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Course Objectives: 

This course provides the students a broad introduction to python programming, machine 

learning, discuss about various learning algorithms like decision tree learning, Bayesian 

learning, computational learning, instance based learning, combined inductive and 

analytical learning methods, analyze genetic algorithms and various learning set of rules. 

 
Module I: Python programming -Machine Learning (ML)  [10 Periods] 

Introduction to  Python: 

Python, expression, variables, assignment statements, functions, built in function, strings, 

modules, lists, making choice( Boolean, if, storing conditional statements), 

repetition(loops, while, counted loops, user input loops, control loops , style notes), File 

processing( one record per line, records with multiple fields, positional data, multiline 

records, looking ahead, writing files), sets and dictionaries( sets, dictionaries, inverting a 

dictionary), Algorithms with suitable example. Construction of functions, methods, 

Graphical user interfaces, databases and applications. 

 
Introduction - Well-posed learning problems, designing a learning system, Perspectives 

and issues in ML 

Concept Learning - Introduction, Concept Learning task, Concept learning as search, 

Find-S: Finding a maximally specific hypothesis, Version spaces and candidate 

elimination algorithm, Remarks on version spaces and Candidate elimination, Inductive 

bias. 

 
Module II: Decision Tree Learning and ANN [09 Periods] 

Decision Tree learning - Introduction, Decision Tree representation, Appropriate 

Problems, Decision Tree learning algorithm, Hypothesis Space Search, Inductive bias, 

Issues. 

Artificial Neural Networks - Introduction, Neural network representation, Problems for 

Neural Network Learning, Perceptions, Multilayer networks and Back Propagation 

algorithm, Remarks on back propagation algorithm, Evaluation Hypotheses, Motivation, 

Estimation hypothesis accuracy, Sampling theory, General approach for deriving 

confidence intervals, Difference in error of two hypotheses, 



 

Module III: Bayesian learning and Instance based Learning [10 Periods] 

A: Bayesian learning - Introduction and concept learning, Maximum Likelihood and 

Least Squared Error Hypotheses, Maximum likelihood hypotheses for predicting 

probabilities, Minimum description length principle. 

B: Instance-based Learning - K -Nearest Neighbor Learning, Locally Weighted 

Regression, Radial Basis Functions, Case-Based Reasoning, Lazy and Eager Learning, 

Genetic Algorithm: Motivation, Hypothesis Space Search, Genetic Programming, 

Models of Evolution and Learning, Parallelizing Genetic Algorithms 

 
Module IV: Rules and Analytical Learning [09 Periods] 

Learning Sets of Rules - Introduction, Sequential Covering Algorithms, Learning Rule 

Sets: Learning First Order Rules, Learning Sets of First Order Rules: FOIL, Induction as 

Inverted Deduction, Inverting Resolution. 

Analyt ical Learning - Introduction, Learning with Perfect Domain Theories: Prolog- 

EBG Remarks on Explanation-Based Learning, Explanation-Based Learning of Search 

Control Knowledge 

 
Module V: Learning Techniques [10 Periods] 

Combining Inductive and Analytical Learning - Motivation, Inductive-Analytical 

Approaches to Learning, Using Prior Knowledge to initialize Hypothesis, Using Prior 

Knowledge to alter Search Objective, Using Prior Knowledge to Augment Search 

Operators. 

Reinforcement Learning - Introduction, Learning Task, Q Learning, Non- 

Deterministic, Rewards and Actions, Temporal Difference Learning, Generalizing from 

Examples, Relationship to Dynamic Programming 

 
TEXT  BOOKS 

1. Jennifer Campbell paul Gries Jason Montojo Greg Wilson, "Practical Programming" 

An introduction to Computer Science Using Python 

2. Tom M. Mitchell, ñMachine Learningò, MGH, 1st Edition, 2013. 

3. Stephen Marsland, ñMachine Learning: An Algorithmic Perspectiveò, Chapman 

and Hall / CRC, 2nd Edition, 2014. 

 
REFERENCES 

1. Neural Networks, William WHsieh, ñMachine Learning Methods in the 

Environmental Sciencesò 

2. Richard O. Duda, Peter E. Hart and David G. Stork, ñPattern Classificationò, John 

Wiley & Sons Inc., 2001 



3. Chris Bishop, ñNeural Networks for Pattern Recognitionò, Oxford 

University Press, 1995 

 
E-RESOURCES 

1. http://www.zuj.edu.jo/download/machine-learning-tom-mitchell-pdf/ 

2. https://goo.gl/FKioSh 

3. http://www.ntu.edu.sg/home/egbhuang/pdf/ieee-is-elm.pdf 

4. www.fxpal.com/publications/a-genetic-algorithm-for-video-

segmentation-and- summarization.pdf 

5. http://nptel.ac.in/courses/106106139/ 

6. http://nptel.ac.in/courses/106105152/ 

 
Course Outcomes: 

At the end of the course, student will be able to 

1. Formulate machine learning problems corresponding to different applications. 

2. Understand a range of machine learning algorithms like decision trees, and ANN. 

3. Apply Machine Learning algorithms, Bayesian and Instance based 

Learning techniques. 

4. Use of machine learning algorithms to solve problems using rules, and 

analytical learning techniques 

5. Illustrate the Combining Inductive and Analytical Learning and 

applications of Reinforcement Learning 

 
 

CO- PO Mapping 

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak 

 
COs 

Programme Outcomes(POs) PSOS 

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 

CO1 1 1  1  1      1 1   

CO2 1 2 1 1 1 1      1  2 1 

CO3 1 1 2 2 1 1      2  2 2 

CO4 1 1 1 2 1 1      3  1 2 

CO5 1 1 1 1 1 1      2  1 2 

MACHINE LEARNING 
 
 
 

 

MODULE-1 

 

Well Posed Problems: 

 

http://www.zuj.edu.jo/download/machine-learning-tom-mitchell-pdf/
http://www.ntu.edu.sg/home/egbhuang/pdf/ieee-is-elm.pdf
http://www.fxpal.com/publications/a-genetic-algorithm-for-video-segmentation-and-
http://www.fxpal.com/publications/a-genetic-algorithm-for-video-segmentation-and-
http://nptel.ac.in/courses/106106139/
http://nptel.ac.in/courses/106105152/


Definition: A computer program is said to learn from experience E with 

respect to some class of tasks T and performance measure P, if its 

performance at tasks in T, as measured by P, improves with experience E. 

 

Applications of Machine Learning 

 

Learning to recognize spoken words. All of the most successful speech recognition 

systems employ machine learning in some form. For example, the SPHINX system 

learns speaker-specific strategies for recognizing the primitive sounds (phonemes) 

and words from the observed speech signal. Neural network learning methods (e.g., 

Waibel et al. 1989) and methods for learning hidden Markov models (e.g., Lee 1989) 

are effective for automatically customizing to, individual speakers, vocabularies, 

microphone characteristics, background noise, etc. Similar techniques have 

potential applications in many signal-interpretation problems. 

 
Learning to drive an autonomous vehicle. Machine learning methods have been used to train 

computer-controlled vehicles to steer correctly when driving on a variety of road types. For 

example, the ALVINN system (Pomerleau 1989) has used its learned strategies to drive 

unassisted at 70 miles per hour for 90 miles on public highways among other cars. Similar 

techniques have possible applications in many sensor-based control problems. 

 
Learning to classify new astronomical structures. Machine learning methods have 

been applied to a variety of large databases to learn general regularities implicit in 

the data. For example, decision tree learning algorithms have been used by NASA to 

learn how to classify celestial objects from the second Palomar Observatory Sky 

Survey (Fayyad et al. 1995). This system is now used to automatically classify all 

objects in the Sky Survey, which consists of three terrabytes of image data. 

 
Learning to play world-class backgammon. The most successful computer programs for playing 

games such as backgammon are based on machine learning algorithms. For example, 



the world's top computer program for backgammon, TD-GAMMON (Tesauro 1992, 1995). 

learned its strategy by playing over one million practice games against itself. It now plays at a 

level competitive with the human world champion. Similar techniques have applications in 

many practical problems where very large search spaces must be examined efficiently. 

 

A checkers learning problem: 

 

Task T: playing checkers 

 

Performance measure P: percent of games won against opponents 

 

Training experience E: playing practice games against itself We can specify 

many learning problems in this fashion, such as learning to recognize 

handwritten words, or learning to drive a robotic automobile autonomously. 

 

A handwriting recognition learning problem: 

 

Task T: recognizing and classifying handwritten words within images 

 

Performance measure P: percent of words correctly classified 

 

Training experience E: a database of handwritten words with given classifications 

 

A robot driving learning problem: 

 

Task T: driving on public four-lane highways using vision sensors 

 

Performance measure P: average distance travelled before an error (as 

judged by human overseer) 

 

Training experience E: a sequence of images and steering commands 

recorded while observing a human driver. 

 

Designing a Learning System: 

 

In order to illustrate some of the basic design issues and approaches to 

machine learning, let us consider designing a program to learn to play 

checkers, with the goal of entering it in the world checkers tournament. 



Choosing the Training Experience: 

 

The first design choice we face is to choose the type of training experience from which our 

system will learn. The type of training experience available can have a significant impact on 

success or failure of the learner. One key attribute is whether the training experience 

provides direct or indirect feedback regarding the choices made by the performance system. 

For example, in learning to play checkers, the system might learn from direct training 

examples consisting of individual checkers board states and the correct move for each. 

 

In order to complete the design of the learning system, we must now choose 

 

1. the exact type of knowledge to be learned 

 

2. a representation for this target knowledge 

 

3. a learning mechanism 

 

Choosing the Target Function: 

 

The next design choice is to determine exactly what type of knowledge will be learned 

and how this will be used by the performance program. Let us begin with a checkers-

playing program that can generate the legal moves from any board state. The program 

needs only to learn how to choose the best move from among these legal moves. 

 

Choosing a Representation for the Target Function: 

 

X1: the number of black pieces on the board 

 

x2: the number of red pieces on the board 

 

x3: the number of black kings on the board 

 

x4: the number of red kings on the board 

 

x5: the number of black pieces threatened by red (i.e., which can be captured 

on red's next turn) 

 

X6: the number of red pieces threatened by black 

 

Thus, our learning program will represent V(b) as a linear function of the form 

 

V(b)=w0+w1x1+w2x2+w3x3+w4x4+w5x5+w6x6 



where wo through w6 are numerical coefficients, or weights, to be chosen b 

y the learning algorithm. 

 
 

 

Partial design of a checkers lea rning program: 

 

Task T: playing checkers 

 

Performance measure P: percent of games won in the world tournament 

 

Training experience E: games played against itself 

 

Target function: V:Board R 

 

Target function representation 

 

V(b)=w0+w1x1+w2x2+w3x3+w 4x4+w5x5+w6x6 

 

Choosing a Function Approxi mation Algorithm 

 

In order to learn the target function f we require a set of training examples, eac h 

describing a specific board state b and the tra ining value Vtrain(b) for b. 

 

ESTIMATING TRAINING V ALUES 

 

Rule for estimating training va lues. 

 

Vtrain (b) V(Successor(b)) 

 

ADJUSTING THE WEIGHTS  
 
 
 
 
 
 
 

 

The Final Design: 

 

The Performance System is the module that must solve the given per- formanc e task, in this 

case playing checkers, by using the learned target function(s). It takes an insta nce of a new 

problem (new game) as input an d produces a trace of its solution (game history) as output. 



The Critic takes as input the history or trace of the game and produces as output 

a set of training examples of the target function. As shown in the diagram, each 

trainin g example in this case corresponds to some game state in the trace, 

along with an estimate Vtrain, of the target function value for this example. 

 

The Generalizer takes as input the training examples and produces an output 

hypothesis that is its estimate of the target function. It generalizes from the 

specific training examples, hypothesizing a general functio n that covers 

these examples and other cases beyond the training examples. 

 

The Experiment Generator takes as input the current hypothesis (currently 

learned function) and outputs a new problem (i.e., initial board state) for the 

Performa nce System to explore. Its role is to pick new practice problems 

that will maximize the learning rate of the overall system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig: Final Design of Checkers Learning Problem 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig: Summary of c hoices in designing checkers learning problem . 
 
 
 

 

PERSPECTIVES AND ISSUES IN MACHINE LEARNING: 

 

One useful perspective on machine learning is that it involves searching a very large space of 

possible hypotheses to determine one that best fits the observed data and any prior knowledge 

held by the learner. For example, consider the space of hypotheses that could in principle be 

output by the above checkers learner. This hypothesis space consists of all evaluation functions 

that can be represented by some choice of values for the weights wo th rough w6. The learner's 

task is thus to searc h through this vast space to locate the hypothesis that is most consistent 

with the available trai ning examples. The LMS algorithm for fitting w eights achieves this goal by 

iteratively tuning the weights, adding a correction to each weight each time the hypothesized 

evaluation function predicts a value that differs from the training value. 



This algorithm works well when the hypothesis representation considered by the 

learner defines a continuously parameterized space of potential hypotheses. 

 

Issues in Machine Learning 

 

What algorithms exist for learning general target functions from specific 

training examples? In what settings will particular algorithms converge to the 

desired function, given sufficient training data? Which algorithms perform 

best for which types of problems and representations? 
 

How much training data is sufficient? What general bounds can be found to 

relate the confidence in learned hypotheses to the amount of training 

experience and the character of the learner's hypothesis space? 
 

When and how can prior knowledge held by the learner guide the 

process of generalizing from examples? Can prior knowledge be 

helpful even when it is only approximately correct? 
 

What is the best strategy for choosing a useful next training experience, and how 

does the choice of this strategy alter the complexity of the learning problem? 

What is the best way to reduce the learning task to one or more function 

approximation problems? Put another way, what specific functions should the 

system attempt to learn? Can this process itself be automated? 
 

How can the learner automatically alter its representation to improve 

its ability to represent and learn the target function? 

 
 
 
 

Concept Learning: 

 

Concept learning: Inferring a boolean-valued function from training 

examples of its input and output. 

 

A CONCEPT LEARNING TASK: 

 

What hypothesis representation shall we provide to the learner in this case? Let us begin 

by considering a simple representation in which each hypothesis consists of a 

conjunction of constraints on the instance attributes. In particular, let each hypothesis 

be a vector of six constraints, specifying the values of the six attributes Sky, AirTemp, 

Humidity, Wind, Water, and Forecast. For each attribute, the hypothesis will either 



indicate by a "?' that any value is acceptable for this attribute, 

 

specify a single required value (e .g., Warm) for the attribute, or 

 

indicate by a "ɗ" that no value is acceptable. 

 

The inductive learning hypothesis. Any hypothesis found to approximate the 

target function well over a sufficiently large set of training examples will also 

ap proximate the target function well over other u nobserved examples. 

 

CONCEPT LEARNING AS SEARCH Concept learning can be viewed as the task of 

searching through a large sp ace of hypotheses implicitly defined by the hypothesis 

representation. The goal of this search is to find the hypothesis that best fits the 

training examples. It is important to note that by selecting a hypothesis 

representation, t he designer of the learning algorithm implicitly defines the space of 

all hypotheses that the pro gram can ever represent and therefore can ever learn. 

 

General-to-Specific Ordering of Hypotheses Many algorithms for con cept learning 

organize the search through the hypothesis space by relying on a very useful 

structure that exists for any concept learning problem: a general-to-specific ordering 

of hy potheses. By taking advantage of this natura lly occurring structure over the 

hypothesis space, we can design learning algorithms that exhaustively search even 

infinite hypothesis s paces without explicitly enumerating every hyp othesis. 

 

To illustrate the general-to-specific ordering, consider the two hypotheses 

 

h1 = (Sunny, ?, ?, Strong, ?, ?) 

 

h2 = (Sunny, ?, ?, ?, ?, ?) 

 

Now consider the sets of instances that are classified positive by hl and by h2 . 

Because h2 imposes fewer constraints on the instance, it classifies more 

instances as positive. In fact, any instance classified positive by hl will also be 

classified positive by h2. Therefore, we say that h2 is more general than hl. 

 

Definition: Let hj and hk be b oolean-valued functions defined over X. Then hj 

is more general-than-or-equal-to hk (wri tten hj >= hk) if and only if 
 



FIND-S: FINDING A MAXIM ALLY SPECIFIC HYPOTHESIS:  
 
 
 
 
 
 
 
 
 
 
 

 

Fig: Find-S Algorithm 
 
 
 

 

VERSION SPACES AND TH E CANDIDATE-ELIMINATION ALGORITHM: 

 

The CANDIDATE-ELIMINA TION algorithm finds all describable hypotheses that are 

consistent with the observed training examples. In order to define this algorithm 

precisely, we begin with a few basic definitions. First, let us say that a hypothesis is 

consistent with the training examples if it correctly classifies these examples. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CANDIDATE-ELIMINATIO N Learning Algorithm:  



REMARKS ON VERSION SPACES AND CANDIDATE-

ELIMINATION ALGORITHM: 

 

Will the CANDIDATE-ELIMINATION Algorithm Converge to the 

Correct Hypothesis? 

 

The version space learned by th e CANDIDATE-ELIMINATION algorithm will 

con- verge toward the hypothesis that corr ectly describes the target 

concept, provided (1) there are no errors in the training examples, and (2) 

there is some hypothesis in H that correctly describes the target concept. 

 

What Training Example Sho uld the Learner Request Next? Up to this point we 

have assumed that training examples are provided to the learner by some 

external tea cher. Suppose instead that the learner is allo wed to conduct 

experiments in which it cho oses the next instance, then obtains the correct 

classification for this instance from an externa l oracle (e.g., nature or a teacher). 

 
How Can Partially Learned Concepts Be Used? Suppose that no addit onal training examples 

are available beyond the four in our example above, but that the l earner is now required to 

classify new instance s that it has not yet observed. Even though the version space still 

contains multiple hypothes es, indicating that the target concept has not y et been fully 

learned, it is possible to classify certain examples with the same degree of confidence as if 

the target concept had been uniquely identified. 

 

INDUCTIVE BIAS:  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Inductive bias of CANDIDA TE-ELIMINATION algorithm. The target concept c 

is contained in the given hypothesis space H. 





Module 2: Decision Tree Lear ning and ANN  

 

Decision tree learning is a method for approximating discrete-valued target functions, in 

which the learned function is r presented by a decision tree. Learned trees ca n also be re-

represented as sets of if-then rul es to improve human readability. These learnin g methods 

are among the most popular of indu ctive inference algorithms and have been successfully 

applied to a broad range of tasks from le arning to diagnose medical cases to learning to 

assess credit risk of loan applicants. 

 

DECISION TREE REPRESE NTATION  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure illustrates a typical learned decision tree. This decision tree clas- sifies Saturday 

mornings according to whether they are suitable for playing tennis. For example , the 

instance (Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong) wo uld be 

sorted down the leftmost branch of this decision tree and would therefore be classified as a 

negative instance (i.e., the tree predicts that PlayTennis = no). 

 

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING: 

 

Instances are represented by attribute-value pairs. Instances are described by a fixed 

set of attributes (e.g., Temperature) and their values (e.g., Hot). The easiest situation 

for decision tree learning is when each attribute takes on a small numb er of disjoint 



possible values (e.g., Ho t, Mild, Cold). However, extensions to the ba 

sic algorithm allow handling real-valued attributes as well (e.g., 

representing Temperature numerically). 
 

The target function has discrete output values. The decision tree in Figure 3.1 assigns 

a boolean classification (e.g., yes or no) to each example. Decision tree methods 

easily extend to learning functions with more than two possible output values. A more 

substantial extension allows learning target functions with real-valued o utputs, 

though the application of decision trees in this setting is less common. 
 

Disjunctive descriptions may be required. As noted above, decision 

trees naturally represent disjunctive expressions. 
 

The training data may contain errors. Decision tree learning methods are 

robust to errors, both errors in classifications of the training examples 

and errors in the attribute values that describe these examples. 
 

The training data may contain missing attribute values. Decision tree meth- ods can 

be used even when some tr aining examples have unknown values (e.g., if the 

Humidity of the day is known for only some of the training examples). 

 

THE BASIC DECISION TREE LEARNING ALGORITHM 

 

ENTROPY MEASURES H OMOGENEITY OF EXAMPLES In order to define information gain 

precisely, we b egin by defining a measure com- monly used in information theory, called 

entropy, that chara cterizes the (im)purity of an arbitrary collection of examples. Given a 

collection S, containing positive and negative examples of some target concept, the entropy 

of S relative to this boolean classification is 

 
 
 
 
 
 
 
 

INFORMATION GAIN MEA SURES THE EXPECTED REDUCTION IN ENTROPY  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

HYPOTHESIS SPACE SEARCH IN DECISION TREE LEARNING: 

 

As with other inductive learning methods, ID3 can be characterized as searching a 

space of hypotheses for one that fits the training examples. The hypothesis space 

searc hed by ID3 is the set of possible decision trees. ID3 performs a simple-to- 

complex, hill-climbing search through this hypothesis space, beginning with the 

empty tree, then considering progressively more elaborate hypotheses in s earch of 

a decision tree that correctly classifies the training data. 

 
ID3's hypothesis space of all d ecision trees is a complete space of finite d iscrete-valued 

functions, relative to the availa ble attributes. Because every finite discrete-valued function 

can be represented by some decision tree, ID3 avoids one of the major risks of methods that 

search incomplete hypothesis spaces (such as methods that consider only conjunctive 

hypotheses): that the hypothesis space might not contain the target function. 

 
ID3 in its pure form performs no backtracking in its search. Once it selects an a ttribute to 

test at a particular level in the tree, it never backtracks to reconsider this choice .ID3 uses all 

training examples at each step in the search to make statistically based decisions regarding 

how to refine its current hyp othesis. This contrasts with methods that m ake decisions 

incrementally, based on indivi dual train- ing examples (e.g., FIND-S or CANDIDATE- 


