DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)

II B.Tech I Semester

Subject Name: OPERATING SYSTEMS LAB
Subject Code: C0514
Regulations: MR-22

Lab Manual

Academic Year: 2024-25

MALLA REDDY ENGINEERING COLLEGE (autonoMOUs)

MAIN CAMPUS
(An UGC Autonomous Institution, Approved by AICTE and Affiliated to JNTUH,
Hyderabad, Accredited by NAAC with ‘A++" Grade (III Cycle))
NBA Accredited Programmes - UG (CE, EEE, ME, ECE, & CSE), PG (CE-SE, EEE, EPS, ME-TE)
Maisammaguda(H), Gundlapochampally Village, Medchal Mandal,
Medchal-Malkajgiri District, Telangana State - 500100

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

MR22 - ACADEMIC REGULATIONS (CBCS)

for B.Tech. (REGULAR) DEGREE PROGRAMME

Applicable for the students of B.Tech. (Regular) programme admitted from the Academic
Year 2022-23 onwards

The B.Tech. Degree of Jawaharlal Nehru Technological University Hyderabad, Hyderabad
shall be conferred on candidates who are admitted to the programme and who fulfill all the

requirements for the award of the Degree.

VISION OF THE INSTITUTE

To be a premier center of professional education and research, offering quality programs in
a socio-economic and ethical ambience.

MISSION OF THE INSTITUTE

e To impart knowledge of advanced technologies using state-of-the-art infrastructural
facilities.

e To inculcate innovation and best practices in education, training and research.

¢ To meet changing socio-economic needs in an ethical ambience.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING -
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

DEPARTMENT VISION

To attain global standards in Computer Science and Engineering education, training and
research to meet the growing needs of the industry with socio-economic and ethical
considerations.

DEPARTMENT MISSION

e To impart quality education and research to undergraduate and postgraduate students
in Computer Science and Engineering.

e To encourage innovation and best practices in Computer Science and Engineering
utilizing state-of-the-art facilities.

e To develop entrepreneurial spirit and knowledge of emerging technologies based on
ethical values and social relevance.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Graduates will demonstrate technical skills, competency in Al & ML and exhibit team
management capability with proper communication in a job environment

PEO2: Graduates will function in their profession with social awareness and responsibility

PEO3: Graduates will interact with their peers in other disciplines in industry and society
and contribute to the economic growth of the country

PEO4: Graduates will be successful in pursuing higher studies in engineering or
management

PROGRAMME OUTCOMES (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO2: Problem analysis: Identify, formulate, review research literature and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development.

POS8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

PO9Y: Individual and team work: Function effectively as an individual and as a member or
leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO1: Design and develop intelligent automated systems applying mathematical, analytical,
programming and operational skills to solve real world problems

PSO2: Apply machine learning techniques, software tools to conduct experiments, interpret
data and to solve complex problems

PSO3: Implement engineering solutions for the benefit of society by the use of Al and ML

BLOOM’S TAXONOMY (BT) TRIANGLE & BLOOM’S ACTION VERBS

Bloom’s Taxonomy

Produce new or original work
Design, assemble, construct, conjecture, develop, formulate. author, investigate

"
Justify a stand or decision

evaluate awwreise argue, derend judge, select, support, vatue, critique, weigh

Draw connections among ideas
ize, relate, compare, contrast

Focus of individual
time in traditional
model

analyze

Focus of class time in
traditional model

Vanderbilt University Center for Teaching

BLOOM’S TAXONOMY

[(Imagine / Design / Plan) =T

e |

g Priorifise / Rate / Justify) * % %
Compare / Explain / Categorise) @
llustrate / Complefe / Solve) LIE[E‘
Outline / Explain / Predict)
Describe / Relate / Tell / Find) m

Bloom’s Taxonomy

Produce new or original work
CREATE Design, assemble, construct, conjecture, develop, formulate, author, investigate

Justify a stand or decision
EVALUATE Appraise, argue, defend, judge, select, support, value, critique, weigh

Draw connections among ideas
differentiate, organise, relate, compare, contrast, distinguish, examine,
ANALYSE expertiment, question, test

Use information in new situation
APPLY Execute, implement, solve, use, demonstrate, interpret, operate,
schedule, sketch

Explain ideas or concepts
UNDERSTAND Classify, discribe, discuss, explain, identify, locate, recognize,
report, select, translate

REMEMBER Recall facts and basic concepts

define duplicate, list, memorise, repeat, state

y
LA
i
J

BLOOM’S ACTION VERBS

REVISED Bloom’s Taxonomy Action Verbs

Definitions I. Remembering | Il. Understanding 11l Applying IV. Analyzing V. Evaluating VI. Creating
Bloom’s Exhibit memory | Demonstrate Solve problems to | Examine and break| Present and Compile
Definition of previously understanding of new situations by [information into defend opinions | information
learned material | facts and ideas by applying acquired | parts by identifying| by making togetherina
by recalling facts) organizing, knowledge, facts, | motives or causes. | judgments about | different way by
terms, basic comparing, techniques and Make inferences | information, combining
concepts, and translating, rules in a different | and find evidence | validity of ideas, | elementsina
answers. interpreting, giving | way. to support or quality of work | new pattern or
descriptions, and generalizations. based ona set of | proposing
stating main ideas. criteria. alternative
solutions.
Verbs « Choose e C(Classify e Apply e Analyze e Agree e Adapt
e Define e Compare e Build ® Assume e Appraise e Build
e Find e Contrast e Choose e Categorize e Assess e Change
e How e Demonstrate e Construct e Classify e Award e Choose
e Label e Explain e Develop e Compare e Choose e Combine
e List e Extend e Experiment with| ® Conclusion e Compare e Compile
e Match e |lllustrate e Identify e Contrast e Conclude e Compose
e Name e Infer e Interview e Discover e Criteria e Construct
e Omit e Interpret e Make use of e Dissect e (Criticize e Create
e Recall e Qutline e Model e Distinguish e Decide e Delete
e Relate e Relate e Organize e Divide e Deduct e Design
e Select e« Rephrase e Plan e Examine e Defend e Develop
e Show e Show e Select e Function e Determine e Discuss
e Spell e Summarize e Solve e Inference e Disprove e Elaborate
e Tell e Translate e Utilize e Inspect e Estimate e Estimate
e What e List e Evaluate e Formulate
e When e Motive e Explain e Happen
e Where e Relationships | ® Importance | « Imagine
e Which e Simplify e Influence e Improve
e Who e Survey e Interpret e Invent
e Why e Take partin e Judge e Make up
e Test for e Justify e Maximize
e Theme e Mark e Minimize
e Measure e Modify
e Opinion e Original
e Perceive e Originate
e Prioritize e Plan
e Prove e Predict
e Rate e Propose
e Recommend | e Solution
e Ruleon e Solve
e Select e« Suppose
e Support e Test
e Value e Theory

Anderson, L W., & Krathwohl, D. R. {2001). A taxonomy for learning, teaching, and assessing, Abridged Edition. Boston, MA: Allyn and Bacon.

2022-23
Onwards MALLA REDDY ENGINEERING COLLEGE B.Tech.
(MR-22) (AUTONOMOUS) VI Semester
Code: C0514 L|T|P
OPERATING SYSTEMS LAB
Credits: 1 - - |2

Course Objectives:
e To provide an understanding of the design aspects of operating system concepts
through simulation
¢ Introduce basic Unix commands, system call interface for process management, inter-
process communication and I/O in Unix

Software Requirements: Operating System, Windows and Turbo C /C++
List of Experiments:
1. Write C programs to simulate the following CPU Scheduling algorithms a) FCFS b)
SJF ¢) Round Robin d) priority
2. Write programs using the I/O system calls of UNIX/LINUX operating system (open,
read, write, close, fcntl, seek, stat, opendir, readdir)
3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and
Prevention.
4. Write a C program to implement the Producer - Consumer problem using semaphores
usingUNIX/LINUX system calls.
5. Write C programs to illustrate the following IPC mechanisms a) Pipes b) FIFOs
6. Write C programs to illustrate the following IPC mechanisms a) Message Queues
b) Shared Memory
7. Write C programs to simulate the following memory management techniques a)
Paging b) Segmentation
8. Write C programs to simulate Page replacement policies a) FCFS b) LRU c) Optimal

Course Outcomes:
e Simulate and implement operating system concepts such as scheduling, deadlock
management, file management and memory management.
e Able to implement C programs using Unix system calls

TEXT BOOKS:
1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th
Edition, John Wiley

2. Advanced programming in the Unix environment, W.R.Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems - Internals and Design Principles, William Stallings, Fifth Edition-
2005,Pearson Education/PHI
2. Operating System - A Design Approach-Crowley, TMH.
3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI
4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education
5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education
CO- PO, PSO Mapping
(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak
oS Programme Outcomes (POs) PSOs
POL1 [PO2 | PO3 | PO4 [PO5 | PO6 | PO7 [PO8 [PO9 [PO10 [PO11 [PO12 | PSOL | PSO2 | PSO3
colr| 2 3 1 2 1
coz | 2 2 2 2
co3| 1 2 1 1

WEEK-1
Write C programs to simulate the following CPU Scheduling algorithms.

a) FCFS

b) SJF

¢) Round Robin
d) Priority

a) FCFS (First Come First Serve)

Aim: Write a C program to implement the various process scheduling mechanisms such as FCFS
scheduling.

Algorithm:

1: Start the process

2: Accept the number of processes in the ready Queue

3: For each process in the ready Q, assign the process id and accept the CPU burst time4: Set

the waiting of the first process as ‘0’ and its burst time as its turn around time

: for each process in the Ready Q calculate

. Waiting time for process(n)= waiting time of process (n-1) + Burst time of process(n-1)
. Turnaround time for Process(n)= waiting time of Process(n)+ Burst time for process(n)
: Calculate

. Average waiting time = Total waiting Time / Number of process

. Average Turnaround time = Total Turnaround Time / Number of process

. Stop the process

ol

~No o9 oo D

Program:

#include<stdio.h>

int main()
{
int bt[20],p[20],wt[20],tat[20],i,j,n,total=0,pos,temp;float
avg_wt,avg_tat;
printf("Enter number of process:");
scanf("%d",&n);
printf("\nEnter Burst Time:\n");
for(i=0;i<n;i++)
{
printf("p % d:",i+1);
scanf("'%d",&bt[i]);
p[i]=i+1; /lcontains process number
}
wt[0]=0; /Iwaiting time for first process will be zero
/lcalculate waiting time
for(i=1;i<n;i++)

{
wit[i]=0; for(j=0;j<i;j++)
WA[i]+=bt[j];

total+=witl[i];
}
avg_wt=(float)total/n; /faverage waiting time
total=0;
printf("\nProcess\t ~ Burst Time \tWaiting Time\tTurnaround Time");
for(i=0;i<n;i++)
{
tat[i]=bt[i]+wt[i]; /[calculate turnaround time
total+=tat[i];
printf("\np%d\t\t %d\t\t %d\t\t\t%d", p[i],bt[i], wt[i],tat[i]);
}

avg_tat=(float)total/n; /laverage turnaround time
printf("\n\nAverage Waiting Time=%f",avg_wt);
printf(*\nAverage Turnaround Time=%f\n",avg_tat);

Waiting Time Turnaround Time
0 3

—_
7
/

b)SJF (Shortest Job First)

Aim: Write a C program to implement the various process scheduling mechanisms such as SJF
Scheduling.

Algorithm:

1: Start the process
2: Accept the number of processes in the ready Queue

3: For each process in the ready Q, assign the process id and accept the CPU burst time 4. Startthe
Ready Q according the shortest Burst time by sorting according to lowest to highest bursttime.
5: Set the waiting time of the first process as ‘0’ and its turnaround time as its burst time.6: For

each process in the ready queue, calculate

@ Waiting time for process(n)= waiting time of process (n-1) + Burst time of process(n-1)
(0 Turn around time for Process(n)= waiting time of Process(n)+ Burst time for process(n)
7: Calculate

(© Average waiting time = Total waiting Time / Number of process

» Average Turnaround time = Total Turnaround Time / Number of process
8: Stop the process

Program:

#include<stdio.h>

int main()

{

int bt[20],p[20],wt[20],tat[20],i,j,n,total=0,pos,temp;float
avg_wt,avg_tat;

printf("Enter number of process:");

scanf("%d",&n);

printf("\nEnter Burst Time:\n");
for(i=0;i<n;i++)
{

printf("p%d:",i+1);

scanf("'%d",&bt[i]);

p[i]=i+1; /lcontains process number

}

/Isorting burst time in ascending order using selection sort

for(i=0;i<n;i++)

{
pos=i;
for(j=i+1;j<n;j++)

{
if(bt[j]<bt[pos])
pos=j;
}
temp=Dbt[i];
bt[i]=bt[pos];
bt[pos]=temp;

temp=pl[i];

plil=p[pos];

p[pos]=temp;
}

wt[0]=0; /Iwaiting time for first process will be zero

/[calculate waiting time
for(i=1;i<n;i++)
{
wit[i]=0;
for(j=0;j<i;j++)wt[i]+=bt[j];

total+=wit][i];
}

avg_wt=(float)total/n; //average waiting time
total=0;

printf("\nProcess\t ~ Burst Time \tWaiting Time\tTurnaround Time");
for(i=0;i<n;i++)
{
tat[i]=bt[i]+wt[i]; /lcalculate turnaround time
total+=tat[i];
printf("\np%d\t\t %d\t\t Yod\t\t\t%d", p[i],bt[i],wt[i],tat[i]);
}

avg_tat=(float)total/n; /laverage turnaround time
printf("\n\nAverage Waiting Time=%f",avg_wt);
printf("\nAverage Turnaround Time=%Tf\n",avg_tat);

Waiting Time Turnaround Time

¢)Round Robin

Aim: Write a C program to implement the various process scheduling mechanisms such as RoundRobin
Scheduling.

Algorithm
1: Start the process

2: Accept the number of processes in the ready Queue and time quantum (or) time slice3: For

each process in the ready Q, assign the process id and accept the CPU burst time4: Calculate

the no. of time slices for each process where

No. of time slice for process(n) = burst time process(n)/time slice

5: If the burst time is less than the time slice then the no. of time slices =1.6:

Consider the ready queue is a circular Q, calculate

@ Waiting time for process(n) = waiting time of process(n-1)+ burst time of process(n-1) +
the time difference in getting the CPU from process(n-1)

() Turn around time for process(n) = waiting time of process(n) + burst time of process(n)+ the

time difference in getting CPU from process(n).
7: Calculate

@ Average waiting time = Total waiting Time / Number of process

(o) Average Turnaround time = Total Turnaround Time / Number of process Step 8: Stop the
process

Program:
#include<stdio.h>
main()

{
int st[10],bt[10],wt[10],tat[10],nta;

int i,count=0,swt=0,stat=0,temp,sq=0;
float awt,atat;
printf(“enter the number of processes");
scanf("%d",&n);
printf(“enter the burst time of each process /n");
for(i=0;i<n;i++)
{
printf(("p%d",i+1);
scanf("%d",&bt[i]);
st[i]=bt[i];
}
printf(“enter the time quantum');
scanf("'%d",&tq);

while(1)
{
for(i=0,count=0;i<n;i++)
{
temp=tq;
if(st[i]==0)
{
count++;
continue;
}
if(st[i]>tq)

st[i]=st[i]-tq;

else
if(st[i]>=0)

temp=st[i];

st[i]=0;
}
sg=sqg+temp;
tat[i]=sq;
}
if(n==count)
break;
}
for(i=0;i<n;i++)
{
wit[i]=tat[i]-bt[i];
swi=swt+wit][i];
stat=stat+tat[i];
}

awt=(float)swt/n;

atat=(float)stat/n;

printf("process no\t burst time\t waiting time\t turnaround time\n");
for(i=0;i<n;i++)

printf("%d\t\t %d\t\t %d\t\t %d\n",i+1,bt[i],wt[i],tat[i]);

printf("avg wt time=%f,avg turn around time=%f",awt,atat);

}

Output:

time quantum

burst time waiting time turnaround time
/ 15

d)Priority

Aim: Write a C program to implement the various process scheduling mechanisms such asPriority
Scheduling.

Algorithm:
1: Start the process
2: Accept the number of processes in the ready Queue

3: For each process in the ready Q, assign the process id and accept the CPU burst time 4: Sortthe ready
queue according to the priority number.
5: Set the waiting of the first process as ‘0’ and its burst time as its turn around time6: For

each process in the Ready Q calculate

(© Waiting time for process(n)= waiting time of process (n-1) + Burst time of process(n-1)
() Turn around time for Process(n)= waiting time of Process(n)+ Burst time for process(n)
7: Calculate

(@ Average waiting time = Total waiting Time / Number of process

(h) Average Turnaround time = Total Turnaround Time / Number of process Step 8: Stop the
process

Program:

#include<stdio.h>
int main()
{
int bt[20],p[20],wt[20],tat[20],pri[20],i,j,k,n,total=0,pos,temp;
float avg_wt,avg_tat;
printf("Enter number of process:");
scanf("%d",&n);
printf("\nEnter Burst Time:\n");
for(i=0;i<n;i++)
{
printf("p%d:",i+1);
scanf("%d",&bt[i]);
p[i]=i+1; /lcontains process number
}
printf(" enter priority of the process ");
for(i=0;i<n;i++)
{
pli] =1;
[lprintf("Priority of Process");
printf("p%d ",i+1);

scanf("%d",&pri[i]);

}

for(i=0;i<n;i++)

for(k=i+1;k<n;k++)

if(pri[i] > pri[K])

{

temp=p[i];p[i]=p[K]; p[k]=temp;
temp=Dbt[i]; bt[i]=bt[Kk]; bt[k]=temp;
temp=pri[i]; pri[i]=pri[k]; pri[k]=temp;
}

wt[0]=0; /fwaiting time for first process will be zero
/[calculate waiting time

for(i=1;i<n;i++)

{
wit[i]=0;
for(j=0;j<i;j++)
wit[i]+=bt[j]; total+=wt[i];
}
avg_wt=(float)total/n; /laverage waiting time
total=0;

printf("\nProcess\t ~ Burst Time \tPriority \tWaiting Time\tTurnaround Time");
for(i=0;i<n;i++)

{

tat[i]=bt[i]+wt[i]; /lcalculate turnaround time

total+=tat[i];

printf("\np%d\t\t %d\t\t %d\t\t %d\t\t\t%d",p[i],bt[i],pri[i],wt[i] tat[i]);
}
avg_tat=(float)total/n; /laverage turnaround time

printf("\n\nAverage Waiting Time=%f",avg_wt);
printf("\nAverage Turnaround Time=%Tf\n",avg_tat);

er Burst Time:
priority of the proc

Burst Time Waiting Time Turnaround Time
5 4] 5

> 12
12 18

iting Time=
rnaround Ti

WEEK-2

Write programs using the 1/0 system calls of UNIX/LINUX operating system (open, read, write,
close, fentl, seek, stat, opendir, readdir)

Aim: C program using open, read, write, close system calls

Theory:
There are 5 basic system calls that Unix provides for file 1/0.
1. Create: Used to Create a new empty file
Syntax :int creat(char *filename, mode_t mode)
filename : name of the file which you want to create
mode : indicates permissions of new file.
2. open: Used to Open the file for reading, writing or both.
Syntax: int open(char *path, int flags [, int mode]);
Path : path to file which you want to useflags :
How you like to use
O_RDONLY: read only, O_WRONLY: write only, O_RDWR: read and write, O_CREAT: createfile if it
doesn’t exist, O_EXCL.: prevent creation if it already exists
3. close: Tells the operating system you are done with a file descriptor and Close the file
which pointed by fd.
Syntax: int close(int fd);fd
:file descriptor
4. read: From the file indicated by the file descriptor fd, the read() function reads cnt bytes
of input into the memory area indicated by buf. A successful read() updates the access time for the
file.
Syntax: int read(int fd, char *buf, int size);fd:
file descripter
buf: buffer to read data from
cnt: length of buffer
5. write: Writes cnt bytes from buf to the file or socket associated with fd. cnt should not be
greater than INT_MAX (defined in the limits.h header file). If cnt is zero, write() simply returns 0
without attempting any other action.
Syntax: int write(int fd, char *buf, int size);fd:
file descripter
buf: buffer to write data to
cnt: length of buffer
*File descriptor is integer that uniquely identifies an open file of the process.

Algorithm

=

Star the program.

2. Opena file for O_RDWR for R/W,0_CREATE for creating a file ,O_TRUNC for truncate
a file.

Using getchar(), read the character and stored in the string[] array.

The string [] array is write into a file close it.

Then the first is opened for read only mode and read the characters and displayed it and
close the file.

6. Stop the program.

abrw

Program
#include<sys/stat.h>
#include<stdio.h>
#include<fcntl.h>
#include<sys/types.h>int
main()
{
int n,i=0;
int f1,f2;
char c,strin[100];
fl=open("data”",0_RDWR|O_CREAT|O_TRUNC);
while((c=getchar())!="\n")
{

strin[i++]=c;

}

strin[i]="0";

write(f1,strin,i);

close(f1);
f2=open("data”,0_RDONLY);
read(f2,strin,0);
printf(*\n%s\n",strin); close(f2);
return O;

¥

Output:
Hai
Hai

b) Aim: C program using Iseek
Theory:
Iseek is a system call that is used to change the location of the read/write pointer of a file descriptor.The
location can be set either in absolute or relative terms.
Syntax : off _t Iseek(int fildes, off t offset, int whence);
int fildes : The file descriptor of the pointer that is going to be moved.off t
offset : The offset of the pointer (measured in bytes).
int whence : Legal values for this variable are provided at the end which are
SEEK_SET (Offset is to be measured in absolute terms), SEEK_CUR (Offset is to be measured relative
to the current location of the pointer), SEEK_END (Offset is to be measured relative to the end of the
file)

Algorithm:

Start the program

Open a file in read mode

Read the contents of the file

Use Iseek to change the position of pointer in the read process
Stop

orwdE

Program:
#include<stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>

int main()

int file=0;

if((file=open("testfile.txt",O_RDONLY)) < -1) return 1,
char buffer[19];

if(read(file,buffer,19) '=19) return 1;
printf("%s\n",buffer);

if(Iseek(file,10,SEEK_SET) < 0) return 1;
if(read(file,buffer,19) '=19) return 1;
printf("%s\n",buffer);

return O;

c) Aim: C program using opendir(), closedir(), readdir()

Theory:

The following are the various operations using directories

1. Creating directories.
Syntax : int mkdir(const char *pathname, mode_t mode);
2. The ‘pathname’ argument is used for the name of the directory.
3. Opening directories
Syntax : DIR *opendir(const char *name);
4. Reading directories.
Syntax: struct dirent *readdir(DIR *dirp);
5. Removing directories.
Syntax: int rmdir(const char *pathname);
6. Closing the directory.
Syntax: int closedir(DIR *dirp);
7. Getting the current working directory.
Syntax: char *getcwd(char *buf, size_t size);

Algorithm:
1. Start the program
2. Print a menu to choose the different directory operations
3. To create and remove a directory ask the user for name and create and remove the same
respectively.
4. To open a directory check whether directory exists or not. If yes open the directory .If it
does not exists print an error message.
5. Finally close the opened directory.
6. Stop

Program:
#include<stdio.h> #include<fcntl.h>
#include<dirent.h>main()

char d[10]; int c,op; DIR *g;

struct dirent *sd;

printf("**menu**\n1.create dir\n2.remove dir\n 3.read dir\n enter ur choice");
scanf(*'%d",&op);

switch(op)

case 1: printf("enter dir name\n"); scanf("%s",&d);
c=mkdir(d,777);

if(c==1) printf("dir is not created");else

printf("dir is created"); break;

case 2: printf("enter dir name\n"); scanf("%s",&d);
c=rmdir(d);

if(c==1) printf("dir is not removed");else

printf("dir is removed"); break;

case 3: printf(“enter dir name to open™);scanf("%s",&d);
e=opendir(d);

if(e==NULL)

printf("dir does not exist");
else

{

printf("dir exist\n"); while((sd=readdir(e))!=NULL)
printf("%s\t",sd->d_name);

closedir(e);break;

by
by

Output:

WEEK -3
Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention

a) Aim

Write a C program to simulate the Bankers Algorithm for Deadlock Avoidance.
Data structures

1. n- Number of process, m-number of resource types.
Available: Available[j]=k, k — instance of resource type Rj is available.
Max: If max [i, j]=k, Pi may request at most k instances resource Rj.
Allocation: If Allocation [i, j]=k, Pi allocated to k instances of resource Rj
Need: If Need[l, j]=k, Pi may need k more instances of resource type Rj,

6. Need [I, j] =Max [l, j]-Allocation [l, j];
Safety Algorithm

1. Work and Finish be the vector of length m and n respectively, Work=Available and
Finish[i] =False.
Find an i such that both
Finish[i] =False
Need<=Work
If no such I exist go to step 4.
work=work+Allocation, Finish[i] =True;

7. If Finish [1] =True for all I, then the system is in safe state.
Resource request algorithm

1. Let Request i be request vector for the process Pi, If request i=[j]=k, then process Pi wants

k instances of resource type Rj.

2. If Request<=Need I go to step 2. Otherwise raise an error condition.
If Request<=Available go to step 3. Otherwise Pi must since the resources are available.
4. Have the system pretend to have allocated the requested resources to process Pi by

modifying the state as follows;

5. Available=Available-Request I;
Allocation I =Allocation+Request I;
7. Need i=Need i-Request I;

AR A

o gk wnN

w

o

If the resulting resource allocation state is safe, the transaction is completed and process Pi is allocated its
resources. However, if the state is unsafe, the Pi must wait for Request i and the old resource-allocation
state is restore.

Algorithm:
1. Start the program.
2. Get the values of resources and processes.
3. Get the avail value.

After allocation find the need value.
Check whether it is possible to allocate.
If it is possible then the system is in safe state.
Else system is not in safety state.
If the new request comes then check that the system is in safety.
. Or not if we allow the request.
10. Stop the program.

Program:

#include<stdio.h>

© o N A

int main ()
{
int allocated[15][15], max[15][15], need[15][15], avail[15], tres[15],
work[15], flag[15];
int pno, rno, i, j, prc, count, t, total;
count = 0;
/lclrscr ();

printf ("\n Enter number of process:");
scanf ("%d", &pno);
printf ("\n Enter number of resources:");
scanf ("%d", &rno);
for (i=1; i <= pno; i++)

{

flag[i] = 0;

}
printf ("\n Enter total numbers of each resources:");for
(i=1;i<=rno;i++)

scanf ("%d", &tres[i]);

printf ("\n Enter Max resources for each process:");for
(i=1;i<=pno;i++){

printf ("\n for process %d:", i);
for (j = 1; j <=rno; j++)
scanf ("%d", &max[i][iD;
}

printf ("\n Enter allocated resources for each process:");

for (i=1;i<=pno; i++) {

printf ("\n for process %d:", i);for
(=1;j<=rno; jt++)
scanf ("%d", &allocated[i][j]);

¥

printf ("\n available resources:\n");for
(1=1;j<=rno; j++)
{
avail[j] = 0;
total = 0;
for (i = 1; i <= pno; i++)
{
total += allocated[i][j];
}
avail[j] = tres][j] - total;
work(j] = avail[j];
printf (" %d \t", work[j]);
}

do
{

for (i =1; i <= pno; i++)
{
for (j =1; j <=rno; j++)

{

need[i][j] = max[i][j] - allocated[i][j];

}

printf ("\n Allocated matrix
for (i=1; i <= pno; i++)
{
printf ("\n");
for (j=1; j <=rno; j++)
{
printf ("%4d", allocated[i][j]);
}
printf (‘")
for (j = 1; j <=rno; j++)
{
printf ("%4d", max[i][j]);

}
printf (")

Max

need");

for (j = 1; j <= rno; j++)
{
printf ("%4d", need[i][j]);
}

}
prc = 0;

for (i = 1; i <= pno; i++)
{
if (flag[i] == 0)
{

prc =i;

for (j = 1; j <= rno; j++)
{
if (work[j] < need[i][j])
{
prc=0;
break;
}
}
}
if (prc '=0)
break;

if (prc '=0)
{
printf ("\n Process %d completed”, i);
count++;
printf ("\n Available matrix:");for
(1=1;j<=rmo; j++)
{
work[j] += allocated[prc][j];
allocated[prc][j] = 0;
max[prc][j] = 0;
flag[prc] = 1;
printf (" %d", work[j]);
}
}

}
while (count != pno && prc !'=0);

if (count == pno)
printf ("\nThe system is in a safe state!!");else

printf ("\nThe system is in an unsafe state!!");
return O;

b) Aim
Write a C program to simulate Bankers Algorithm for Deadlock Prevention

Algorithm:

1. Start

2. Attacking Mutex condition : never grant exclusive access. but this may not be possible for
several resources

3. Attacking preemption: not something you want to do.

4. Attacking hold and wait condition : make a process hold at the most 1 resource at a
time.make all the requests at the beginning. All or nothing policy. If you feel,retry. eg. 2-
phase locking 34

5. Attacking circular wait: Order all the resources. Make sure that the requests are issued in
the correct order so that there are no cycles present in the resource graph. Resources
numbered 1 ... n. Resources can be requested only in increasing order. ie. you cannot
request a resource whose no is less than any you may be holding.

6. Stop

Program:
#include<stdio.h>

int max[10][10],alloc[10][10],need[10][10],avail[10],i,j,p,r,finish[10]={0},flag=0;
main()

{

printf("\n SIMULATION OF DEADLOCK PREVENTION \n ");
printf("Enter no. of processes, resources\n ");
scanf('%d%d",&p,&r);

printf("Enter allocation matrix");

for(i=0;i<p;i++)

for(j=0;j<r;j++)

scanf("%d",&alloc[i][j]);

printf("\n enter max matrix");

for(i=0;i<p;i++) /*reading the maximum matrix and availale matrix*/
for(j=0;j<r;j++)

scanf("%d",&max[i][j]);

printf(" \n enter available matrix");

for(i=0;i<r;i++)

scanf("%d",&avail[i]);

for(i=0;i<p;i++) for(j=0;j<r;j++)

need[i][j]l=max[i][j]-alloc[i][j];

fun(); /*calling function*/

if(flag==0)

{if(finish[i]!=1)

{

printf("\n Failing :Mutual exclusion™);

for(j=0;j<r;j++)

{ /*checking for mutual exclusion*/

if(avail[j]<need[i][j])

avail[j]=need[i][j];

un();

printf("\n By allocating required resources to process %d dead lock is prevented ",i);
printf(*\n lack of preemption");

for(j=0;j<r;j++)

{

if(avail[j]<need[i][j])

avail[j]=need[i][jl;

alloc[i][j]=0;

}

fun();

printf("\n dead lock is prevented by allocating needed resources");

printf(* \n failing:Hold and Wait condition *);

for(j=0;j<r;j++)

{ /*checking hold and wait condition*/

if(avail[j]<need[i][j])

avail[j]=need[i][jl;

}

fun();

printf("\n AVOIDING ANY ONE OF THE CONDITION, U CAN PREVENT DEADLOCK");

}
}
}
fun()

{
while(1)

{
for(flag=0,i=0;i<p;i++)
{
if(finish[i]==0)
{
for(j=0;j<r;j++)
{
if(need[i][j]<=avail[j])
continue;
else
break;

}

if(j==r)

{

for(j=0;j<r;j++)
avail[j]+=alloc[i][j];

flag=1,;
finish[i]=1;
}

}

tion matri

OF THE

WEEK-4
Write a C program to implement the Producer — Consumer problem using semaphores using
UNIX/LINUX system calls.

Aim:
Write a C program to implement the Producer — Consumer problem using semaphores using
UNIX/LINUX system calls.
Algorithm:
1. The Semaphore mutex, full & empty are initialized.
2. In the case of producer process
3. Produce an item in to temporary variable.
If there is empty space in the buffer check the mutex value for enter into the critical section. If the
mutex value is 0, allow the producer to add value in the temporary variable to the buffer.
4. In the case of consumer process
i) It should wait if the buffer is empty
i) If there is any item in the buffer check for mutex value, if the mutex==0, remove
item from buffer
iii) Signal the mutex value and reduce the empty value by 1.
iv) Consume the item.
5. Print the result
Program:

#include<stdio.h>
#include<stdlib.h>

int mutex = 1, full =0, empty = 3, x =0;

int main ()
{
intn;
void producer (); void consumer ();
int wait (int); int signal (int);
printf ("\nl1.Producer\n2.Consumer\n3.Exit");
while (1)
{
printf ("\nEnter your choice:");
scanf ("%d", &n);
switch (n)
{
case 1:
if ((mutex ==1) && (empty !=0))

producer ();
else
printf ("Buffer is full!!");
break;
case 2:
if ((mutex == 1) && (full 1= 0))
consumer ();
else
printf ("Buffer is empty!!");
break;
case 3:
exit (0);
break;
}

return O;

int wait (int s)
{

return (--s);

}

int signal (int s)
{

return (++s);

}

void producer ()

{
mutex = wait (mutex);full = signal (full); empty = wait (empty);x++;
printf ("\nProducer produces the item %d", x);
mutex = signal (mutex);

}

void consumer ()
{
mutex = wait (mutex);
full = wait (full);
empty = signal (empty);
printf ("\nConsumer consumes item %d", X);X--;
mutex = signal (mutex);

the item
1

the item
1

Tk

Week: 5
Write C programs to illustrate the following IPC mechanisms

Aim: Write C programs to illustrate the following IPC mechanisms

ALGORITHM:
1. Start the program.
2. Declare the variables.
3. Read the choice.
4. Create a piping processing using IPC.
5. Assign the variable lengths
6. “strcpy” the message lengths.
7. To join the operation using IPC .
8. Stop the program

Program-: (PIPE PROCESSING)

#include <unistd.h>

#include <stdlib.h> #include <stdio.h>

#include <string.h> #define MSG_LEN 64 int main(){Int

result;

int fd[2];

char message[MSG_LEN];

char recvd_msg[MSG_LE]; result = pipe (fd);

/[Creating a pipe//fd[0] is for reading and fd[1] is for writing if (result < 0){perror("pipe ");

exit(1);

}

strncpy(message,"Linux World!! ", MSG_LEN); result=write(fd[1], message,strlen(message)); if (result
<0){

perror(“write"); exit(2);

}

strncpy(message,"Understanding ",MSG_LEN); result=write(fd[1], message,strlen(message)); if(result < 0){
perror(“write"); exit(2);

}
strncpy(message,"Concepts of ",MSG_LEN); result=write(fd[1], message,strlen(message)); if (result <0){

perror(“write"); exit(2);

}

strncpy(message,"Piping ", MSG_LEN); result=write(fd[1],message,strlen(message)); if (result < 0){

perror("write"); exit(2);

¥

result=read(fd[0],recvd_msg,MSG_LEN); if (result < 0){

perror("read"); exit(3);

¥

printf("%s\n",recvd_msg); return O;

¥

a) FIFO

Program:

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>

#include <linux/stat.h>
#define FIFO_FILE "MYFIFO"

int main(void)
{
FILE *fp;
char readbuf[80];

/* Create the FIFO if it does not exist */
umask(0);
mknod(FIFO_FILE, S_IFIFQ|0666, 0);

while(1)

{
fp = fopen(FIFO_FILE, "r");
fgets(readbuf, 80, fp);
printf("Received string: %s\n", readbuf);
fclose(fp);

}

return(0);

}

#include <stdio.h>
#include <stdlib.h>

#define FIFO_FILE "MYFIFO"
int main(int argc, char *argv[])

FILE *fp;

if (argc!=2){
printf("USAGE: fifoclient [string]\n");
exit(1);

}

if((fp = fopen(FIFO_FILE, "w")) == NULL) {
perror(“fopen™);
exit(1);

}
fputs(argv[1], fp);

fclose(fp);
return(0);
}

C Program for Message Queue (Writer Process)

#include <stdio.h>
#include <sys/ipc.h>
#include <sys/msg.h>

/I structure for message queue
struct mesg_buffer {
long msg_type; char
msg_text[100];
} message;

int main()
{
key t key;
int msgid;
/I ftok to generate unique key
key = ftok("progfile", 65);
/I msgget creates a message queue
/l and returns identifier
msgid = msgget(key, 0666 | IPC_CREAT);
message.mesg_type = 1;

printf("Write Data : ");
gets(message.mesg_text);

/I msgsnd to send message
msgsnd(msgid, &message, sizeof(message), 0);

/I display the message
printf("Data send is : %s \n", message.mesg_text);

return O;

¥

C Program for Message Queue (Reader Process)
#include <stdio.h>

#include <sys/ipc.h>

#include <sys/msg.h>

/I structure for message queue
struct mesg_buffer {
long mesg_type;

char mesg_text[100];
} message;

int main()

{
key t key;
int msgid;

/I ftok to generate unique key
key = ftok("progfile", 65);

/I msgget creates a message queue and returns identifier
msgid = msgget(key, 0666 | IPC_CREAT);
/I msgrcv to receive message
msgrev(msgid, &message, sizeof(message), 1, 0);

/I display the message printf("Data
Received is : %s \n",

message.mesg_text);

/I to destroy the message queue
msgctl(msgid, IPC_RMID, NULL);

return O;

}

C Program for Message Queue (Reader Process)

#include <stdio.h>
#include <sys/ipc.h>
#include <sys/msg.h>
/I structure for message queue
struct mesg_buffer {

long mesg_type; char
mesg_text[100];
} message;

int main()

{
key _t key;
int msgid;

/I ftok to generate unique key
key = ftok("progfile"”, 65);

/I msgget creates a message queue
/I and returns identifier
msgid = msgget(key, 0666 | IPC_CREAT);

/I msgrcv to receive message
msgrcv(msgid, &message, sizeof(message), 1, 0);

/1 display the message printf("Data
Received is : %s \n",
message. mesg_text);

/I to destroy the message queue
msgctl(msgid, IPC_RMID, NULL);

return O;

OUTPUT: Thus the Piping process using IPC program was executed and verified successfully

[sree@localhost ~]%$ cc pp.cC
[sree@localhost ~]% ./a.out

Enter string:1

os

er

a

tingEnter 1 array elementz:1
The string length=1
Sum=0[sree@localhost ~]1% er
bash: er: command not found
[sree@localhost ~]%$ atingl
bash: atingl: command not found
[sree@localhost ~]1%$ gedit pp.c
[sree@localhost ~]% cc pp-.c
[sree@localhost ~]1% ./a.out
Linux Worlditit?

[sree@localhost ~]1% gedit pp.c
[sree@localhost ~]%$ cc pp.cC
[sree@localhost ~]$./a.out
Linux World!! Understanding Concepts of Piping ,
[sree@localhost ~135 |}

Week: 6
Aim: Write C programs to simulate the following memory management techniques

a) Paging
AIM: To write a C program to implement memory management using paging technique.
ALGORITHM:

Stepl : Start the program.

Step2 : Read the base address, page size, number of pages and memory unit.

Step3 : If the memory limit is less than the base address display the memory limit is less than limit.Step4 :

Create the page table with the number of pages and page address.

Step5 : Read the page number and displacement value.

Step6 : If the page number and displacement value is valid, add the displacement value with the address
corresponding to the page number and display the result.

Step7 : Display the page is not found or displacement should be less than page size.Step8 :

Stop the program.

Program:

#include<stdio.h>

#include<conio.h>

main()

{

int ms, ps, nop, np, rempages, i, j, X, y, pa, offset; int s[10], fno[10][20];
printf("\nEnter the memory size -- ");

scanf("%d",&ms); printf("\nEnter

the page size -- ");scanf("%d",&ps);

nop = ms/ps;

printf("\nThe no. of pages available in memory are -- %d ",nop);
printf("\nEnter number of processes -- ");

scanf("%d",&np);

rempages = nop; for(i=1;i<=np;i++)

{

printf("\nEnter no. of pages required for p[%d]-- ",i);
scanf("%d",&s[i]);

if(s[i] >rempages)

{
printf("*\nMemory is Full");break;

}

rempages = rempages - s[i]; printf("\nEnter
pagetable for p[%d] --- ",i);for(j=0;j<s[i];j++)
scanf(*'%d",&fno[i][j]);

¥

printf("\nEnter Logical Address to find Physical Address ");
printf("\nEnter process no. and pagenumber and offset -- ");
scanf(*'%d %d %d",&x, &y, &offset);

if(x>np || y>=s[i] || offset>=ps)

printf(*\nInvalid Process or Page Number or offset");else

{
pa=fno[x][y]*ps+offset;

printf("\nThe Physical Address is -- %d",pa);

¥

getch();

¥
OUTPUT:

Fnter the memcory size —— 1000
fnter the page size —-— 200

he no. of pages available in memory are — 35

fnter number of processes — 2
fnter no. of pages required for p[l]— 20

jemory is Full

fnter Logical Address to find Physical Address

fnter process no. and pagenumber and offset — 1

he Physical Address is —— 5

. .Program finished with exit code D
'ress ENTER to exit console.l

b) Segmentation
Aim: To write a C program to implement memory management using segmentation

Algorithm:

Stepl : Start the program.

Step2 : Read the base address, number of segments, size of each segment, memory limit.

Step3 : If memory address is less than the base address display “invalid memory limit”.

Step4 : Create the segment table with the segment number and segment address and display it.

Step5 : Read the segment number and displacement.

Step6 : If the segment number and displacement is valid compute the real address and display the same. Step7 :
Stop the program.

Program:
#include<stdio.h>
#include<conio.h>

struct list

{

int seg;

int base;

int limit;

struct list *next;

1P

void insert(struct list *qg,int base,int limit,int seg)
{

if(p==NULL)

{
p=malloc(sizeof(Struct list));p-
>limit=limit;
p->base=base;
p->seg=seg;
p->next=NULL,;

}

else

{
while(g->next!=NULL)
{

Q=0g->next;
Printf(*“yes”)

}

g->next=malloc(sizeof(Struct list));
g->next ->limit=limit;

g->next ->base=base;q-

>next ->seg=seg;

g->next ->next=NULL;

}

}

int find(struct list *q,int seg)
{
while(g->seg!=seq)
{

g=Q->next;

}

return g->limit;

}

int search(struct list *q,int seg)
{
while(g->seg!=seg)
{

g=0->next;

}

return g->base;

}

main()

{

p=NULL;

int seg,offset,limit,base,c,s,physical;

printf(“Enter segment table/n”);

printf(“Enter -1 as segment value for termination\n”);do
{

printf(“Enter segment number);

scanf(“%d”,&seg);

if(seg!=-1)

{

printf(“Enter base value:”);

scanf(“%d”,&base);

printf(“Enter value for limit:”);
scanf(“%d”,&limit);
insert(p,base,Imit,seq);

}

}
while(seg!=-1)

printf(“Enter offset:”);

scanf(“%d”,&offset);

printf(“’Enter bsegmentation number:”);
scanf(“%d”,&seg);

c=find(p,seQ);

s=search(p,seg);

if(offset<c)

{

physical=s+offset;

printf(““Address in physical memory %d\n”,physical);
}

else

{

printf(“error’);

¥

OUTPUT:

Enter segment table

Enter -1 as segmentation value for termination
Enter segment number:1

Enter base value:2000

Enter value for limit:100

Enter segment number:2

Enter base value:2500

Enter value for limit:100

Enter segmentation number:-1
Enter offset:90

Enter segment number:2

Address in physical memory 2590

Enter segment table

Enter -1 as segmentation value for termination
Enter segment number:1

Enter base value:2000

Enter value for limit:100

Enter segment number:2

Enter base value:2500

Enter value for limit:100

Enter segmentation number:-1
Enter offset:90

Enter segment number:1
Address in physical memory 20

7. Write C programs to simulate Page replacement policies a) FCFS b) LRU ¢) Optimal

a) FCFS Page replacement policies

The simplest algorithm for replacing pages is this one. The operating system maintains a queue for all of the
memory pages in this method, with the oldest page at the front of the queue. The first page in the queue is
chosen for removal when a page has to be replaced.

Implementation

Let the amount of pages that memory can store serve as the capacity. Set, the current collection of
memory pages, shall be.

1. Begin turning the pages.

i) If the set can hold no more pages.

a) Add pages one at a time into the collection until it is full or all requests for pages have been fulfilled.
b) Maintain the pages in the queue simultaneously to carry out FIFO.

b) Increased page error

ii) Other

Do nothing if the current page is included in the collection.

If not, either a) the current page in the string should be substituted for the first page in the queue since it was th
e first to be placed into memory, or b) the first page in the queue should be removed.

b) Add the currently viewing page to the queue.

d) Page faults that increase.

2. Return page errors.

#include < stdio.h >
int main()
{
int incomingStream[] ={4,1,2,4,5};
int pageFaults = 0;
int frames = 3;
int m, n, s, pages;
pages = sizeof(incomingStream)/sizeof(incomingStream([0]);
printf(" Incoming \ t Frame 1\t Frame 2\ t Frame 3 ");
int temp[frames J;

for(m = 0; m < frames; m++)

{

}

temp[m] = -1;

for(m = 0; m < pages; m++)

{

}

s=0;
for(n = 0; n < frames; n++)
{
if(incomingStream[m] == temp[n])
{
S+ +;

pageFaults--;

}
pageFaults++;
if((pageFaults <= frames) &8& (s == 0))
{
temp[m] = incomingStream[m];
}
else if(s == 0)
{
temp[(pageFaults - 1) % frames] = incomingStream[m];
}
printf("\n");
printf("%d\t\t\t",incomingStream[m]);
for(n = 0; n < frames; n++)
{
if(temp[n] != -1)
printf(" %d\t\t\t", templ[n]);
else
printf(" - \t\t\t");

printf("\nTotal Page Faults:\t%d\n", pageFaults);

return O;

Output:

Incoming Frame 1 Frame 2 Frame 3
4

4
1
2
4
5
T

otal Page Faults:

b) LRU Page replacement policies

Least Recently Used (LRU) Page Replacement algorithm
It is an algorithm whose concept is based on the pages used in an instruction. The pages
that are vigorously utilized in past instruction are probably going to be utilized intensely in
the next instruction and the pages with used less are likely to be used less in the future.
When a new page refereed is not present in the memory, a page fault occurs.

Whenever a page fault occurs, the page that is least used is removed from the memory
frames.

//C program for LRU replacement algorithm implementation

#include <stdio.h>

//user-defined function
int findLRU(int time[], int n)

{

int i, minimum = time[0], pos = 0;

for (i=1;i<n; ++i)

{

}

if (time[i] < minimum)
{
minimum = time[i];
pos = i;
}

return pos;

}

//main function
int main()
{
int no_of frames, no_of_pages, frames[10], pages[30], counter =0, time[10], flagl, flag2, i, j,
pos, faults = 0;
printf("Enter number of frames: ");
scanf("%d", &no_of frames);

printf("Enter number of pages: ");
scanf("%d", &no_of pages);

printf("Enter reference string: ");

for (i=0; i< no_of pages; ++i)
{

scanf("%d", &pagesli]);
}

for (i = 0; i < no_of_frames; ++i)
{
framesJi] = -1;

}

for (i=0; i< no_of _pages; ++i)

{
flagl = flag2 = 0;

for (j=0; j < no_of frames; ++j)
{
if (frames[j] == pages]i])
{
counter++;
time[j] = counter;
flagl = flag2 = 1;

break;

}
}

if (flagl == 0)
{
for (j = 0; j < no_of_frames; ++j)
{
if (frames[j] == -1)
{
counter++;
faults++;
frames|j] = pages][il;
time[j] = counter;

flag2 = 1,
break;
}
}
}
if (flag2 == 0)
{

pos = findLRU(time, no_of_frames);
counter++;

faults++;

frames[pos] = pageslil;

time[pos] = counter;

}
printf("\n");

for (j=0; j < no_of frames; ++j)
{
printf("%d\t", frames[j]);
}
}

printf("\nTotal Page Faults = %d", faults);

return O;

}

= 10
: 7594379621

A WWWwwkumwwm

7
7
7
4
4
4
9
9
9
1

NN W0WWwW

[}

c) OPTIMAL Page replacement policies

#include<stdio.h>
int main()
{
int no_of frames, no_of_pages, frames[10], pages[30], temp[10], flagl, flag2, flag3, i, j, k,
pos, max, faults = 0;
printf("Enter number of frames: ");
scanf("%d", &no_of_frames);

printf("Enter number of pages: ");
scanf("%d", &no_of pages);

printf("Enter page reference string: ");

for(i=0; i< no_of pages; ++i){

scanf("%d", &pagesli]);
}

for(i=0; i< no_of frames; ++i){
frames[i] = -1;

}

for(i = 0; i < no_of pages; ++i){
flagl = flag2 = 0;

for(j = 0; j < no_of frames; ++j){
if(frameslj] == pagesli]){
flagl = flag2 = 1,
break;

}

if(flagl == 0){
for(j = 0; j < no_of_frames; ++j){
if(frames[j] == -1){
faults++;
frames|j] = pagesli];
flag2 = 1;
break;
}
}
}

if(flag2 == 0){
flag3 =0;
for(j =0; j < no_of frames; ++j){
temp[j] =-1;

for(k =i+ 1; k < no_of_pages; ++k){
if(frames|[j] == pages[k]){

templ[jl = k;

break;

}

}

}

for(j=0; j< no_of frames; ++j){
if(templ[j] == -1){

pos = j; flag3 = 1;

break;

}

}

if(flag3 ==0){
max = temp[0];
pos = 0;

for(j=1; j < no_of frames; ++j){
if(temp[j] > max){
max = temp[j]; pos=j;
}
}
}
frames[pos] = pagesli];
faults++;

}
printf("\n");

for(j = 0; j < no_of_frames; ++j){
printf("%d\t", frames[j]);
}

}
printf("\n\nTotal Page Faults = %d", faults);

return O;

}

Output

Enter number of frames: 3
Enter number of pages: 10
Enter page reference string: 2342137543

2-1-1
23-1
234
234
134
134
734
534
534
534

	WEEK-1
	a) FCFS (First Come First Serve)
	Algorithm:
	Program:
	Output:
	Algorithm: (1)
	Program: (1)
	Output: (1)
	Algorithm
	Algorithm: (2)
	Program: (2)
	Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir)
	Output:

	Theory:
	Algorithm: (3)
	Output: (2)
	Algorithm:

	Program: (3)
	WEEK -3
	a) Aim
	Data structures
	Safety Algorithm
	Resource request algorithm
	Algorithm: (4)
	Program: (4)
	Output: (3)
	Algorithm: (5)
	Program: (5)
	Output: (4)
	WEEK-4
	Aim:

	Algorithm: (6)
	Program: (6)
	Output:
	Program : (PIPE PROCESSING)
	a) FIFO
	Week: 6
	a) Paging
	ALGORITHM:

	Program: (7)
	b) Segmentation
	Algorithm: (7)
	Program: (8)
	OUTPUT:
	Implementation

