	Slide Number 400
	Difference between Von Neumann and Harvard Architecture
	Von Neumann Architecture
	Harvard Architecture
	Harvard Architecture
	Difference between Von Neumann and Harvard Architecture :
	RISC Architecture Basics�
	Slide Number 407
	Pipelining in RISC�
	Characteristic of RISC Architecture�
	CISC Architecture Introductin�
	Slide Number 411
	Main Features of CISC�
	�Characteristic of CISC�
	RISC vs CISC�
	��Difference between RISC and CISC Comparison Chart�
	The pin diagram of 8051 microcontroller looks as follows
	Slide Number 417
	Microcontrollers 8051 Input Output Ports�
	Slide Number 419
	8051 Microcontroller Memory Organization
	PROGRAM MEMORY (ROM) OF 8051 MICROCONTROLLER�
	INTERNAL ROM AND EXTERNAL ROM ORGANIZATION OF 8051
	There is another way to fetch the instructions: ignore the Internal ROM and fetch all the instructions only from the External Program Memory (External ROM). For this scenario, the EA Pin must be connected to GND. In this case, the memory addresses of the external ROM will be from 0000H to FFFFH.as shown in fig
	DATA MEMORY (RAM) OF 8051 MICROCONTROLLER�
	The final 80B of the internal RAM i.e. addresses from 30H to 7FH, is the general purpose RAM area which are byte addressable.�These lower 128B of RAM can be addressed directly or indirectly.
	Slide Number 426
	INSTRUCTION SET OF 8051 MICROCONTROLLER
	Slide Number 428
	Slide Number 429
	Slide Number 430
	Slide Number 431
	Slide Number 432
	Slide Number 433
	Slide Number 434
	Slide Number 435
	Slide Number 436
	Slide Number 437
	Slide Number 438
	Slide Number 439
	Slide Number 440
	Slide Number 441
	Slide Number 442
	Slide Number 443
	Slide Number 444
	Slide Number 445
	Slide Number 446
	Slide Number 447
	Slide Number 448
	DATA TRANSFER INSTRUCTIONS
	ARITHMATIC INSTRUCTIONS
	LOGICAL INSTRUCTIONS
	BOOLEAN INSTRUCTIONS
	PROGRAMME BRANCHING INSTRUCTIONS
	ADDRESSING MODES OF 8051
	Slide Number 455
	Slide Number 456
	Types of Interrupts in 8051 Microcontroller�
	The Timer and Serial interrupts are internally generated by the microcontroller, whereas the external interrupts are generated by additional interfacing devices or switches that are externally connected to the microcontroller. These external interrupts can be edge triggered or level triggered. When an interrupt occurs, the microcontroller executes the interrupt service routine so that memory location corresponds to the interrupt that enables it. The Interrupt corresponding to the memory location is given in the interrupt vector table below.�
	Interrupt Structure of 8051 Micro controller�
	interrupt structure of 8051 microcontroller
	Interrupt Enable (IE) Register
	Interrupt Enable (IE) Register
	Interrupt Priority Register
	Interrupt Priority Register
	Slide Number 465
	Slide Number 466
	Interrupt Programming in 8051�
	Slide Number 468
	Slide Number 469
	Slide Number 470
	Slide Number 471
	Slide Number 472
	Slide Number 473
	Slide Number 474
	Slide Number 475
	Slide Number 476
	Special function Registers(SFR):
	Slide Number 478
	Slide Number 479
	Slide Number 480
	4. Power control register (PCON): it is 8-bit register. It is byte addressable .Its address is 87H.� its bits are used to control mode of power saving circuit, either idle or power down mode � and also one bit is used to modify baud rate of serial communication.�
	Types of Interrupts in 8051 Microcontroller�
	The Timer and Serial interrupts are internally generated by the microcontroller, whereas the external interrupts are generated by additional interfacing devices or switches that are externally connected to the microcontroller. These external interrupts can be edge triggered or level triggered. When an interrupt occurs, the microcontroller executes the interrupt service routine so that memory location corresponds to the interrupt that enables it. The Interrupt corresponding to the memory location is given in the interrupt vector table below.�
	Interrupt Structure of 8051 Micro controller�
	interrupt structure of 8051 microcontroller
	Interrupt Enable (IE) Register
	Interrupt Enable (IE) Register
	Interrupt Priority Register
	Interrupt Priority Register
	Slide Number 490
	Slide Number 491
	Interrupt Programming in 8051�
	Slide Number 493
	Slide Number 494
	Slide Number 495
	Slide Number 496
	Slide Number 497
	Interfacing
	Interfacing the Keyboard to 8051 microcontroller��
	Slide Number 500
	Slide Number 501
	 Circuit diagram of INTERFACING KEY BOARD TO 8051.
	Keyboard is organized in a matrix of rows and columns as shown in the figure. The microcontroller accesses both rows and columns through the port. �
	Slide Number 504
	Slide Number 505
	Slide Number 506
	Slide Number 507
	Slide Number 508
	LCD DIS PLAY
	LCD INTERFACING WITH 8051 MICROCONTROLLER
	Slide Number 511
	Slide Number 512
	So by reading the above table you can get a brief idea how to display a character. For displaying a character you should enable the enable pin (pin 6) by giving a pulse of 450ns, after enabling the pin6 you should select the register select pin (pin4) in write mode. To select the register select pin in write mode you have to make this pin high (RS=1), after selecting the register select you have to configure the R/W to write mode that is R/W should be low (R/W=0).
	Interfacing 16×2 LCD with 8051 Circuit Diagram�
	Slide Number 515
	EXTERNAL MEMORY INTERFACING WITH 8051 MICROCONTROLLER
	PIN DIAGRAMME OF 8051 MICROCONTROLLER
	Slide Number 518
	Slide Number 519
	Slide Number 520
	Slide Number 521
	Slide Number 522
	Slide Number 523
	Slide Number 524
	Slide Number 525
	Slide Number 526
	Circuit diagram to interface external program ROM with 8051�
	From the above table, we can see that the address range of Y0 is from 0000H to 1FFFH.�
	EXTERNAL DATA MEMORY OF 8051
	STEPS to interface external RAM with 8051�
	Slide Number 531
	Slide Number 532
	Slide Number 533
	Slide Number 534
	Slide Number 535
	ADC Interfacing with 8051�
	Slide Number 537
	Pin diagram ADC0808�
	Slide Number 539
	Slide Number 540
	Channel Selection :�We can select any input channel by using the Address lines ADD A, ADD B and ADD C. As you can see in the below table, We can select the input line IN0 by keeping all three address lines ADD A, ADD B and ADD C Low.�
	Steps to be followed to interface ADC (ADC0808) with 8051��
	Slide Number 543
	Slide Number 544
	Slide Number 545
	Slide Number 546
	Slide Number 547
	Slide Number 548
	Slide Number 549
	Slide Number 550
	Slide Number 551
	Slide Number 552
	Slide Number 553
	Slide Number 554
	Slide Number 555
	Slide Number 556
	Slide Number 557
	Slide Number 558
	Slide Number 559
	Slide Number 560
	Slide Number 561
	Slide Number 562
	Slide Number 563
	Slide Number 564
	Slide Number 565
	UART(universal asynchronous transmitter and receiver)
	Slide Number 567
	Slide Number 568
	UART Communication Process
	Slide Number 570
	UART Protocol Data Flow
	Slide Number 572
	Slide Number 573
	External communication interfaces RS 232
	Slide Number 575
	Slide Number 576
	Slide Number 577
	The Computer and Modem communicate with each other using RS232 interface and the communication between the modems is established using telecommunication links.
	Slide Number 579
	Slide Number 580
	frame format of the RS232 protocol.
	RS-422
	RS-485
	RS422 vs RS485��
	Slide Number 585
	Slide Number 586
	THE DIFFERENTIAL SIGNALLING ADVANTAGE
	Difference between interrupt and polling
	Slide Number 589

