
MODULE 1

Introduction to IoT

By

Dr. M. Jagadeesh Chandra Prasad

Professor & Head , ECE Dept.

Outline

• Sensors and actuators

• Wireless sensor networks

• Machine-to-Machine communications

• IoT definition

• Characteristics of IoT

• Physical Design of IoT

• Logical Design of IoT

• IoT Protocols

• IoT Enabling Technologies

• IoT Levels & Deployment Templates

Sensors and actuators

Sensor: A device that can sense its environment, and translate
physical quantities such as light, sound, temperature, and motion
into electrical signals.
Actuator: A device that converts electrical energy into a physical
quantity

Difference b/w Sensor & Actuator

Sensor Actuator

Sensor converts physical quantities and

characteristics into electrical signals

Actuator converts electrical signals into physical action

such as force and motion

It acts as an input device in any control system

and placed in input port

It acts as an output device in a control system and placed

in output port

Sensor takes input from environment and senses

surroundings condition

Actuator takes input from output signal conditioning unit

of system

It gives information to the system about

environment condition to monitor and control

It accepts command from system to deliver physical action

Sensors are often used to measure process

pressure, temperature, fluid levels, flow,

vibration, speed etc.

Actuators are often used to operate control valves,

dampers, guide vanes, and to move objects from one

place to another, to move conveyor belts in robotic arms

movement etc..

Example:

Sensors in IoT

Sensors characteristics :Static, Dynamic

Static characteristics : how the output of a sensor changes in

response to an input change after steady state condition.

i. Accuracy: to give a result close to the true value of the

measured quantity.

ii. Range: Gives the highest and the lowest value of the physical

quantity within which the sensor can actually sense

iii. Resolution: Provide the smallest changes in the input that a

sensor is able to sense.

iv. Precision: Give the same reading when repetitively measuring

the same quantity under the same prescribed conditions.

Sensors characteristics :Static, Dynamic

Dynamic Characteristics :

 Zero-order system: The output shows a response to the input signal

with no delay.

 First-order system: When the output approaches its final value

gradually.

 Second-order system: Complex output response. The output

response of the sensor oscillates before steady state.

Sensor Classification :

1. Passive & Active

2. Analog & digital

3. Scalar & vector

Passive Sensor :Can not independently sense the input. Ex- Accelerometer, soil

moisture, water level and temperature sensors.

Active Sensor: Independently sense the input. Example- Radar, sounder and

laser altimeter sensors.

Analog Sensor :The response or output of the sensor is some continuous

function of its input parameter. Ex- Temperature sensor, LDR, analog pressure

sensor and analog hall effect.

Sensor Classification :

Digital sensor :Response in binary nature. Example – Passive infrared (PIR)

sensor and digital temperature sensor(DS1620).

Scalar sensor :Detects the input parameter only based on its magnitude.

Example – temperature, gas, strain, color and smoke sensor.

Vector sensor :The response of the sensor depends on the magnitude of the

direction and orientation of input parameter. Example – Accelerometer,

gyroscope, magnetic field and motion detector sensors.

Different types of Sensors in IoT

1. Temperature: detect the temperature of the air or a physical object .

2. Pressure sensors: measure the pressure or force per unit area applied
to the sensor.

3. Moisture: Where temperature sensors record the heat, moisture
sensors record the amount of humidity

4. Noise: As the name suggests, record the noise levels in the given
environment.

5. Level: These sensors detect the quantity or level of different
substances. Ex: Manufacturing industries

6. Proximity sensors: can detect the presence or absence of objects

Different types of Sensors in IoT

7. Smoke sensors : An electronic fire-protection device that

automatically senses the presence of smoke, as a key indication of

fire, and sounds a warning to building occupants.

8. Infrared (IR) sensors : An electronic device, that emits the light in

order to sense some object of the surroundings.

9. Gyroscope: These sensors are used to measure the velocity of a

moving object.

10. Accelerometers: Accelerometers are an impressive type of IoT sensor

used to record and measure an object’s acceleration.

Types of Actuators

Types of Actuators

1. Hydraulic: A hydraulic actuator uses hydraulic power to perform a mechanical

operation. They are actuated by a cylinder or fluid motor. The mechanical motion is

converted to rotary, linear, or oscillatory motion, according to the need of the IoT

device.

2. Pneumatic: A pneumatic actuator uses energy formed by vacuum or compressed air

at high pressure to convert into either linear or rotary motion.

3. Electrical: An electric actuator uses electrical energy, is usually actuated by a motor

that converts electrical energy into mechanical torque. An example of an electric

actuator is a solenoid based electric bell.

4. Thermal: convert a temperature change into a mechanical force to push/pull,

open/close, or move a load.

5. Magnetic: A device that allows for electric currents in machines to be used to move

the various components within the machine

Wireless Sensor Networks (WSNs)
16

Introduction
 Wireless Sensor Networks are networks that consists of sensors which are distributed

in an ad hoc manner.

 These sensors work with each other to sense some physical phenomenon and then the

information gathered is processed to get relevant results.

 Wireless sensor networks consists of protocols and algorithms with self-organizing

capabilities.

17

 A sensor network is a wireless network that consists of thousands of very small nodes

called sensors.

Base station

18

 WSN Sensors are equipped with sensing, limited computation, and wireless

communication capabilities.

Comparison with ad hoc networks

 Wireless sensor networks mainly use broadcast communication while ad hoc

networks use point-to-point communication.

 Unlike ad hoc networks wireless sensor networks are limited by sensors limited

power, energy and computational capability.

 Sensor nodes may not have global ID because of the large amount of overhead

and large number of sensors.

19

WSNs Applications
20

 WSNs have many advantages over traditional networking techniques.

 They have an ever-increasing number of applications, such as infrastructure protection and

security, surveillance, health-care, environment monitoring, food safety, intelligent

transportation, and smart energy.

WSNs Applications
21

What is M2M?

 Machine to manchine learning (M2M) Communication refers to

communication between the computers and embedded processors

smart sensors and mobile devices with out any human intervention.

 In simple we can say “Exchange of information and perform actions

without the manual assistance of humans.

 For this the modern Technologies like Artificial Intelligence (AI) and

machine learning(ML) facilitate the communication between the systems

and allowing the machines to make their own autonomous choices.

How M2M works?

 As machines communicate using language called ”Telemetry”.

 M2M system often use public networks and access methods to perform

tasks. These devices send information they collect back to other devices

on the network.

 The main components of an M2M system include like sensors, WIFI ,

cellular communications link and automatic computing software to help

network device interpret the data and make decisions.

 M2M technology relies on software-controlled communication between

machines and devices. Special applications translate information into

relevant to the end user.

Sensors
NetworksInformation
Extraction

Actuation

Processing

M2M Overview

Definition of IoT

The Internet of Things (IoT) describes physical objects embedded with

sensors and actuators that communicate with computing systems via

wired or wireless networks, allowing the physical world to be digitally

monitored or even controlled.

Characteristics of the Internet of Things:
1. Connectivity

2. Intelligence and Identity

3. Scalability

4. Dynamic and Self-Adapting (Complexity)

5. Architecture

6. Safety

7. Self Configuring

8. Interoperability

 Connectivity: Connectivity is an important requirement of the IoT infrastructure.

Things of IoT should be connected to the IoT infrastructure. Anyone, anywhere,

anytime can connect, this should be guaranteed at all times. For example, the

connection between people through Internet devices like mobile phones, and

other gadgets, also a connection between Internet devices such as routers,

gateways, sensors, etc.

 Intelligence and Identity: The extraction of knowledge from the generated

data is very important. For example, a sensor generates data, but that data

will only be useful if it is interpreted properly. Each IoT device has a unique

identity. This identification is helpful in tracking the equipment and at times for

querying its status.

 Scalability : The number of elements connected to the IoT zone is increasing

day by day. Hence, an IoT setup should be capable of handling the massive

expansion. The data generated as an outcome is enormous, and it should be

handled appropriately.

 Dynamic and Self-Adapting (Complexity): IoT devices should dynamically

adapt themselves to changing contexts and scenarios. Assume a camera

meant for surveillance. It should be adaptable to work in different conditions

and different light situations (morning, afternoon, and night).

 Architecture: It cannot be homogeneous in nature. It should be hybrid,

supporting different manufacturers products to function in the IoT network. IoT

is not owned by anyone engineering branch. IoT is a reality when multiple

domains come together.

 Safety :There is a danger of the sensitive personal details of the users getting

compromised when all his/her devices are connected to the internet. This can

cause a loss to the user. Hence, data security is the major challenge. Besides,

the equipment involved is huge. IoT networks may also be at risk. Therefore,

equipment safety is also critical.

 Self Configuring :This is one of the most important characteristics of IoT. IoT

devices are able to upgrade their software in accordance with requirements

with a minimum of user participation. Additionally, they can set up the network,

allowing for the addition of new devices to an already-existing network.

 Interoperability : It refers to the ability of different IoT devices and systems to

communicate and exchange data with each other, regardless of the underlying

technology or manufacturer.

How IoT works?

• 1) Sensors/Devices

• 2) Connectivity

• 3) Data Processing

• 4)User Interface

Generic block diagram of an IoT Device

Bahga & Madisetti, © 2015

• An IoT device may consist of
several interfaces for
connections to other devices,
both wired and wireless.
• I/O interfaces for sensors

• Interfaces for Internet
connectivity

• Memory and storage interfaces

• Audio/video interfaces.

Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

PHYSICAL DESIGN OF IOT

•The physical design of an IoT system is referred to as
the Things/Devices and protocols that are used to build an IoT system.

•All these things/Devices are called Node Devices and every device has a
unique identity that performs remote sensing, actuating and monitoring
work.

•The protocols that are used to establish communication between the
Node devices and servers over the internet.

https://www.programmingoneonone.com/2021/04/internet-of-things.html

PHYSICAL DESIGN OF IOT

Things/Devices

Things/Devices are used to build a connection, process data, provide interfaces, provide
storage, and provide graphic interfaces in an IoT system.

All these generate data in a form that can be analyzed by an analytical system and
program to perform operations and used to improve the system.

for example temperature sensor that is used to analyze the temperature generates the
data from a location and is then determined by algorithms.

Connectivity
Devices like USB hosts and ETHERNET are used for connectivity between
the devices and the server.

Processor
A processor like a CPU and other units are used to process the data. These
data are further used to improve the decision quality of an IoT system.

Audio/Video Interfaces
An interface like HDMI and RCA devices is used to record audio and videos in a system.

Input/Output interface
To give input and output signals to sensors, and actuators we use things like
UART(universal asynchronous receiver-transmitter), SPI(Serial Peripheral Interface),
CAN(Controller Area Network), etc.

Storage Interfaces
Things like SD(Secure Digital), MMC(MultiMediaCard), and SDIO are used to store
the data generated from an IoT device.
(Secure Digital I/O Card) A version of the SD Memory Card that adds wireless
transmission to a handheld device.

Other things like DDR Double data rate (DDR) RAM and GPU (graphics processing
unit) are used to control the activity of an IoT system.

These protocols are used to establish communication between a node
device and a server over the internet.
It helps to send commands to an IoT device and receive data from
an IoT device over the internet.

we use different types of protocols that are present on both the server and client-
side and these protocols are managed by network layers like application, transport,
network, and link layer.

IOT PROTOCOLS

https://www.programmingoneonone.com/2021/04/internet-of-things.html

IoT Protocols

Bahga & Madisetti, © 2015

• Link Layer
• 802.3 – Ethernet
• 802.11 – WiFi
• 802.16 – WiMax
• 802.15.4 – LR-WPAN
• 2G/3G/4G

• Network/Internet Layer
• IPv4
• IPv6
• 6LoWPAN

• Transport Layer
• TCP
• UDP

• Application Layer
• HTTP
• CoAP
• WebSocket
• MQTT
• XMPP
• DDS
• AMQP

Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Layer Protocol

Application layer

•Advanced Message Queuing Protocol (AMQP)

•Message Queue Telemetry Transport (MQTT)

•Constrained Application Protocol (CoAP)

Transport layer
•User Datagram Protocol (UDP)

•Transmission Control Protocol (TCP)

Network layer
•6LoWPAN

•IP

Datalink layer
•LPWAN

•IEEE 802.15.4 MAC

Physical layer

•IEEE 802.15.4 MAC

•Near field communication (NFC)

•Radio frequency identification (RFID)

•Bluetooth Low Energy (BLE)

•Ethernet

Logical design of IoT
Logical design of IoT system refers to an abstract

representation of the entities & processes without going

into the low-level specifies of the implementation. For

understanding Logical Design of IoT, we describes

given below terms.

IoT Functional Blocks

IoT Communication Models

IoT Communication APIs

These functional blocks consist of devices that provide monitoring control
functions, handle communication between host and server, manage the
transfer of data, secure the system using authentication and other functions,
and interface to control and monitor various terms.

Application

•It is an interface that provides a control system that use by users to view the
status and analyze of system.

Management

•This functional block provides various functions that are used to manage an IoT
system.

IoT Functional Blocks

Services
•This functional block provides some services like monitoring and controlling a
device and publishing and deleting the data and restoring the system.

Communication
•This block handles the communication between the client and the cloud-
based server and sends/receives the data using protocols.

Security
•This block is used to secure an IoT system using some functions like
authorization, data security, authentication, 2-step verification, etc.

Device
•These devices are used to provide sensing and monitoring control functions
that collect data from the outer environment.

IoT Communication Models

There are several different types of models available in an IoT system that is

used to communicate between the system and server like

1. Request-Response Communication Model

2. Publish-Subscribe Communication Model

3. Push-Pull

4. Exclusive Pair

1. Request-Response Communication Model

2. Publish-Subscribe Communication Model

Example
•On the website many times we
subscribed to their newsletters using
our email address.
•These email addresses are managed
by some third-party services and when
a new article is published on the
website it is directly sent to the broker
and then the broker sends these new
data or posts to all the subscribers.

3. Push-Pull Communication Model

EXAMPLE:
Company Newsletter: Imagine a company that sends out a weekly newsletter
to all its employees. The human resources department compiles the latest
updates, announcements, and important news regarding the company's
policies, events, and achievements. The newsletter is sent to all employees'
email addresses without them having to request it actively. This is an example
of the push communication model, where information is pushed out to
recipients regardless of their immediate need or request..

4. Exclusive Pair Communication Model

Example: Alice and Bob's Private Chatroom
•Alice and Bob are two close friends who prefer private and exclusive
communication.
•They decide to create an exclusive pair communication model by
setting up a private chatroom. In this chatroom, only they have
access, and all communication between them is encrypted to ensure
privacy and security.

IoT Communication API’s

REST-based Communication APIs :

 Representational State Transfer (REST) is a set of architectural
principles by which you can design web services and web APIs that
focus on a system’s resources and how resource states are
addressed and transferred.

 REST APIs follow the request- response communication model.

 The REST architectural constraints apply to the components,
connectors, and data elements, within a distributed hypermedia
system.

IoT devices provide a bridge between the digital world and the physical
world by capturing information about the environment, so remote
consumers can make decisions and initiate actions.

Those actions may be as simple as turning a light on or off or part of a
complex operational process (such as a manufacturing system)

Once data is in the cloud, it can be merged with other data, analyzed for
meaning and relevance and, in some cases, used to drive automation. There
are many business problems IoT can help companies solve.

CLOUD COMPUTING

Cloud Computing: Services are offered to users in

different forms.

Cloud computing services are offered to users in different forms:

Infrastructure as a Service (IaaS): Hardware is provided by an external provider
and managed for you

Platform as a Service (PaaS): In addition to hardware, your operating system
layer is managed for you

Software as a Service (SaaS): further to the above, an application layer is
provided and managed for you – you won’t see or have to worry about the first
two layers.

Some examples of big data generated by IoT are

 Sensor data generated by IoT systems.
 Machine sensor data collected from sensors established in
industrial and energy systems.
 Health and fitness data generated IoT devices.
Data generated by IoT systems for location and tracking
vehicles.
Data generated by retail inventory monitoring systems.

Big Data Analytics

Communication Protocols

These form the back-bone of IoT systems and enable network

connectivity and coupling to applications.

Allow devices to exchange data over network.

Define the exchange formats, data encoding addressing schemes for

device and routing of packets from source to destination.

It includes sequence control, flow control and retransmission of lost

packets.

Embedded Systems

Embedded Systems is a computer system that has computer
hardware and software embedded to perform specific tasks.
Embedded System range from low cost miniaturized devices such as
digital watches to devices such as digital cameras, POS terminals,
vending machines, appliances etc.,

IoT Levels & Deployment Templates

Bahga & Madisetti, © 2015

 An IoT system comprises of the following components:

 Device: An IoT device allows identification, remote sensing, actuating
and remote monitoring capabilities. You learned about various
examples of IoT devices in section

 Resource: Resources are software components on the IoT device for
accessing, processing, and storing sensor information, or controlling
actuators connected to the device. Resources also include the software
components that enable network access for the device.

 Controller Service:Controller service is a native service that runs on the
device and interacts with the web services. Controller service sends data
from the device to the web service and receives commands from the
application (via web services) for controlling the device.

IoT Levels & Deployment Templates

Bahga & Madisetti, © 2015

 Database: Database can be either local or in the cloud and stores the
data generated by the IoT device.

 Web Service:Web services serve as a link between the IoT device,
application, database and analysis components. Web service can be
either implemented using HTTP and REST principles (REST service) or
using WebSocket protocol (WebSocket service).

 Analysis Component: The Analysis Component is responsible for
analyzing the IoT data and generate results in a form which are easy
for the user to understand.

 Application: IoT applications provide an interface that the users can use
to control and monitor various aspects of the IoT system. Applications
also allow users to view the system status and view the processed
data.

IoT Level-1

 A level-1 IoT system has a single node/device .

 Performs sensing and/or actuation, stores data, performs analysis and

hosts the application. l

 Suitable for modeling low-cost and low-complexity solution where the

data involved is not big and the analysis requirements are not

computationally intensive.

IoT Level- 2

 A level-2 IoT system has a single node that performs sensing and/or

actuation and local analysis

 suitable for solutions where the data involved is big and primary

analysis requirement is not computationally intensive

IoT Level- 3

 A level-3 IoT system has a single node.

 Data is stored and analyzed in the cloud and the application is cloud-

based.

 Suitable for solutions where the data involved is l big and the analysis

requirements are computationally intensive.

IoT Level- 4

 A level-4 IoT system has multiple nodes that perform local analysis.

 Data is stored in the cloud and the and application is cloud-based.

 Contains local and cloud-based observer nodes which can subscribe to

and receive information collected in the cloud from IoT devices.

 Suitable for solutions where multiple nodes are required, the data

involved is big and the analysis requirements are computationally

intensive Data is stored and analyzed in the cloud and the application

is cloud-based.

IoT Level- 5

 A level-5 IoT system has multiple end nodes and one coordinator

node.

 The end nodes perform sensing and/or actuation.

 The coordinator node collects data from the end nodes and sends it to

the cloud.

 Data is stored and analyzed in the cloud and the application is cloud-

based.

 Suitable for solutions based on wireless sensor networks, in which the

data involved is big and the analysis requirements are

computationally intensive.

IoT Devices and Endpoints

• Introduction to Arduino UNO

• Pin layout, Installing the Software

• Fundamentals of Arduino Programming.

• Introduction to Raspberry Pi

• Pin Layout, Operating Systems on Raspberry Pi

• Installing Raspberry Pi, Connecting Raspberry Pi via SSH

• Raspberry Pi Interfaces, Interfacing Hardware with the Raspberry Pi

• Raspberry Pi Remote Access and “headless mode”.

 Arduino UNO is a low-cost, flexible, and easy-to-use programmable open-

source microcontroller board that can be integrated into a variety of

electronic projects.

Arduino Uno is a microcontroller board, developed by Arduino.cc, based on the
Atmega328 microcontroller and is marked as the first Arduino board
developed(UNO means "one" in Italian).

The software used for writing, compiling & uploading code to Arduino boards is
called Arduino IDE (Integrated Development Environment), which is free to
download from Arduino Official Site.

It has an operating voltage of 5V while the input voltage may vary from 7V to 12V.
Arduino UNO has a maximum current rating of 40mA, so the load shouldn't
exceed this current rating or you may harm the board.

https://www.arduino.cc/

 Arduino UNO comes with 3 types of memories associated with it, named:

◦ Flash Memory: 32KB

◦ SRAM: 2KB

◦ EEPROM: 1KB

 Arduino UNO supports 3 types of communication protocols, used for
interfacing with third-party peripherals, named:

◦ Serial Protocol

◦ I2C Protocol

◦ SPI Protocol

 There are several I/O digital and analog pins placed on the board which
operates at 5V. These pins come with standard operating ratings ranging
between 20mA to 40mA. Internal pull-up resistors are used in the board
that limits the current exceeding the given operating conditions.
However, too much increase in current makes these resisters useless
and damages the device.

 Arduino Uno Pinout consists of 14 digital pins starting from D0 to D13.
 It also has 6 analog pins starting from A0 to A5.
 It also has 1 Reset Pin, which is used to reset the board

programmatically. In order to reset the board, we need to make this pin
LOW.

 It also has 6 Power Pins, which provide different voltage levels
 Out of 14 digital pins, 6 pins are used for generating PWM pulses of 8-

Bit resolution. PWM pins in Arduino UNO are D3, D5, D6, D9, D10 and
D11.

 LED. Arduino Uno comes with a built-in LED which is connected through
pin 13. Providing HIGH value to the pin will turn it ON and LOW will turn
it OFF.

 Vin. It is the input voltage provided to the Arduino Board. It is different
than 5 V supplied through a USB port. This pin is used to supply voltage.
If a voltage is provided through a power jack, it can be accessed through
this pin.

 5V. This board comes with the ability to provide voltage regulation. 5V
pin is used to provide output regulated voltage. The board is powered
up using three ways i.e. USB, Vin pin of the board or DC power jack.

 USB supports voltage around 5V while Vin and Power Jack support a
voltage ranges between 7V to 20V. It is recommended to operate the
board on 5V. It is important to note that, if a voltage is supplied through
5V or 3.3V pins, they result in bypassing the voltage regulator that can
damage the board if the voltage surpasses its limit.

 GND. These are ground pins. More than one ground pins are provided
on the board which can be used as per requirement.

 Reset. This pin is incorporated on the board which resets the program
running on the board. Instead of physical reset on the board, IDE comes
with a feature of resetting the board through programming.

 IOREF. This pin is very useful for providing voltage reference to the
board. A shield is used to read the voltage across this pin which then
selects the proper power source.

 PWM. PWM is provided by 3,5,6,9,10, 11pins. These pins are configured
to provided 8-bit output PWM.

 SPI. It is known as Serial Peripheral Interface. Four pins 10(SS),
11(MOSI), 12(MISO), 13(SCK) provide SPI communication with the help
of the SPI library.

 AREF. It is called Analog Reference. This pin is used for providing a
reference voltage to the analog inputs.

 TWI. It is called Two-wire Interface. TWI communication is accessed
through Wire Library. A4 and A5 pins are used for this purpose.

 Serial Communication. Serial communication is carried out through two
pins called Pin 0 (Rx) and Pin 1 (Tx).

 Rx pin is used to receive data while Tx pin is used to transmit data.

 External Interrupts. Pin 2 and 3 are used for providing external
interrupts. An interrupt is called by providing LOW or changing value.

 Apart from USB, a battery or AC to DC adopter can also be used to
power the board.

 Embedded System

 Security and Defense System

 Digital Electronics and Robotics

 Parking Lot Counter

 Weighing Machines

 Traffic Light Count Down Timer

 Medical Instrument

 Emergency Light for Railways

 Home Automation

 Industrial Automation

 Step 1 − First you must have your Arduino board (you can choose your
favorite board) and a USB cable. ...

 Step 2 − Download Arduino IDE Software.

 Step 3 − Power up your board.

 Step 4 − Launch Arduino IDE.

 Step 5 − Open your first project.

 Step 6 − Select your Arduino board.

 Each block has a set of statements
enclosed in curly braces:

 void setup()
 {
 statements-1;
 .
 .
 .
 statement-n;
 }
 void loop ()
 {
 statement-1;
 .
 .
 statement-n;
 }

 Arduino programs have a minimum of 2
blocks,

 Preparation & Execution
 Here, setup () is the preparation block and

loop () is an execution block.

 The execution block hosts statements like
reading inputs, triggering outputs,
checking conditions etc

 Void loop ()
 {
 digitalWrite (pin-number,HIGH); // turns

ON the component connected to ‘pin-
number’

 delay (1000); // wait for 1 sec
 digitalWrite (pin-number, LOW); // turns

OFF the component connected to ‘pin-
number’

 delay (1000); //wait for 1sec
 }

 The setup block is the first to execute
when the program is executed, and
this function is called only once.

 The setup function is used to initialize
the pin modes and start serial
communication.

 This function has to be included even if
there are no statements to execute.

 void setup ()
 {

 pinMode (pin-number, OUTPUT); // set
the ‘pin-number’ as output

 pinMode (pin-number, INPUT); // set
the ‘pin-number’ as output

 }

Components Required for LED experiment

 Arduino UNO R3 -1

 Breadboard -1

 Breadboard connectors -3

 LED -1

 1K resistor -1

 Blinking the LED

 Steps in building a breadboard connection:

 Step-1: Connect the Arduino to the
Windows / Mac / Linux system via a USB
cable

 Step-2: Connect the 13th digital pin of
Arduino to the positive power rail of the
breadboard and GND to the negative

 Step-3: Connect the positive power rail to
the terminal strip via a 1K ohm resistor

 Step-4: Fix the LED to the ports below the
resistor connection in the terminal strip

 Step-5: Close the circuit by connecting the
cathode (the short chord) of the LED to the
negative power strip of the breadboard

 Arduino program for LED blink (Version-1)

 int LED =13; // The digital pin to which
the LED is connected

 void setup ()
 {
 pinMode (LED, OUTPUT); //Declaring

pin 13 as output pin
 }
 void loop() // The loop function runs

again and again
 {
 digitalWrite (LED, HIGH); //Turn ON the

LED
 delay(1000); //Wait for 1sec
 digitalRead (LED, LOW); // Turn off the

LED
 delay(1000); // Wait for 1sec


 Components Required:

 Arduino board

 LED

 220 ohm resistor

 hook-up wires

 breadboard

 Circuit
 Connect the anode (the longer,

positive leg) of your LED to digital
output pin 9 on your board
through a 220 ohm resistor.
Connect the cathode (the shorter,
negative leg) directly to ground.



https://docs.arduino.cc/static/d64f7f76fc5ba2668a1684d1d7583207/29114/simplefade_bb.png

1. After declaring pin 9 to be your ledPin, no need of setup()
function.

2. analogWrite() function that you will be using in the main loop of
your code requires two arguments

3. One telling the function which pin to write to, and

4. one indicating what PWM value to write.

5. In order to fade your LED off and on, gradually increase your
PWM value from 0 (all the way off) to 255 (all the way on), and
then back to 0 once again to complete the cycle.

https://docs.arduino.cc/learn/microcontrollers/analog-output

 int led = 9; // the PWM pin the
LED is attached to

 int brightness = 0; // how bright the
LED is

 int fadeAmount = 5; // how many
points to fade the LED by



 // the setup routine runs once when
you press reset:

 void setup() {

 // declare pin 9 to be an output:

 pinMode(led, OUTPUT);

 }



 // the loop routine runs over and over again
forever:

 void loop() {
 // set the brightness of pin 9:
 analogWrite(led, brightness);


 // change the brightness for next time
through the loop:

 brightness = brightness + fadeAmount;


 // reverse the direction of the fading at the
ends of the fade:

 if (brightness <= 0 || brightness >= 255) {
 fadeAmount = -fadeAmount;
 }
 // wait for 30 milliseconds to see the

dimming effect
 delay(30);
 }

 Raspberry Pi is a small, affordable, and credit card-sized computer that
was created with the goal of promoting basic computer science
knowledge and programming skills among people of all ages.

 It was developed by the Raspberry Pi Foundation, a UK-based charity
organization, and was first released in 2012. Since then, it has gained
immense popularity worldwide due to its versatility and wide range of
applications.

 The Raspberry Pi board is powered by an ARM processor and is
equipped with various input and output ports, including USB, HDMI,
audio, and General-Purpose Input/Output (GPIO) pins.

 It also has built-in networking capabilities, allowing it to connect to the
internet via Ethernet or Wi-Fi.

 The Raspberry Pi can run on various operating systems, including
Linux-based distributions such as Raspbian (now known as Raspberry
Pi OS), as well as other third-party operating systems.

 Since Raspberry Pi runs Linux operating system, it supports Python
"out of the box".

 One of the key features of the Raspberry Pi is its affordability.

 The board itself is reasonably priced, making it accessible to students,
hobbyists, and professionals alike.

 This affordability, coupled with its small form factor and low power
consumption, makes it ideal for a wide range of projects and
applications.

 Its GPIO pins allow users to connect and control various external
devices, such as sensors, motors, LEDs, and relays, enabling the
creation of interactive and hardware-based projects.

 The Raspberry Pi Foundation provides extensive resources and support
for users, including official documentation, tutorials, and a vast online
community.

 Whether you're a beginner or an experienced developer, the Raspberry
Pi offers endless possibilities for experimentation, learning, and
innovation.

GPIO: 30

5V : 02

3.3V: 02

GND: 06

 Main Pins:-
 GPIO (General Purpose IO): Raspberry Pi GPIO (General Purpose IO) describes the pins on a

Raspberry Pi that can be used for digital input and output. The GPIO pins can be used to control
devices such as LEDs, motors, and sensors.

 SPI (Serial Peripheral Interface): SPI is a full-duplex serial protocol, meaning data can be sent
and received simultaneously. SPI is a full-duplex serial protocol that can be used for
communication with flash memory, sensors, real-time clocks (RTCs), analogue-to-digital
converters, and more.

 I2C (Inter-integrated Circuit): The I2C pin is a pin that can be used to communicate with I2C
devices. The I2C bus can be used to connect multiple devices, such as sensors, EEPROMs, and
other I2C devices.

 UART (Universal Asynchronous Receiver/Transmitter) :In computing, a universal asynchronous
receiver/transmitter (UART /ˈjuːɑːrt/) is a computer hardware device for asynchronous serial
communication in which the data format and transmission speeds are configurable.

 PCM (Pulse Code Modulation):he PCM interface is a digital interface for connecting audio
devices. It is used to convert analog audio signals into digital audio signals.

 Ground

 5v (Power): Raspberry Pi 5v power supply is a great way to get started with powering your own
projects. The power supply provides 5 volts of power and is compatible with all versions of the
Raspberry Pi.

 3.3v (Power):All Raspberry Pi models since the B+ can provide up to 500mA on the 3v3 pins.

 Before you get started with your Raspberry Pi board, you need to provide with an OS
(operating system). Linux is the most frequently used OS on the Raspberry Pi.

 For using an OS, we need to create a Secure Digital (SD) or MicroSD card with an OS
on it. The prerequisite for setting up the SD or MicroSD is a computer having an
internet connection and the ability to write to SD or MicroSD cards.

NOOBS Software

 NOOBS means new-out-of-box software and it is the easiest way to get started with
the Raspberry Pi. It is easy to copy NOOBS to your SD or MicroSD card. Once copied,
it provides us with a simple menu for installing various operating systems.

 There is an option to buy a card with NOOBS already installed on it, but it is always
useful to know how to create your own NOOBS cards.

 Follow the below given steps to download NOOBS −

 Step 1 − Go to the website www.raspberrypi.org/downloads/noobs

 Step 2 − Select from the two versions of NOOBS available. Version 1 is the main
version and includes Raspbian. This is the officially supported OS, which you can use
even without any network connection.

 Another option is to choose the OS from the menu. You can download and install
the OS from the menu, if you have a network connection. It is always recommended
to download NOOBS for your first OS.

 Downloading and Installing Raspberry Pi OS

 Insert a microSD card / reader into your computer.

 Download and install the official Raspberry Pi Imager. ...

 Click Choose OS.

 Select Raspberry Pi OS (32-bit) from the OS menu (there are other choices, but for
most uses, 32-bit is the best).

 What is SSH

 Secure Shell (SSH) enables you to access the command line of a Raspberry Pi from
another computer or device on the same network. This is very handy for quickly
installing software or editing configuration files. SSH is pre-installed on Linux, Mac and
some Windows operating systems and can also be installed on mobile devices. SSH
does not provide any visual access to the Raspberry Pi Desktop.

To enable SSH (Secure Shell) on a Raspberry Pi, follow these steps:

1. Graphical desktop environment

2. Command line interface

 Boot up your Raspberry Pi and make sure it is connected to a network.

 If you have a graphical desktop environment running on your Raspberry Pi, you can
enable SSH using the graphical interface.

 Go to the Raspberry Pi Configuration tool by clicking on the Raspberry Pi icon in
the top-left corner, selecting "Preferences,"

 and then "Raspberry Pi Configuration."

 In the "Interfaces" tab, click the checkbox next to "SSH" and click "OK."

 You may need to enter your password to confirm the changes.

 If you are using the command line interface (CLI) on your Raspberry Pi, you can enable
SSH by following these steps:

 Open a terminal window.

 Enter the following command to open the Raspberry Pi Configuration tool:

sudo raspi-config

 In the configuration tool, navigate to "Interfacing Options" and press Enter.

 Select "SSH" and press Enter.

 Choose "Enable" and press Enter.

 Exit the configuration tool.

• UART (Serial):

 Serial communication or the UART (Universal Asynchronous Receiver / Transmitter)
pins provide a way to communicate between two microcontrollers or the computers.

 TX pin is used to transmit the serial data and RX pin is used to receive serial data
coming from a different serial device.

 SPI (Serial Peripheral Interface) is another protocol used for master-slave
communication.

 It is used by the Raspberry pi board to quickly communicate between one or more
peripheral devices.

 Data is synchronized using a clock (SCLK at GPIO11) from the master (RPi) and the
data is sent from the Pi to our SPI device using the MOSI (Master Out Slave In) pin.

 If the SPI device needs to communicate back to Raspberry Pi, then it will send data
back using the MISO (Master In Slave Out) pin

I2C (Inter-Integrated Circuit)

I2C is used by the Raspberry Pi board to communicate with devices that are compatible

with Inter-Integrated Circuit (a low-speed two-wire serial communication protocol).

• This communication standard requires master-slave roles between both the devices.

• I2C has two connections: SDA (Serial Data) and SCL (Serial Clock).

• They work by sending data to and using the SDA connection, and the speed of data

transfer is controlled via the SCL pin.

• Interfacing hardware with a Raspberry Pi is a common task in various electronics and IoT

(Internet of Things) projects. The Raspberry Pi is a versatile single-board computer with GPIO

(General Purpose Input/Output) pins that can be used to connect and control a wide range of

hardware components, such as sensors, LEDs, motors, and more. Here's a general guide on

how to interface hardware with a Raspberry Pi:

• 1.Understand the GPIO Pins:Raspberry Pi models have different GPIO pin configurations.

Consult the pinout diagram for your specific Raspberry Pi model. You can find this

information in the official documentation or online resources.

• 2.Select Your Hardware Components:Decide what hardware components you want to interface

with your Raspberry Pi. Common components include LEDs, buttons, sensors (e.g.,

temperature, humidity, motion), motors, displays, and more.

• 3.Power Considerations:Ensure that your hardware components are powered correctly. Some

components may require external power sources, while others can be powered directly from

the Raspberry Pi's GPIO pins. Be mindful of voltage and current requirements.

• 4.Connection Method:Connect your hardware components to the GPIO pins. You may need to

use jumper wires, breadboards, or HATs (Hardware Attached on Top) depending on your

project's complexity.

• 5.Install Necessary Libraries/Modules:Depending on the hardware component you're

using, you may need to install Python libraries or modules to interface with them.

Common libraries include RPi.GPIO for GPIO control and libraries specific to your sensors

or actuators.

• 6.Write Code:Write Python scripts to control and interact with your hardware. You can use

the GPIO library to control the GPIO pins, read sensor data, or drive motors. Import the

necessary libraries and create functions to handle your hardware components.

• 7.Testing:Test your code and hardware connections incrementally. Make sure each

component works as expected before moving on to more complex interactions.

• 8.Safety Considerations:Be cautious when interfacing with hardware to avoid damaging

your Raspberry Pi or components. Avoid short circuits, reverse polarity, and excessive

voltage/current.

• 9.Prototyping:Consider using a breadboard or a prototyping board to build and test your

circuit before making permanent connections.

• 10.Documentation:Keep track of your hardware connections, pin assignments, and code.

Good documentation is essential for troubleshooting and future reference.

• 11.Integration and Application:Once you've successfully interfaced your hardware,

integrate it into your desired application or project. This may involve integrating sensors

with software for data logging or creating a user interface for controlling hardware

components.

• 12.Power Management:Depending on your project, you might need to implement power

management strategies, such as using sleep modes or shutting down unused

components, to optimize power consumption and prevent overheating.

 VNC (Virtual Network Computing):

◦ Install and set up a VNC server on your Raspberry Pi. One popular option is RealVNC.

◦ Ensure that your Raspberry Pi is connected to the network.

◦ On your local computer, install a VNC viewer application. RealVNC provides VNC
Viewer for various platforms.

◦ Open the VNC viewer and enter the IP address or hostname of your Raspberry Pi.

◦ Enter the username and password for the Raspberry Pi user account.

◦ You should now have a graphical remote desktop connection to your Raspberry Pi.

 Both SSH and VNC provide different levels of remote access. SSH allows you to access
the command line interface, while VNC provides a graphical interface for remote
desktop access.

 Remember to secure your remote access by using strong passwords and, if necessary,
configuring additional security measures such as key-based authentication or firewall
settings.

