

Malla Reddy College Engineering

(Autonomous)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad, Telangana-500100 www.mrec.ac.in

Department of Information Technology

III B. TECH I SEM (A.Y.2018 -19)

Lecture Notes

On

80512 - Database Management Systems

Malla Reddy College Engineering

(Autonomous)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad, Telangana-500100 www.mrec.ac.in

Department of Information Technology

III B. TECH I I SEM (A.Y.2018-19)

Lecture Notes

On

80611 - MACHINE LEARNING

2018-19

Onwards

(MR-18)

MALLA REDDY ENGINEERING COLLEGE

(Autonomous)

B.Tech.

VI Semester

Code: 80611
MACHINE LEARNING

L T P

Credits: 3 3 - -

Prerequisites: NIL

Course Objectives:

This course provides the students a broad introduction to python programming, machine

learning, discuss about various learning algorithms like decision tree learning, Bayesian

learning, computational learning, instance based learning, combined inductive and

analytical learning methods, analyze genetic algorithms and various learning set of rules.

Module I: Python programming -Machine Learning (ML) [10 Periods]

Introduction to Python:

Python, expression, variables, assignment statements, functions, built in function, strings,

modules, lists, making choice(Boolean, if, storing conditional statements),

repetition(loops, while, counted loops, user input loops, control loops , style notes), File

processing(one record per line, records with multiple fields, positional data, multiline

records, looking ahead, writing files), sets and dictionaries(sets, dictionaries, inverting a

dictionary), Algorithms with suitable example. Construction of functions, methods,

Graphical user interfaces, databases and applications.

Introduction - Well-posed learning problems, designing a learning system, Perspectives

and issues in ML

Concept Learning - Introduction, Concept Learning task, Concept learning as search,

Find-S: Finding a maximally specific hypothesis, Version spaces and candidate

elimination algorithm, Remarks on version spaces and Candidate elimination, Inductive

bias.

Module II: Decision Tree Learning and ANN [09 Periods]

Decision Tree learning - Introduction, Decision Tree representation, Appropriate

Problems, Decision Tree learning algorithm, Hypothesis Space Search, Inductive bias,

Issues.

Artificial Neural Networks - Introduction, Neural network representation, Problems for

Neural Network Learning, Perceptions, Multilayer networks and Back Propagation

algorithm, Remarks on back propagation algorithm, Evaluation Hypotheses, Motivation,

Estimation hypothesis accuracy, Sampling theory, General approach for deriving

confidence intervals, Difference in error of two hypotheses,

Module III: Bayesian learning and Instance based Learning [10 Periods]

A: Bayesian learning - Introduction and concept learning, Maximum Likelihood and

Least Squared Error Hypotheses, Maximum likelihood hypotheses for predicting

probabilities, Minimum description length principle.

B: Instance-based Learning - K -Nearest Neighbor Learning, Locally Weighted

Regression, Radial Basis Functions, Case-Based Reasoning, Lazy and Eager Learning,

Genetic Algorithm: Motivation, Hypothesis Space Search, Genetic Programming,

Models of Evolution and Learning, Parallelizing Genetic Algorithms

Module IV: Rules and Analytical Learning [09 Periods]

Learning Sets of Rules - Introduction, Sequential Covering Algorithms, Learning Rule

Sets: Learning First Order Rules, Learning Sets of First Order Rules: FOIL, Induction as

Inverted Deduction, Inverting Resolution.

Analyt ical Learning - Introduction, Learning with Perfect Domain Theories: Prolog-

EBG Remarks on Explanation-Based Learning, Explanation-Based Learning of Search

Control Knowledge

Module V: Learning Techniques [10 Periods]

Combining Inductive and Analytical Learning - Motivation, Inductive-Analytical

Approaches to Learning, Using Prior Knowledge to initialize Hypothesis, Using Prior

Knowledge to alter Search Objective, Using Prior Knowledge to Augment Search

Operators.

Reinforcement Learning - Introduction, Learning Task, Q Learning, Non-

Deterministic, Rewards and Actions, Temporal Difference Learning, Generalizing from

Examples, Relationship to Dynamic Programming

TEXT BOOKS

1. Jennifer Campbell paul Gries Jason Montojo Greg Wilson, "Practical Programming"

An introduction to Computer Science Using Python

2. Tom M. Mitchell, ñMachine Learningò, MGH, 1st Edition, 2013.

3. Stephen Marsland, ñMachine Learning: An Algorithmic Perspectiveò, Chapman

and Hall / CRC, 2nd Edition, 2014.

REFERENCES

1. Neural Networks, William WHsieh, ñMachine Learning Methods in the

Environmental Sciencesò

2. Richard O. Duda, Peter E. Hart and David G. Stork, ñPattern Classificationò, John

Wiley & Sons Inc., 2001

3. Chris Bishop, ñNeural Networks for Pattern Recognitionò, Oxford

University Press, 1995

E-RESOURCES

1. http://www.zuj.edu.jo/download/machine-learning-tom-mitchell-pdf/

2. https://goo.gl/FKioSh

3. http://www.ntu.edu.sg/home/egbhuang/pdf/ieee-is-elm.pdf

4. www.fxpal.com/publications/a-genetic-algorithm-for-video-

segmentation-and- summarization.pdf

5. http://nptel.ac.in/courses/106106139/

6. http://nptel.ac.in/courses/106105152/

Course Outcomes:

At the end of the course, student will be able to

1. Formulate machine learning problems corresponding to different applications.

2. Understand a range of machine learning algorithms like decision trees, and ANN.

3. Apply Machine Learning algorithms, Bayesian and Instance based

Learning techniques.

4. Use of machine learning algorithms to solve problems using rules, and

analytical learning techniques

5. Illustrate the Combining Inductive and Analytical Learning and

applications of Reinforcement Learning

CO- PO Mapping

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

COs

Programme Outcomes(POs) PSOS

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CO1 1 1 1 1 1 1

CO2 1 2 1 1 1 1 1 2 1

CO3 1 1 2 2 1 1 2 2 2

CO4 1 1 1 2 1 1 3 1 2

CO5 1 1 1 1 1 1 2 1 2

MACHINE LEARNING

MODULE-1

Well Posed Problems:

http://www.zuj.edu.jo/download/machine-learning-tom-mitchell-pdf/
http://www.ntu.edu.sg/home/egbhuang/pdf/ieee-is-elm.pdf
http://www.fxpal.com/publications/a-genetic-algorithm-for-video-segmentation-and-
http://www.fxpal.com/publications/a-genetic-algorithm-for-video-segmentation-and-
http://nptel.ac.in/courses/106106139/
http://nptel.ac.in/courses/106105152/

Definition: A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its

performance at tasks in T, as measured by P, improves with experience E.

Applications of Machine Learning

Learning to recognize spoken words. All of the most successful speech recognition

systems employ machine learning in some form. For example, the SPHINX system

learns speaker-specific strategies for recognizing the primitive sounds (phonemes)

and words from the observed speech signal. Neural network learning methods (e.g.,

Waibel et al. 1989) and methods for learning hidden Markov models (e.g., Lee 1989)

are effective for automatically customizing to, individual speakers, vocabularies,

microphone characteristics, background noise, etc. Similar techniques have

potential applications in many signal-interpretation problems.

Learning to drive an autonomous vehicle. Machine learning methods have been used to train

computer-controlled vehicles to steer correctly when driving on a variety of road types. For

example, the ALVINN system (Pomerleau 1989) has used its learned strategies to drive

unassisted at 70 miles per hour for 90 miles on public highways among other cars. Similar

techniques have possible applications in many sensor-based control problems.

Learning to classify new astronomical structures. Machine learning methods have

been applied to a variety of large databases to learn general regularities implicit in

the data. For example, decision tree learning algorithms have been used by NASA to

learn how to classify celestial objects from the second Palomar Observatory Sky

Survey (Fayyad et al. 1995). This system is now used to automatically classify all

objects in the Sky Survey, which consists of three terrabytes of image data.

Learning to play world-class backgammon. The most successful computer programs for playing

games such as backgammon are based on machine learning algorithms. For example,

the world's top computer program for backgammon, TD-GAMMON (Tesauro 1992, 1995).

learned its strategy by playing over one million practice games against itself. It now plays at a

level competitive with the human world champion. Similar techniques have applications in

many practical problems where very large search spaces must be examined efficiently.

A checkers learning problem:

Task T: playing checkers

Performance measure P: percent of games won against opponents

Training experience E: playing practice games against itself We can specify

many learning problems in this fashion, such as learning to recognize

handwritten words, or learning to drive a robotic automobile autonomously.

A handwriting recognition learning problem:

Task T: recognizing and classifying handwritten words within images

Performance measure P: percent of words correctly classified

Training experience E: a database of handwritten words with given classifications

A robot driving learning problem:

Task T: driving on public four-lane highways using vision sensors

Performance measure P: average distance travelled before an error (as

judged by human overseer)

Training experience E: a sequence of images and steering commands

recorded while observing a human driver.

Designing a Learning System:

In order to illustrate some of the basic design issues and approaches to

machine learning, let us consider designing a program to learn to play

checkers, with the goal of entering it in the world checkers tournament.

Choosing the Training Experience:

The first design choice we face is to choose the type of training experience from which our

system will learn. The type of training experience available can have a significant impact on

success or failure of the learner. One key attribute is whether the training experience

provides direct or indirect feedback regarding the choices made by the performance system.

For example, in learning to play checkers, the system might learn from direct training

examples consisting of individual checkers board states and the correct move for each.

In order to complete the design of the learning system, we must now choose

1. the exact type of knowledge to be learned

2. a representation for this target knowledge

3. a learning mechanism

Choosing the Target Function:

The next design choice is to determine exactly what type of knowledge will be learned

and how this will be used by the performance program. Let us begin with a checkers-

playing program that can generate the legal moves from any board state. The program

needs only to learn how to choose the best move from among these legal moves.

Choosing a Representation for the Target Function:

X1: the number of black pieces on the board

x2: the number of red pieces on the board

x3: the number of black kings on the board

x4: the number of red kings on the board

x5: the number of black pieces threatened by red (i.e., which can be captured

on red's next turn)

X6: the number of red pieces threatened by black

Thus, our learning program will represent V(b) as a linear function of the form

V(b)=w0+w1x1+w2x2+w3x3+w4x4+w5x5+w6x6

where wo through w6 are numerical coefficients, or weights, to be chosen b

y the learning algorithm.

Partial design of a checkers lea rning program:

Task T: playing checkers

Performance measure P: percent of games won in the world tournament

Training experience E: games played against itself

Target function: V:Board R

Target function representation

V(b)=w0+w1x1+w2x2+w3x3+w 4x4+w5x5+w6x6

Choosing a Function Approxi mation Algorithm

In order to learn the target function f we require a set of training examples, eac h

describing a specific board state b and the tra ining value Vtrain(b) for b.

ESTIMATING TRAINING V ALUES

Rule for estimating training va lues.

Vtrain (b) V(Successor(b))

ADJUSTING THE WEIGHTS

The Final Design:

The Performance System is the module that must solve the given per- formanc e task, in this

case playing checkers, by using the learned target function(s). It takes an insta nce of a new

problem (new game) as input an d produces a trace of its solution (game history) as output.

The Critic takes as input the history or trace of the game and produces as output

a set of training examples of the target function. As shown in the diagram, each

trainin g example in this case corresponds to some game state in the trace,

along with an estimate Vtrain, of the target function value for this example.

The Generalizer takes as input the training examples and produces an output

hypothesis that is its estimate of the target function. It generalizes from the

specific training examples, hypothesizing a general functio n that covers

these examples and other cases beyond the training examples.

The Experiment Generator takes as input the current hypothesis (currently

learned function) and outputs a new problem (i.e., initial board state) for the

Performa nce System to explore. Its role is to pick new practice problems

that will maximize the learning rate of the overall system.

Fig: Final Design of Checkers Learning Problem

Fig: Summary of c hoices in designing checkers learning problem .

PERSPECTIVES AND ISSUES IN MACHINE LEARNING:

One useful perspective on machine learning is that it involves searching a very large space of

possible hypotheses to determine one that best fits the observed data and any prior knowledge

held by the learner. For example, consider the space of hypotheses that could in principle be

output by the above checkers learner. This hypothesis space consists of all evaluation functions

that can be represented by some choice of values for the weights wo th rough w6. The learner's

task is thus to searc h through this vast space to locate the hypothesis that is most consistent

with the available trai ning examples. The LMS algorithm for fitting w eights achieves this goal by

iteratively tuning the weights, adding a correction to each weight each time the hypothesized

evaluation function predicts a value that differs from the training value.

This algorithm works well when the hypothesis representation considered by the

learner defines a continuously parameterized space of potential hypotheses.

Issues in Machine Learning

What algorithms exist for learning general target functions from specific

training examples? In what settings will particular algorithms converge to the

desired function, given sufficient training data? Which algorithms perform

best for which types of problems and representations?

How much training data is sufficient? What general bounds can be found to

relate the confidence in learned hypotheses to the amount of training

experience and the character of the learner's hypothesis space?

When and how can prior knowledge held by the learner guide the

process of generalizing from examples? Can prior knowledge be

helpful even when it is only approximately correct?

What is the best strategy for choosing a useful next training experience, and how

does the choice of this strategy alter the complexity of the learning problem?

What is the best way to reduce the learning task to one or more function

approximation problems? Put another way, what specific functions should the

system attempt to learn? Can this process itself be automated?

How can the learner automatically alter its representation to improve

its ability to represent and learn the target function?

Concept Learning:

Concept learning: Inferring a boolean-valued function from training

examples of its input and output.

A CONCEPT LEARNING TASK:

What hypothesis representation shall we provide to the learner in this case? Let us begin

by considering a simple representation in which each hypothesis consists of a

conjunction of constraints on the instance attributes. In particular, let each hypothesis

be a vector of six constraints, specifying the values of the six attributes Sky, AirTemp,

Humidity, Wind, Water, and Forecast. For each attribute, the hypothesis will either

indicate by a "?' that any value is acceptable for this attribute,

specify a single required value (e .g., Warm) for the attribute, or

indicate by a "ɗ" that no value is acceptable.

The inductive learning hypothesis. Any hypothesis found to approximate the

target function well over a sufficiently large set of training examples will also

ap proximate the target function well over other u nobserved examples.

CONCEPT LEARNING AS SEARCH Concept learning can be viewed as the task of

searching through a large sp ace of hypotheses implicitly defined by the hypothesis

representation. The goal of this search is to find the hypothesis that best fits the

training examples. It is important to note that by selecting a hypothesis

representation, t he designer of the learning algorithm implicitly defines the space of

all hypotheses that the pro gram can ever represent and therefore can ever learn.

General-to-Specific Ordering of Hypotheses Many algorithms for con cept learning

organize the search through the hypothesis space by relying on a very useful

structure that exists for any concept learning problem: a general-to-specific ordering

of hy potheses. By taking advantage of this natura lly occurring structure over the

hypothesis space, we can design learning algorithms that exhaustively search even

infinite hypothesis s paces without explicitly enumerating every hyp othesis.

To illustrate the general-to-specific ordering, consider the two hypotheses

h1 = (Sunny, ?, ?, Strong, ?, ?)

h2 = (Sunny, ?, ?, ?, ?, ?)

Now consider the sets of instances that are classified positive by hl and by h2 .

Because h2 imposes fewer constraints on the instance, it classifies more

instances as positive. In fact, any instance classified positive by hl will also be

classified positive by h2. Therefore, we say that h2 is more general than hl.

Definition: Let hj and hk be b oolean-valued functions defined over X. Then hj

is more general-than-or-equal-to hk (wri tten hj >= hk) if and only if

FIND-S: FINDING A MAXIM ALLY SPECIFIC HYPOTHESIS:

Fig: Find-S Algorithm

VERSION SPACES AND TH E CANDIDATE-ELIMINATION ALGORITHM:

The CANDIDATE-ELIMINA TION algorithm finds all describable hypotheses that are

consistent with the observed training examples. In order to define this algorithm

precisely, we begin with a few basic definitions. First, let us say that a hypothesis is

consistent with the training examples if it correctly classifies these examples.

CANDIDATE-ELIMINATIO N Learning Algorithm:

REMARKS ON VERSION SPACES AND CANDIDATE-

ELIMINATION ALGORITHM:

Will the CANDIDATE-ELIMINATION Algorithm Converge to the

Correct Hypothesis?

The version space learned by th e CANDIDATE-ELIMINATION algorithm will

con- verge toward the hypothesis that corr ectly describes the target

concept, provided (1) there are no errors in the training examples, and (2)

there is some hypothesis in H that correctly describes the target concept.

What Training Example Sho uld the Learner Request Next? Up to this point we

have assumed that training examples are provided to the learner by some

external tea cher. Suppose instead that the learner is allo wed to conduct

experiments in which it cho oses the next instance, then obtains the correct

classification for this instance from an externa l oracle (e.g., nature or a teacher).

How Can Partially Learned Concepts Be Used? Suppose that no addit onal training examples

are available beyond the four in our example above, but that the l earner is now required to

classify new instance s that it has not yet observed. Even though the version space still

contains multiple hypothes es, indicating that the target concept has not y et been fully

learned, it is possible to classify certain examples with the same degree of confidence as if

the target concept had been uniquely identified.

INDUCTIVE BIAS:

Inductive bias of CANDIDA TE-ELIMINATION algorithm. The target concept c

is contained in the given hypothesis space H.

Module 2: Decision Tree Lear ning and ANN

Decision tree learning is a method for approximating discrete-valued target functions, in

which the learned function is r presented by a decision tree. Learned trees ca n also be re-

represented as sets of if-then rul es to improve human readability. These learnin g methods

are among the most popular of indu ctive inference algorithms and have been successfully

applied to a broad range of tasks from le arning to diagnose medical cases to learning to

assess credit risk of loan applicants.

DECISION TREE REPRESE NTATION

Figure illustrates a typical learned decision tree. This decision tree clas- sifies Saturday

mornings according to whether they are suitable for playing tennis. For example , the

instance (Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong) wo uld be

sorted down the leftmost branch of this decision tree and would therefore be classified as a

negative instance (i.e., the tree predicts that PlayTennis = no).

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING:

Instances are represented by attribute-value pairs. Instances are described by a fixed

set of attributes (e.g., Temperature) and their values (e.g., Hot). The easiest situation

for decision tree learning is when each attribute takes on a small numb er of disjoint

possible values (e.g., Ho t, Mild, Cold). However, extensions to the ba

sic algorithm allow handling real-valued attributes as well (e.g.,

representing Temperature numerically).

The target function has discrete output values. The decision tree in Figure 3.1 assigns

a boolean classification (e.g., yes or no) to each example. Decision tree methods

easily extend to learning functions with more than two possible output values. A more

substantial extension allows learning target functions with real-valued o utputs,

though the application of decision trees in this setting is less common.

Disjunctive descriptions may be required. As noted above, decision

trees naturally represent disjunctive expressions.

The training data may contain errors. Decision tree learning methods are

robust to errors, both errors in classifications of the training examples

and errors in the attribute values that describe these examples.

The training data may contain missing attribute values. Decision tree meth- ods can

be used even when some tr aining examples have unknown values (e.g., if the

Humidity of the day is known for only some of the training examples).

THE BASIC DECISION TREE LEARNING ALGORITHM

ENTROPY MEASURES H OMOGENEITY OF EXAMPLES In order to define information gain

precisely, we b egin by defining a measure com- monly used in information theory, called

entropy, that chara cterizes the (im)purity of an arbitrary collection of examples. Given a

collection S, containing positive and negative examples of some target concept, the entropy

of S relative to this boolean classification is

INFORMATION GAIN MEA SURES THE EXPECTED REDUCTION IN ENTROPY

HYPOTHESIS SPACE SEARCH IN DECISION TREE LEARNING:

As with other inductive learning methods, ID3 can be characterized as searching a

space of hypotheses for one that fits the training examples. The hypothesis space

searc hed by ID3 is the set of possible decision trees. ID3 performs a simple-to-

complex, hill-climbing search through this hypothesis space, beginning with the

empty tree, then considering progressively more elaborate hypotheses in s earch of

a decision tree that correctly classifies the training data.

ID3's hypothesis space of all d ecision trees is a complete space of finite d iscrete-valued

functions, relative to the availa ble attributes. Because every finite discrete-valued function

can be represented by some decision tree, ID3 avoids one of the major risks of methods that

search incomplete hypothesis spaces (such as methods that consider only conjunctive

hypotheses): that the hypothesis space might not contain the target function.

ID3 in its pure form performs no backtracking in its search. Once it selects an a ttribute to

test at a particular level in the tree, it never backtracks to reconsider this choice .ID3 uses all

training examples at each step in the search to make statistically based decisions regarding

how to refine its current hyp othesis. This contrasts with methods that m ake decisions

incrementally, based on indivi dual train- ing examples (e.g., FIND-S or CANDIDATE-

