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MODULE III: 

Syntax-Directed Definitions, Evaluation Orders for SDD’s, Applications of Syntax-Directed 

Translation, Syntax-Directed Translation Schemes, and Implementing L-Attributed SDD’s. 

 

Syntax Directed Translation 

• Background : Parser uses a CFG(Context-free-Grammer) to validate the input string and produce 

output for next phase of the compiler. 

• Output could be either a parse tree or abstract syntax tree.  

• Now to interleave semantic analysis with syntax analysis phase of the compiler, we use Syntax 

Directed Translation.  

 

• Definition:  Syntax Directed Translation are augmented rules to the grammar that facilitate 

semantic analysis.  

• SDT involves passing information bottom-up and/or top-down the parse tree in form of attributes 

attached to the nodes.  

• Syntax directed translation rules use  

1) lexical values of nodes,  

2) constants &  

3) attributes associated to the non-terminals in their definitions.  

The general approach to Syntax-Directed Translation is to construct a parse tree or syntax tree and compute 

the values of attributes at the nodes of the tree by visiting them in some order.  

• In many cases, translation can be done during parsing without building an explicit tree.  

Example  

E -> E+T | T 

T -> T*F | F 

F -> INTLIT  

• This is a grammar to syntactically validate an expression having additions and multiplications in it.  

• Now, to carry out semantic analysis we will augment SDT rules to this grammar, in order to pass 

some information up the parse tree and check for semantic errors, if any.  

• In this example we will focus on evaluation of the given expression, as we don’t have any semantic 

assertions to check in this very basic example. 

E -> E+T       { E.val = E.val + T.val }     PR#1 

E -> T         { E.val = T.val }             PR#2 

T -> T*F       { T.val = T.val * F.val }     PR#3 

T -> F         { T.val = F.val }             PR#4 

F -> INTLIT    { F.val = INTLIT.lexval }     PR#5 

 

• For understanding translation rules further, we take the first SDT augmented to [ E -> E+T ] 

production rule.  

• The translation rule in consideration has val as attribute for both the non-terminals – E & T.  

• Right hand side of the translation rule corresponds to attribute values of right side nodes of the 

production rule and vice-versa. 

• Generalizing, SDT are augmented rules to a CFG that associate  

1. set of attributes to every node of the grammar and  

2. set of translation rules to every production rule using attributes, constants and lexical values. 
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• Let’s take a string to see how semantic analysis happens – S = 2+3*4. 

• Parse tree corresponding to S would be 

 
• To evaluate translation rules, we can employ one depth first search traversal on the parse tree.  

• This is possible only because SDT rules don’t impose any specific order on evaluation until children 

attributes are computed before parents for a grammar having all synthesized attributes.  

• Otherwise, we would have to figure out the best suited plan to traverse through the parse tree and 

evaluate all the attributes in one or more traversals.  

• For better understanding, we will move bottom up in left to right fashion for computing translation 

rules of our example.  

Construct the syntax tree for the expression X * 7 – 5 + Z 

 

 

 

 

 

 

 

 

- 

+ * 

7 X 5 Z 
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• Above diagram shows how semantic analysis could happen.  

• The flow of information happens bottom-up and all the children attributes are computed before 

parents, as discussed above.  

• Right hand side nodes are sometimes annotated with subscript 1 to distinguish between children and 

parent. 

 

Evaluation Orders for SDD's 

Dependency graphs" are a useful tool for determining an evaluation order for the attribute instances in a 

given parse tree. While an annotated parse tree shows the values of attributes, a dependency graph helps 

us determine how those values can be computed. 

In this section, in addition to dependency graphs, we define two important classes of SDD's: the "S-

attributed" and the more general "L-attributed" SDD's. The translations specified by these two classes fit 

well with the parsing methods we have studied, and most translations encountered in practice can be written 

to conform to the requirements of at least one of these classes. 

 

1 Dependency Graphs 

A dependency graph depicts the flow of information among the attribute instances in a particular parse 

tree; an edge from one attribute instance to another means that the value of the first is needed to compute 

the second. Edges express constraints implied by the semantic rules. In more detail: 

• For each parse-tree node, say a node labeled by grammar symbol X , the dependency graph has 

a node for each attribute associated with X . 

• Suppose that a semantic rule associated with a production p defines the value of synthesized 

attribute A.b in terms of the value of X.c (the rule may define A.b in terms of other attributes 

in addition to X.c). Then, the dependency graph has an edge from X.c to A.b. More precisely, 

at every node N labeled A where production p is applied, create an edge to attribute b at N , 

from the attribute c at the child of N corresponding to this instance of the symbol X in the body 

of the production. 

Since a node N can have several children labeled X , we again assume that subscripts distinguish among 

uses of the same symbol at different places in the production. 

• Suppose that a semantic rule associated with a production p defines the value of inherited 

attribute B.c in terms of the value of X.a. Then, the dependency graph has an edge 

from X.a to B.c. For each node N labeled B that corresponds to an occurrence of this B in the 

body of production p, create an edge to attribute c at N from the attribute a at the node M that 

corresponds to this occurrence of X . Note that M could be either the parent or a sibling of N . 

NOTE: What is described above is an algorithm for constructing a dependency graph. 

 

2 Ordering the Evaluation of Attributes 

The dependency graph characterizes the possible orders in which we can evaluate the attributes at the 

various nodes of a parse tree. If the dependency graph has an edge from node M to node N , then the 

attribute corresponding to M must be evaluated before the attribute of N . Thus, the only allowable orders 

of evaluation are those sequences of nodes N1,N2,…,Nk such that if there is an edge of the dependency 

graph from Ni to Nj, then i < j . Such an ordering embeds a directed graph into a linear order, and is called 

a topological sort of the graph. 
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If there is any cycle in the graph, then there are no topological sorts; that is, there is no way to evaluate the 

SDD on this parse tree. If there are no cycles, however, then there is always at least one topological sort. 

To see why, since there are no cycles, we can surely find a node with no edge entering. For if there were 

no such node, we could proceed from predecessor to predecessor until we came back to some node we had 

already seen, yielding a cycle. Make this node the first in the topological order, remove it from the 

dependency graph, and repeat the process on the remaining nodes. 

 

3 S-Attributed Definitions 

As mentioned earlier, given an SDD, it is very hard to tell whether there exist any parse trees whose 

dependency graphs have cycles. In practice, translations can be implemented using classes of SDD's that 

guarantee an evaluation order, since they do not permit dependency graphs with cycles. Moreover, the two 

classes introduced in this section can be implemented efficiently in connection with top-down or bottom-

up parsing. 

The first class is defined as follows: 

• An SDD is S-attributed if every attribute is synthesized. 

When an SDD is S-attributed, we can evaluate its attributes in any bottom-up order of the nodes of 

the parse tree. It is often especially simple to evaluate the attributes by performing a postorder 

traversal of the parse tree and evaluating the attributes at a node N when the traversal leaves N for the 

last time. That is, we apply the function postorder, defined below, to the root of the parse tree (see also the 

box "Preorder and Postorder Traversals" in Section 2.3.4): 

 
S-attributed definitions can be implemented during bottom-up parsing, since a bottom-up parse 

corresponds to a postorder traversal. Specifically, postorder corresponds exactly to the order in which 

an LR parser reduces a production body to its head. This fact will b e used in Section 5.4.2 to 

evaluate synthesized attributes and store them on the stack during LR parsing, without creating the tree 

nodes explicitly. 

 

4 L-Attributed Definitions 

The second class of SDD's is called L-attributed definitions. The idea behind this class is that, between the 

attributes associated with a production body, dependency-graph edges can go from left to right, but not 

from right to left (hence "L-attributed"). More precisely, each attribute must be either 

1. Synthesized, or 

2. Inherited, but with the rules limited as follows. Suppose that there is a 

production A→X1,X2,…,Xn, and that there is an inherited attribute Xi.a computed by a rule 

associated with this production. Then the rule may use only: 

3. Inherited attributes associated with the head A. 

4. Either inherited or synthesized attributes associated with the occurrences of 

symbols X1,X2,…,Xi−1 located to the left of Xi. 

5. Inherited or synthesized attributes associated with this occurrence of Xi itself, but only in such 

a way that there are no cycles in a dependency graph formed by the attributes of this Xi. 
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Ex: The SDD in Fig. 5.4 is L-attributed. To see why, consider the semantic rules for inherited attributes, 

which are repeated here for convenience: 

 
The first of these rules defines the inherited attribute T'.inh using only F.val , and F appears to the left 

of T' in the production body, as required. The second rule defines T′1.inh using the inherited 

attribute T'inh associated with the head, and F.val , where F appears to the left of T′1 in the production 

body. 

In each of these cases, the rules use information "from above or from the left," as required by the class. The 

remaining attributes are synthesized. Hence, the SDD is L-attributed. 

Ex: Any SDD containing the following production and rules cannot be L-attributed: 

 
The second rule defines an inherited attribute B.i, so the entire SDD cannot be S-attributed. Further, 

although the rule is legal, the SDD cannot be L-attributed, because the attribute C.c is used to help 

define B.i, and C is to the right of B in the production body. 

 

5. Semantic Rules with Controlled Side Effects 

In practice, translations involve side effects: a desk calculator might print a result; a code generator might 

enter the type of an identifier into a symbol table. With SDD's, we strike a balance between attribute 

grammars and translation schemes. Attribute grammars have no side effects and allow any evaluation 

order consistent with the dependency graph. Translation schemes impose left-to-right evaluation and allow 

semantic actions to contain any program fragment;  

We shall control side effcts in SDD's in one of the following ways: 

• Permit incidental side effects that do not constrain attribute evaluation. In other words, permit 

side effects when attribute evaluation based on any topological sort of the dependency graph 

produces a "correct" translation, where "correct" depends on the application. 

• Constrain the allowable evaluation orders, so that the same translation is produced for any 

allowable order. The constraints can be thought of as implicit edges added to the dependency 

graph. 

 

Applications of Syntax-Directed Translation 

 

The main application of Syntax-Directed Translation is in the construction of syntax trees. Compilers use 

syntax trees as an intermediate representation, using a common form of Syntax-Directed Definitions, the 

input string is converted into a tree. The compiler then traverses the tree using rules that are in effect an 

SDD on the syntax tree rather than the parse tree. 

 

• Executing Arithmetic Expressions 

• Conversion from infix to postfix expression 

• Conversion from infix to prefix expression 

• For Binary to decimal conversion 
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• Counting the number of Reductions 

• Creating a Syntax tree 

• Generating intermediate code 

• Storing information into the symbol table 

• Type checking 

 

Example : 

Here, we are going to cover an example of application of SDT for better understanding the SDT 

application uses. let’s consider an example of arithmetic expression and then you will see how SDT 

will be constructed. 

Let’s consider Arithmetic Expression is given. 

Input : 2+3*4 

output: 14 

SDT for the above example. 

 
SDT for 2+3*4 

Semantic Action is given as following. 

E -> E+T  { E.val = E.val + T.val then print (E.val)} 

     |T   { E.val = T.val}  

T -> T*F  { T.val = T.val * F.val} 

     |F   { T.val = F.val} 

F -> Id   {F.val = id} 

 

Syntax-Directed Translation Schemes 

 

DECLARATIONS: 

Let assume declarations using a simplified grammar that declares just one name at a time; 

The grammar is 

D → T id ; D | ε 

T → B C | record ' {' D '} ' 

B → int | float 

C → ε  | [ num ] C 

Nonterminal D generates a sequence of declarations.  

Nonterminal T generates basic, array, or record types.  
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Nonterminal B generates one of the basic types int and float.  

Nonterminal C, for \component, generates strings of zero or more integers, each integer surrounded by 

brackets.  

An array type consists of a basic type specified by B, followed by array components specified by 

nonterminal C.  

A record type (the second production for T) is a sequence of declarations for the fields of the record, all 

surrounded by curly braces. 

 

• T → B   { t = B.type;   w = B.width; } 

  C    { T.type = C.type;  T.width = C.width; } 

• B → int   { B.type = integer;  B.width = 8; } 

• B → float   { B.type = float;  B.width = 16; } 

• C → ε    { C.type = t;   C.width = w; } 

• C → [ num ] C1  { C.type = array(num.value,  C1:type); 

          C.width = num.value x C1.width; } 

Figure: Computing types and their widths 

 

The translation scheme (SDT) in Fig. computes types and their widths for basic and array types; 

The SDT uses synthesized attributes type and width for each nonterminal and two variables t and w to pass 

type and width information from a B node in a parse tree to the node for the production C → ε . 

In a syntax-directed definition, t and w would be inherited attributes for C. 

 

• The body of the T-production consists of nonterminal B, an action, and nonterminal C, which 

appears on the next line.  

• The action between B and C sets t to B.type and w to B.width.  

• If B → int then B.type is set to integer and B.width is set to 8, the width of an integer.  

• Similarly, if B → float then B.type is float and B.width is 16, the width of a float. 

• The productions for C determine whether T generates a basic type or an array type.  

• If C →ε, then t becomes C.type and w becomes C.width. 

• Otherwise, C specifies an array component.  

• The action for C → [ num ] C1 forms C.type by applying the type constructor array to the operands 

num.value and C1.type. 

 

Control Flow: 

 

• The translation of statements such as if-else-statements and while-statements is tied to the 

translation of boolean expressions.  

• In programming languages, boolean expressions are often used to 

1. Alter the flow of control: Boolean expressions are used as conditional expressions in statements that 

alter the flow of control.  

The value of such boolean expressions is implicit in a position reached in a program.  

For example, in if (E) S, the expression E must be true if statement S is reached. 

2. Compute logical values: A boolean expression can represent true or false as values.  

Such boolean expressions can be evaluated in analogy to arithmetic expressions using three-address 

instructions with logical operators. 
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• The intended use of boolean expressions is determined by its syntactic context.  

• For example, an expression following the keyword if is used to alter the flow of control, while an 

expression on the right side of an assignment is used to denote a logical value.  

• Such syntactic contexts can be specified in a number of ways:  

• we may use two different nonterminals, use inherited attributes, or set a flag during parsing.  

• Alternatively we may build a syntax tree and invoke different procedures for the two different uses 

of boolean expressions. 

 

ASSIGNMENTS: 

• The syntax-directed definition in Fig. builds up the three-address code for an assignment statement 

S using attribute code for S and attributes addr and code for an expression E.  

 

 
 

• Attributes S.code and E.code denote the three-address code for S and E, respectively.  

• Attribute E.addr denotes the address that will hold the value of E.  

• Consider the last production, E → id, in the syntax-directed definition in Fig. above. When an 

expression is a single identifier, say x, then x itself holds the value of the expression.  

• The semantic rules for this production define E.addr to point to the symbol-table entry for this 

instance of id.  

• Let top denote the current symbol table.  

• Function top.get retrieves the entry when it is applied to the string representation id.lexeme of this 

instance of id.  

• E.code is set to the empty string. 

• When E → (E1), the translation of E is the same as that of the subexpression E1.  

• Hence, E.addr equals E1.addr, and E.code equals E1.code. 

 

• The operators + and unary - in Fig. are representative of the operators in a typical language.  

• The semantic rules for E → E1 +E2, generate code to compute the value of E from the values of E1 

and E2.  

• Values are computed into newly generated temporary names.  

• If E1 is computed into E1.addr and E2 into E2.addr, then E1 +E2 translates into t = 

E1.addr+E2.addr, where t is a new temporary name. 
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• E.addr is set to t.  

• A sequence of distinct temporary names t1, t2, … is created by successively executing new Temp(). 

• For convenience, we use the notation gen(x '=' y '+' z ') to represent the three-address instruction x 

= y+z.  

• Expressions appearing in place of variables like x, y, and z are evaluated when passed to gen, and 

quoted strings like '=' are taken literally.  

• Other three-address instructions will be built up similarly by applying gen to a combination of 

expressions and strings. 

• When we translate the production E → E1 +E2, the semantic rules in 

• Fig. build up E.code by concatenating E1.code, E2.code, and an instruction that adds the values of 

E1 and E2.  

• The instruction puts the result of the addition into a new temporary name for E, denoted by E.addr. 

• The translation of E → -E1 is similar.  

• The rules create a new temporary for E and generate an instruction to perform the unary minus 

operation. 

• Finally, the production S → id =E; generates instructions that assign the value of expression E to 

the identifier id.  

• The semantic rule for this production uses function top.get to determine the address of the identifier 

represented by id, as in the rules for E → id.  

• S.code consists of the instructions to compute the value of E into an address given by E.addr, 

followed by an assignment to the address top.get(id.lexeme) for this instance of id. 

• Example: The syntax-directed definition in Fig. translates the assignment statement a = b +-c; into 

the three-address code sequence 

t1 = minus c 

t2 = b + t1 

a = t2 

 

BOOLEAN EXPRESSIONS: 

• Boolean expressions are composed of the boolean operators (which we denote &&, ||, and !, using 

the C convention for the operators AND, OR, and NOT, respectively) applied to elements that are 

boolean variables or relational expressions.  

• Relational expressions are of the form E1 rel E2, where E1 and E2 are arithmetic expressions. 

• Consider boolean expressions generated by the following grammar: 

 B → B || B | B && B | ! B | ( B ) | E rel E | true | false 

• We use the attribute rel.op to indicate which of the six comparison operators <, <=, =, ! =, >, or >= 

is represented by rel.  

• Let we assume that || and && are left-associative, and that || has lowest precedence, then &&, then 

!. 

• Given the expression B1 || B2, if we determine that B1 is true, then we can conclude that the entire 

expression is true without having to evaluate B2. 

• Similarly, given B1&&B2, if B1 is false, then the entire expression is false. 

• The semantic definition of the programming language determines whether all parts of a boolean 

expression must be evaluated.  



III Year II Sem - CSE                                                                   Compiler Design: Class Notes                                                                            2022-2023 

10                                                                       P. V Ramana Murthy 

LEE; B.E(Comp); M.Tech(CS); (Ph.D(CSE)); 

Malla Reddy Engineering College (Autonomous) 

• If the language definition permits (or requires) portions of a boolean expression to go unevaluated, 

then the compiler can optimize the evaluation of boolean expressions by computing only enough of 

an expression to determine its value.  

• Thus, in an expression such as B1 || B2, neither B1 nor B2 is necessarily evaluated fully.  

• If either B1 or B2 is an expression with side effects (e.g., it contains a function that changes a global 

variable), then an unexpected answer may be obtained. 

Ex:  The translation for a || b && ! c is the three-address sequence 

  t1 : = ! c 

 t2 : = b && t 1 

 t3 : = a || t 2 

Methods of Translating Boolean Expressions: 

There are two principal methods of representing the value of a boolean expression. They are : 

– To encode true and false numerically and to evaluate a boolean expression analogously to an 

arithmetic expression.  

– Often, 1 is used to denote true and 0 to denote false. 

– To implement boolean expressions by flow of control, that is, representing the value of a boolean 

expression by a position reached in a program 

Numerical Representation 

– Here, 1 denotes true and 0 denotes false. Expressions will be evaluated completely from left to right, 

in a manner similar to arithmetic expressions. 

 

A relational expression such as a < b is equivalent to the conditional statement if a < b then 1 else 0 which 

can be translated into the three-address code sequence (again, we arbitrarily start statement numbers at 100)  

 

100 : if a < b goto 103 

101 : t : = 0 

102 : goto 104 

103 : t : = 1 

 

Short-Circuit Code: 

 

• In short-circuit (or jumping) code, the boolean operators &&, ||, and ! translate into jumps.  

• The operators themselves do not appear in the code; instead, the value of a boolean expression is 

represented by a position in the code sequence. 

Example 6.21 : The statement    if ( x < 100 || x > 200 && x != y ) x = 0; 

might be translated into the code of Fig. 6.34. In this translation, the Boolean expression is true if control 

reaches label L2.  

If the expression is false, control goes immediately to L1, skipping L2 and the assignment x = 0. 

  if x < 100 goto L2 

  if False x > 200 goto L1 

  if False x != y goto L1 

       L2:  x = 0 

       L1: 

Figure : Jumping code 
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Switch-Statements: 

• The \switch" or \case" statement is available in a variety of languages. 

• Our switch-statement syntax is shown in Fig.  

• There is a selector expression E, which is to be evaluated, followed by n constant values V1, V2, 

… ,Vn that the expression might take, perhaps including a default \value," which always matches 

the expression if no other value does. 

switch ( E ) { 

 case V1: S1 

 case V2: S2 

  ,,,, 

 case Vn-1: Sn-1 

default: Sn 

} 

 Figure 6.48: Switch-statement syntax 

 

 

 

Syntax-Directed Translation of Switch-Statements: 

 

• The intermediate code in Fig. 6.49 is a convenient translation of the switch-statement in Fig.  

• The tests all appear at the end so that a simple code generator can recognize the multiway branch 

and generate efficient code for it, using the most appropriate implementation. 

 

 
Figure 6.49: Translation of a switch-statement 

 

 

Methods of Translating Boolean Expressions: 

 

There are two principal methods of representing the value of a boolean expression. They are : 

– To encode true and false numerically and to evaluate a boolean expression analogously to 

an arithmetic expression.  

– Often, 1 is used to denote true and 0 to denote false. 

– To implement boolean expressions by flow of control, that is, representing the value of a 

boolean expression by a position reached in a program 

Numerical Representation 

– Here, 1 denotes true and 0 denotes false. Expressions will be evaluated completely from left 

to right, in a manner similar to arithmetic expressions. 
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A relational expression such as a < b is equivalent to the conditional statement if a < b then 1 else 0 

which can be translated into the three-address code sequence (again, we arbitrarily start statement numbers 

at 100) : 

100 : if a < b goto 103 

101 : t : = 0 

102 : goto 104 

103 : t : = 1 

 

Short-Circuit Code: 

• In short-circuit (or jumping) code, the boolean operators &&, ||, and ! translate into jumps.  

• The operators themselves do not appear in the code; instead, the value of a boolean expression is 

represented by a position in the code sequence. 

Example 6.21 : The statement    if ( x < 100 || x > 200 && x != y ) x = 0; 

might be translated into the code of Fig. In this translation, the Boolean expression is true if control reaches 

label L2.  

If the expression is false, control goes immediately to L1, skipping L2 and the assignment x = 0. 

  if x < 100 goto L2 

  if False x > 200 goto L1 

  if False x != y goto L1 

       L2:  x = 0 

       L1: 

  Figure: Jumping code 

Switch-Statements: 

• The \switch" or \case" statement is available in a variety of languages. 

• Our switch-statement syntax is shown in Fig.  

• There is a selector expression E, which is to be evaluated, followed by n constant values V1, V2, 

… ,Vn that the expression might take, perhaps including a default \value," which always matches 

the expression if no other value does. 

switch ( E ) { 

 case V1: S1 

 case V2: S2 

  ,,,, 

 case Vn-1: Sn-1 

default: Sn 

} 

 Figure : Switch-statement syntax 

 

Syntax-Directed Translation of Switch-Statements: 

 

• The intermediate code in Fig. is a convenient translation of the switch-statement in Fig.  

• The tests all appear at the end so that a simple code generator can recognize the multiway branch 

and generate efficient code for it, using the most appropriate implementation. 
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Figure: Translation of a switch-statement 

 

Flow-of-Control Statements: 

• We now consider the translation of boolean expressions into three-address code in the context of 

statements such as those generated by the following grammar: 

S → if ( B ) S1 

S → if ( B ) S1 else S2 

S → while ( B ) S1 

• In these productions, nonterminal B represents a boolean expression and nonterminal S represents 

a statement. 

• As in that example, both B and S have a synthesized attribute code, which gives the translation into 

three-address instructions. 

• For simplicity, we build up the translations B.code and S.code as strings, using syntax-directed 

definitions 

• The semantic rules defining the code attributes could be implemented instead by building up syntax 

trees and then emitting code during a tree traversal. 

• The translation of if (B) S1 consists of B.code followed by S1.code, as illustrated in Fig(a). Within 

B.code are jumps based on the value of B. 

• If B is true, control flows to the first instruction of S1.code, and if B is false, control flows to the 

instruction immediately following S1.code. 

 
• The labels for the jumps in B.code and S.code are managed using inherited attributes.  

• With a boolean expression B, we associate two labels: B.true, the label to which control flows if B 

is true, and B.false, the label to which control flows if B is false.  

• With a statement S, we associate an inherited attribute S.next denoting a label for the instruction 

immediately after the code for S. 
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• In some cases, the instruction immediately following S.code is a jump to some label L.  

• A jump to a jump to L from within S.code is avoided using S.next. 

• The syntax-directed definition in Fig. produces three-address code for boolean expressions in the 

context of if-, if-else-, and while-statements. 

• We assume that newlabel() creates a new label each time it is called, and that label(L) attaches label 

L to the next three-address instruction to be generated. 

 
Figure: Syntax-directed definition for flow-of-control statements. 

• A program consists of a statement generated by P → S.  

• The semantic rules associated with this production initialize S.next to a new label. 

• P.code consists of S:code followed by the new label S.next.  

• Token assign in the production S → assign is a placeholder for assignment statements.  

• Let for ex: control flow, S:code is simply assign.code. 

• In translating S → if (B) S1, the semantic rules in Fig create a new label B.true and attach it to the 

first three-address instruction generated for the statement S1, as illustrated in Fig(a). 

• Thus, jumps to B.true within the code for B will go to the code for S1.  

• Further, by setting B.false to S.next, we ensure that control will skip the code for S1 if B evaluates 

to false. 

• In translating the if-else-statement S → if (B) S1 else S2, the code for the boolean expression B has 

jumps out of it to the first instruction of the code for S1 if B is true, and to the first instruction of 

the code for S2 if B is false, as illustrated in Fig(b).  

• Further, control flows from both S1 and S2 to the three-address instruction immediately following 

the code for S - its label is given by the inherited attribute S.next.  

• An explicit goto S.next appears after the code for S1 to skip over the code for S2.  

• No goto is needed after S2, since S2.next is the same as S:next. 

• The code for S → while (B) S1 is formed from B:code and S1:code as shown in Fig. (c).  

• We use a local variable begin to hold a new label attached to the first instruction for this while-

statement, which is also the first instruction for B.  
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• We use a variable rather than an attribute, because begin is local to the semantic rules for this 

production.  

• The inherited label S.next marks the instruction that control must flow to if B is false;  

• hence, B.false is set to be S.next.  

• A new label B.true is attached to the first instruction for S1; the code for B generates a jump to this 

label if B is true.  

• After the code for S1 we place the instruction goto begin, which causes a jump back to the beginning 

of the code for the boolean expression.  

• Note that S1.next is set to this label begin, so jumps from within S1.code can go directly to begin. 

• The code for S → S1 S2 consists of the code for S1 followed by the code for S2.  

• The semantic rules manage the labels; the first instruction after the code for S1 is the beginning of 

the code for S2; and the instruction after the code for S2 is also the instruction after the code for S. 

• There we shall see an alternative method, called \backpatching," which emits code for statements 

in one pass. 

Control-Flow Translation of Boolean Expressions: 

• The semantic rules for boolean expressions in Fig below complement the semantic rules for 

statements in Fig above.  

• As in the code layout of Fig, a Boolean expression B is translated into three-address instructions 

that evaluate B using conditional and unconditional jumps to one of two labels: B.true if B is true, 

and B.false if B is false. 

• The fourth production in Fig., B → E1 rel E2, is translated directly into a comparison three-address 

instruction with jumps to the appropriate places.  

• For instance, B of the form a < b translates into: 

if a < b goto B.true 

goto B.false 

 

 
Figure: Generating three-address code for booleans 
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The remaining productions for B are translated as follows: 

1. Suppose B is of the form B1 || B2. If B1 is true, then we immediately know that B itself is true, so 

B1:true is the same as B:true. If B1 is false, then B2 must be evaluated, so we make B1:false be the 

label of the first instruction in the code for B2. The true and false exits of B2 are the same as the 

true and false exits of B, respectively. 

2. The translation of B1 &&B2 is similar. 

3. No code is needed for an expression B of the form !B1: just interchange the true and false exits of 

B to get the true and false exits of B1. 

4. The constants true and false translate into jumps to B:true and B:false, respectively. 

 

Example: Consider again the following statement: 

if( x < 100 || x > 200 && x != y ) x = 0; 

Using the previous syntax-directed definitions we would obtain the code below 

 if x < 100 goto L2 

 goto L3 

L3:  if x > 200 goto L4 

 goto L1 

L4:  if x != y goto L2 

 goto L1 

L2:  x = 0 

L1: 

Figure: Control-flow translation of a simple if-statement 

 

Attributed grammars 

• Attribute grammar is a special form of context-free grammar where some additional information 

(attributes) are appended to one or more of its non-terminals in order to provide context-sensitive 

information. 

•  Each attribute has well-defined domain of values, such as integer, float, character, string, and 

expressions. 

• Attribute grammar is a medium to provide semantics to the context-free grammar and it can help 

specify the syntax and semantics of a programming language.  

• Attribute grammar (when viewed as a parse-tree) can pass values or information among the nodes 

of a tree. 

Example: 

• E → E + T { E.value = E.value + T.value } 

 

• The right part of the CFG contains the semantic rules that specify how the grammar should be 

interpreted.  

• Here, the values of non-terminals E and T are added together and the result is copied to the non-

terminal E. 

• Semantic attributes may be assigned to their values from their domain at the time of parsing and 

evaluated at the time of assignment or conditions.  

• Based on the way the attributes get their values, they can be broadly divided into two categories:  

a. Synthesized attributes and  

b. Inherited attributes. 
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Synthesized attributes: 

• A Synthesized attribute is an attribute of the non-terminal on the left-hand side of a production.  

• Synthesized attributes represent information that is being passed up the parse tree.  

• These attributes get values only from the attribute values of their child nodes. (Variables in the RHS 

of the production).  

• For eg. let’s say A -> BC is a production of a grammar, and A’s attribute is dependent on B’s 

attributes or C’s attributes then it will be synthesized attribute.  

• Synthesized attributes never take values from their parent nodes or any sibling nodes. 

Inherited attributes: 

• An attribute of a nonterminal on the right-hand side of a production is called an inherited attribute.  

• The attribute can take value either from its parent or from its siblings (variables in the LHS or RHS 

of the production).  

• For example, let’s say A -> BC is a production of a grammar and B’s attribute is dependent on A’s 

attributes or C’s attributes then it will be inherited attribute.  

 

Expansion: When a non-terminal is expanded to terminals as per a grammatical rule 

 
Reduction: When a terminal is reduced to its corresponding non-terminal according to grammar rules. 

 

Syntax trees are parsed top-down and left to right.  

Whenever reduction occurs, we apply its corresponding semantic rules (actions). 

Semantic analysis uses Syntax Directed Translations to perform the above tasks. 

Semantic analyzer receives AST (Abstract Syntax Tree) from its previous stage (syntax analysis). 

Semantic analyzer attaches attribute information with AST, which are called Attributed AST. 

Attributes are two tuple value, <attribute name, attribute value> 

For example: 

int value  = 5; 

<type, “integer”> 

<presentvalue, “5”> 

For every production, we attach a semantic rule. 

 

S-attributed SDT 

• If an SDT uses only synthesized attributes, it is called as S-attributed SDT. 

• Semantic actions are placed in rightmost place of RHS. 
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As depicted above, attributes in S-attributed SDTs are evaluated in bottom-up parsing, as the values of the 

parent nodes depend upon the values of the child nodes. 

 

L-attributed SDT: 

If an SDT uses both synthesized attributes and inherited attributes with a restriction that inherited attribute, 

a non-terminal can inherit values from its parent and left siblings only, it is called as L-attributed SDT. 

 

As in the following production 

 S → ABC 

S can take values from A, B, and C (synthesized). A can take values from S only. B can take values from 

S and A.  

C can get values from S, A, and B.  

No non-terminal can get values from the sibling to its right. 

Attributes in L-attributed SDTs are evaluated by depth-first and left-to-right parsing manner. 

Semantic actions are placed anywhere in RHS. 

 
• We may conclude that if a definition is S-attributed, then it is also L-attributed as L-attributed definition 

encloses S-attributed definitions. 

 

Example – Consider the given below SDT. 

P1: S -> MN  {S.val= M.val + N.val} 

P2: M -> PQ  {M.val = P.val * Q.val  and P.val =Q.val}  

 

Select the correct option. 

A. Both P1 and P2 are S attributed. 

B. P1 is S attributed and P2 is L-attributed. 

C. P1 is L attributed but P2 is not L-attributed. 

D. None of the above 

 

Explanation: - – 

The correct answer is option C as, In P1, S is a synthesized attribute and in L-attribute definition synthesized 

is allowed.  

So P1 follows the L-attributed definition.  

But P2 doesn’t follow L-attributed definition as P is depending on Q which is RHS to it. 
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Implementing L-Attributed SDD’s. 

 

 1 Translation During Recursive-Descent Parsing 

2 On-The-Fly Code Generation 

3 L-Attributed SDD's and LL Parsing 

4 Bottom-Up Parsing of L-Attributed SDD's 

 

1. Translation During Recursive-Descent Parsing 

A recursive-descent parser has a function A for each nonterminal A, can extend the parser into a translator 

as follows: 

  

a) The arguments of function A are the inherited attributes of nonterminal  A.  

 

b) The return-value of function A is the collection of synthesized attributes of nonterminal  A.  

  

In the body of function A, we need to both parse and handle attributes: 

  

 Decide upon the production used to expand A. 

  

 Check that each terminal appears on the input when it is required. We shall assume that no backtracking is 

needed, but the extension to recur-sive-descent parsing with backtracking can be done by restoring the input 

position upon failure. 

 

2. On-The-Fly Code Generation 

The construction of long strings of code that are attribute values, is undesirable for several reasons, 

including the time it could take to copy or move long strings. In common cases such as our running code-

generation example, we can instead incrementally generate pieces of the code into an array or output file 

by executing actions in an SDT. 

 

3. L-Attributed SDD's and LL Parsing 

  

Suppose that an L-attributed SDD is based on an LL-grammar and that we have converted it to an SDT 

with actions embedded in the productions, as described in Section 5.4.5. We can then perform the 

translation during LL parsing by extending the parser stack to hold actions and certain data items needed 

for attribute evaluation. Typically, the data items are copies of attributes. 

  

In addition to records representing terminals and nonterminals, the parser stack will hold action-

records representing actions to be executed and synth-esize-records to hold the synthesized attributes for 

nonterminals. We use the following two principles to manage attributes on the stack: 

  

            The inherited attributes of a nonterminal A are placed in the stack record that represents that 

nonterminal. The code to evaluate these attributes will usually be represented by an action-record 

immediately above the stack record for A; in fact, the conversion of L-attributed SDD's to SDT's ensures 

that the action-record will be immediately above A. 
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            The synthesized attributes for a nonterminal A are placed in a separate synthesize-record that is 

immediately below the record for A on the stack. 

  

This strategy places records of several types on the parsing stack, trusting that these variant record types 

can be managed properly as subclasses of a "stack-record" class. In practice, we might combine several 

records into one, but the ideas are perhaps best explained by separating data used for different purposes 

into different records. 

  

Action-records contain pointers to code to be executed. Actions may also appear in synthesize-records; 

these actions typically place copies of the synthe-sized attribute(s) in other records further down the stack, 

where the value of that attribute will be needed after the synthesize-record and its attributes are popped off 

the stack. 

 

4. Bottom-Up Parsing of L-Attributed SDD's 

  

We can do bottom-up every translation that we can do top-down. More pre-cisely, given an L-attributed 

SDD on an LL grammar, we can adapt the gram-mar to compute the same SDD on the new grammar during 

an LR parse. The "trick" has three parts: 

            Start with the SDT, which places embed-ded actions before each nonterminal to compute its 

inherited attributes and an action at the end of the production to compute synthesized at-tributes. 

 

 

 

 

 


