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INTRODUCTION - MODES AND MECHANISMS OF HEAT TRANSFER 

• Thermodynamics deals with heat and work 
interactions 

• Thermodynamics deals with end states of process 
interaction and no information on nature of 
interaction or the time rate  

• Heat transfer supplements thermodynamic 
analysis by probing modes of heat transfer. It 
deals with numerical relations of heat transfer 
rates 

• Heat transfer knowledge in conjunction with first 
law of thermodynamics aid in solution to 
technological problems  



What is heat transfer and how is heat transferred? 

• Heat transfer or heat is thermal energy in transit due to spatial temperature 

difference 

• Temperature gradient in a solid medium or fluid results in heat transfer by 

conduction 

• Heat transfer between a surface and a moving fluid that are at different 

temperatures is called convection 

• All surfaces of finite temperature emit heat in the form of electromagnetic 

waves . Such net heat transfer is called thermal radiation 



Physical origin of rate equation - Conduction 

 Conduction is the transfer of energy from more energetic particle to less 

energetic particle due to  their mutual interaction 

 Temperature at a point in medium corresponds to random translation 

motion, rotation and vibrational motion of molecules 

 Energy transfer occurs either by collision of molecules or by random motion 

in the presence of temperature gradients 

 In solids, thermal energy transfer occurs due to lattice vibrations and 

translational motion of free electrons 



Heat rate equation for conduction – Fourier’s law 
 For one dimensional plane wall having temperature distribution T(x) , the rate 

equation is expressed as: 

 Heat flux q” (W/m2) in x-direction perpendicular to 

direction of heat transfer is proportional to dT/dx 

 Parameter k, is a transport property known as thermal 

conductivity (W/m.K) is characteristic of wall material 

 Minus sign is a consequence of fact that heat is transferred 

in the direction of decreasing temperature 

 Under steady state conditions, temperature distribution is 

linear and the temperature gradient becomes: 

 Heat rate by conduction , qx (W) through a plane wall of area A is then  qx” .  A 



Heat rate equation for convection – Newton’s law of cooling 

 Convection heat transfer mode comprise 

of two mechanisms: random molecular 

motion (diffusion) and bulk/macroscopic 

motion of fluid 

 Convection is referred to cumulative 

transport and advection refers to bulk 

fluid motion alone 

 Fluid - surface interaction results in the 

formation of hydrodynamic boundary 

layer 

 In case of thermal gradient between 

surface and flow temperature, thermal 

boundary layer is developed 

 Boundary layer phenomenon governs an 

important role in convective heat transfer 

mode 

 In convection mode, sensible heat and 

latent heat exchange are feasible 

 Convective heat transfer coefficient 

depends upon boundary layer  



Physical origin of rate equation – thermal radiation 
 Regardless of the form of matter, thermal energy emitted at non-zero 

temperature is attributed to change in electronic configuration of constituent 

atoms or molecules 

 Radiation emitted by the surface originates from thermal energy of the 

matter bounded by the surface and the rate at which energy is released is 

termed as surface emissive power . As per Stefan  Boltzmann's law for a black 

body and real surfaces are respectively: 

 

 Radiation may also be incident on a surface from its surroundings and the 

rate at which radiation is incident is termed as irradiation, G  

 

 α depends upon nature of irradiation and surface itself. While ε  depends on 

surface and finish of the material 



Physical origin of rate equation – thermal radiation 
 A special case that occurs frequently in engineering involves radiation 

exchange between small  surface at Ts and much larger surface that 

completely surrounds small one 

 For such condition, irradiation can be approximated as emission from 

blackbody at Tsurr, G = σT4
Surr

 

 If the surface is assumed to have α = ε then net radiation heat transfer  from 

the surface expressed per unit area of the surface is: 

 

 

 

 For many applications it is convenient to express net radiation exchange in 

the form:   

 

 The radiation heat transfer coefficient hf  is  : 



Relationship to first law of thermodynamics 
 For a closed system , first law of thermodynamics states that 

 

 

 where ΔEtot  is the change in the total energy stored in the system, 

Q is the net heat transferred to the system, and W is the net work 

done by the system 



Relationship to first law of thermodynamics 

Sum of thermal and mechanical energy is not conserved 



Relationship to first law of thermodynamics 



First law of thermodynamics application to 

control volume 

 Under steady state operation with no thermal and mechanical energy 

generation, the above equation reduces to steady flow energy equation 

 Since the sum of thermal energy and flow work is enthalpy, and for 

incompressible fluid steady flow thermal energy equation is given by: 



Relationship to second law of thermodynamics and 

efficiency of heat engine 

• Heat engine is any device that operates continuously or cyclically and that converts 
heat to work 

• Examples : internal combustion engines, power plants, and thermoelectric devices 

• Second law of thermodynamics states that: 

• It is impossible for any system to operate in a thermodynamic cycle and deliver a 

net amount of work to its surroundings while receiving energy by heat transfer 

from a single thermal reservoir 

 

 

 

• Any real heat engine, which will necessarily undergo an irreversible process, will 
have an efficiency lower than ηc 

• For heat transfer to occur, there must be a nonzero temperature difference 
between the reservoir and the heat engine. This reality introduces irreversibility 
and reduces the efficiency 



Relationship to second law of thermodynamics and 

efficiency of heat engine 
 Consider a more realistic model of a heat 

engine in which heat is transferred into the 

engine through a thermal resistance Rt,h and 

heat is extracted through second thermal 

resistance Rt,c 

 Thermal resistances are associated with heat 

transfer between the heat engine and the 

reservoirs across a finite temperature 

difference, by way of the mechanisms of 

conduction, convection, and/or radiation 

 Th,i < Th and Tc,i > Tc 

 

 Modified efficiency that accounts for realistic 

(irreversible) heat transfer processes – ηm 

 

 As the ratio of heat flows over a time interval, 

Qout/Qin, has been replaced by the 

corresponding ratio of heat rates, qout/qin 



Relationship to second law of thermodynamics and 

efficiency of heat engine 
 Utilizing thermal heat resistance concept, the 

heat transfer rates into and out of engine are : 

 

 

 

 

 Solving for internal temperatures: 

 

 

 

 

 More realistic modified efficiency is:  

 

 

 

 Solving for ηm:  

where Rtot = Rt,h + Rt,c 

Power output of heat engine is: 



A quick note on Units and dimensions 



Analysis of Heat transfer problems - Methodology 

• Known: After carefully reading the problem, state briefly and concisely what is known about 
the problem. Do not repeat the problem statement. 

• Find: State briefly and concisely what must be found 

• Schematic: Draw a schematic of the physical system. If application of the conservation laws is 
anticipated, represent the required control surface or surfaces by dashed lines  on the 
schematic. Identify relevant heat transfer processes by appropriately labeled arrows on the 
schematic 

• Assumptions: List all pertinent simplifying assumptions 

• Properties: Compile property values needed for subsequent calculations and identify the 
source from which they are obtained 

• Analysis: Begin your analysis by applying appropriate conservation laws, and introduce rate 
equations as needed. Develop the analysis as completely as possible before substituting 
numerical values. Perform the calculations needed to obtain the desired results 

• Comments: Discuss your results. Such a discussion may include a summary of key 
conclusions, a critique of the original assumptions, and an inference of trends obtained  by 
performing additional what-if and parameter sensitivity calculations 

                        



Applications of heat transfer 
 Energy conservation 

 

 Gas turbines 

 

 Cooling of electronic equipment 

 

 Bio-medical engineering 
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 1D Conduction  

 Conduction is the transfer of energy from more energetic particle to less 

energetic particle due to  their mutual interaction 

 Temperature at a point in medium corresponds to random translation 

motion, rotation and vibrational motion of molecules 

 Energy transfer occurs either by collision of molecules or by random motion 

in the presence of temperature gradients 

 In solids, thermal energy transfer occurs due to lattice vibrations and 

translational motion of free electrons 

From the previous lecture it was introduced that: 



1D Conduction 
 Heat transfer is governed by Fourier’s  law and in order to determine heat 

flux  knowledge of temperature distribution is essential 

 Fourier’s law is applicable to 1D, 3D transient multidimensional conduction in 

complex geometries 

 

The objectives of this lecture are: 

 What is the fundamental origin of Fourier’s law? 

 

 What form does it take for different geometries? 

 

 How does thermal conductivity depends upon nature of medium? 

 

 Our primary objective is to derive heat equation from basic principles which 

governs temperature distribution in the medium in which conduction is the 

only mode of heat transfer 

 

 Solution to heat equation provides knowledge of temperature distribution 

that is subsequently used in Fourier law to determine heat flux  



Conduction rate equation 

 Fourier’s law is phenomenological – is derived from observed phenomena 

rather than being derived from first principles 

A cylindrical rod of known material is insulated on its 

lateral surface, while its end faces are maintained at 

different temperatures, with T1 > T2 

We are able to measure the heat transfer rate qx, and 

seek to determine how qx depends on the following 

variables: Δ T, the temperature difference; Δx, the rod 

length; and A, the cross-sectional area 

On changing the material from metal to 

plastic Fourier’s law is still valid however qx is 

smaller in this case 

k, the thermal conductivity (W/m ⋅ K), is an 

important property of the material 

Eq.1 



Conduction rate equation 

 Eq.1 implies that the heat flux is a directional 

quantity. In particular, the direction of q’’x is normal 

to the cross-sectional area A 

 The direction of heat flow will always be normal to a 

surface of constant temperature, called an isothermal 

surface. Isothermal surfaces are planes normal to x-

direction 

 

 As heat flux is a vector quantity, a more general 

statement of conduction rate equation (Fourier’s law): 

 

 

 

 

 ∇ is the three-dimensional del operator, i, j, and k are the 

unit vectors in the x, y, and z directions, and T(x, y, z) is the 

scalar temperature field 

Eq.2 



Conduction rate equation 

 Heat flux vector is in a direction perpendicular to the 

isothermal surfaces 

 

 

 

  q”n is the heat flux in a direction n, which is normal to an 

isotherm  and when resolved in terms of Cartesian 

coordinates:  

 

 

 

 

 

 

 Eq. 2 implies that the medium is isotropic implying that 

the value of thermal conductivity is independent of 

coordinate direction. Fourier’s law is valid for all matter 

regardless of its state (solid, liquid  or gas) 

Eq.3a 

Eq.3b 

Eq.3c 



Thermal properties of matter 

 ksolid>> kliquid>> kgas 

 In solids the transport of thermal 

energy is due to : migration of free 

electrons and lattice vibrational 

waves 

 

 In pure metals, the electron 

contribution dominates  conduction 

heat transfer; while in 

nonconductors and semiconductors 

phonon contribution is dominant 

 

 From kinetic theory of gases 

For metals: C– electron specific heat per unit 

volume, 𝑐 is the mean electron velocity, and    

λ mfp ≡ λ e is the electron mean free path 

For metals: C– phonon specific heat per unit 

volume, 𝑐  is average speed of sound, and      

λ mfp ≡ λ phonon is the electron mean free path 



Thermal properties of matter 

• When electrons and phonons carry thermal 

energy leading to conduction heat transfer in 

a solid, the thermal conductivity may be 

expressed as 

 

 

• ke is inversely proportional to the electrical 

resistivity, ρe. For pure metals, which are of 

low ρe, ke is much larger than kph 

 

• For nonmetallic solids, k is determined 

primarily by kph, which increases as the 

frequency of interactions between the atoms 

and the lattice decreases   



Conductivity: Solid state micro and nanoscale effects 

• In microelectronics industry, the material’s 

characteristic dimensions can be on the order 

of micrometers or nanometers and hence 

significant modification of k occurs 

• Cross sections of films of the same material 

having thicknesses L1 and L2 are shown in 

Figure 

• L/λ mfp has significant effect on k  and hence k 

decreases as the above ratio decreases 



Thermal conductivity in fluid state 

• In both liquids and gases the intermolecular 

spacing is more random than solid: thermal 

energy transport is less effective 

• From kinetic theory of gases , k is directly 

proportional to density of gas ρ, mean 

molecular speed c, and mean free path, λmfp, is 

the average distance travelled by a molecule 

before collision is: 

 

 

 

• It is presumed that k is independent of gas 

pressure except when conditions approach 

perfect vacuum 

 



Thermal conductivity in fluid state 
• Molecular conditions associated with liquid 

are difficult to describe  and hence physical 

mechanisms of k are not well understood 

• k of liquids is insensitive to pressure except  

near thermodynamic critical point 

• k generally decreases with increasing 

molecular weight 

• Liquid metals are commonly used in high  

heat flux applications such as nuclear 

power plants  since their k is much larger 

than nonmetallic liquids 

• In liquids too bulk thermal conductivity is 

affected when a fluid is constrained by a 

small physical dimension  (L/λmfp) 

• Nanofluids are used in applications to 

tailor k 



Insulation systems 
Thermal insulations consist of low thermal conductivity materials 

In conventional fiber-, powder-, and flake-type insulations, the solid material 

is finely dispersed throughout an air  space 

A special parameter of the system is its bulk density (solid mass/total 

volume), which depends strongly on the manner in which the material is 

packed 

Micro- and nanoscale effects can influence the effective k of insulating 

materials as shown below  for nanostructured silica aerogel 



Thermophysical properties relevant to heat 

transfer problems 
Thermophysical properties  include two distinct categories, transport and 

thermodynamic properties: 

The transport properties are the diffusion rate coefficients such as k, the thermal 

conductivity (for heat transfer), and ν , the kinematic viscosity (for momentum 

transfer) 

Density (ρ) and specific heat (cp) are two such properties used in thermodynamic 

analysis 

The product ρcp (J/m3⋅K), commonly termed the volumetric heat capacity, 

measures the ability of a material to store thermal energy 

Substances of large density are typically characterized by small specific heats, many 

solids and liquids, which are very good energy storage media 

Materials of large  will respond quickly to changes in their thermal environment, 

whereas materials of small  will respond more sluggishly, taking longer to reach 

a new equilibrium condition 
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Heat Diffusion Equation- significance 

• A major objective in a conduction analysis is to determine the temperature field in 

a medium resulting from conditions imposed on its boundaries 

 

• Once the temperature distribution is known the conduction heat flux at any point 

in the medium is computed from Fourier’s law 

 

• Knowledge of temperature distribution can be used to ascertain structural 

integrity  by determining thermal stresses, expansions and deflections 

 

• Temperature distribution knowledge aids to optimize thickness of insulating 

material or determine compatibility of special coatings or adhesives used with 

material 



Heat Diffusion Equation- methodology 

Conservation of energy for a) closed system over a time interval b) for control volume at an instant 

Apply the energy conservation for a particular control volume based on first law  

of thermodynamics 

 

Define a differential control volume, identify the relevant energy transfer 

processes and introduce appropriate rate equations 

 

The resultant derived differential equation whose solution for a prescribed 

boundary conditions, provides temperature distribution in the medium 

 



Heat Diffusion Equation- derivation 

Differential control volume , dx, dy, dz  in Cartesian coordinates 

Consider a homogeneous medium within which there is no bulk motion and the 

temperature distribution T(x, y, z)  is expressed in Cartesian coordinates 

By incorporating first law at an instant of time, identify the energy process that are 

relevant to control volume. Incompressibility of the medium  is assumed in 

derivation. There is no mechanical work and only thermal energy is considered 

In case of temperature gradients, conduction heat transfer occurs at control 

surfaces 



Heat Diffusion Equation- derivation 

Differential control volume , dx, dy, dz  in Cartesian coordinates 

Conduction heat rates perpendicular to each of the control surfaces at x, y, z 

coordinate locations are indicated by qx, qy and qz respectively 

Conduction heat rates at the opposite surfaces can be expressed as Taylor series 

expansion by neglecting higher order terms 

 

Energy generation term ,  



Heat Diffusion Equation- derivation 

, the rate at which energy is 

generated per unit volume of the 

medium (W/m3) 

If the material is experiencing changes in internal 

thermal energy stored in control volume and when 

latent heat energy effects are not pertinent, energy 

storage term reduces to  rate of change of sensible 

energy: 

represent different physical processes 

is a manifestation of some energy conversion process involving thermal energy on 

one hand and some other form of energy, such as chemical, electrical, or nuclear, 

on the other. It can be positive or negative 



Heat Diffusion Equation- derivation 
On a rate basis, the general form of the 

conservation of energy requirement is: 

Conduction rates constitute energy inflow and outflow 

Since------ 

Therefore rate equation becomes----

- 



Heat Diffusion Equation- derivation 
The conduction heat rates in an isotropic material may be evaluated from Fourier’s law 

After substitution for qx, qy and qz and dividing by dx dy dz through out the equation:  

The above equation is the general form of heat diffusion equation  



Heat Diffusion equation 

Heat diffusion equation or heat equation is the basic tool for conduction 

analysis  as we can obtain temperature distribution T (x, y, z) as function of time 

 

Heat equation describes an important condition of conservation of energy 

is related to net heat conduction flux into the control 

volume in x-direction 

At any point in the medium the net rate of energy transfer by conduction into 

a unit volume plus the volumetric rate of thermal energy generation must be 

equal to rate of change of thermal energy stored within the volume 



Various forms of heat equation 
Basic heat equation: 

For constant thermal conductivity: 

is termed as thermal diffusivity 

Under steady state condition, 

there is no change in energy 

storage: 

If heat transfer is one dimensional and 

there is no energy generation : 

Under steady state, one dimensional conditions with no energy generation, heat flux 

is constant in the direction of transfer -------------- dqx”/dx = 0 



Heat equation in cylindrical coordinates 

Differential control volume dr. rdφ. dz for conduction analysis in cylindrical coordinates 

When the del operator   is expressed in cylindrical coordinates, with i, j, k representing   

unit vectors in r, φ, z directions, the general form Fourier’s law is: 



Heat equation in cylindrical coordinates 
represent heat fluxes in radial, 

circumferential and axial 

directions respectively 

On application of energy balance to differential control volume, the following 

general form of heat equation is obtained for cylindrical coordinates 



Heat equation in spherical coordinates 

Differential control volume dr. rsinθ dφ. rdθ  for conduction analysis in spherical coordinates 

In spherical coordinates with i, j, k representing the unit vectors in r, θ, φ 

directions, the general form of Fourier’s law :  



Heat equation in spherical coordinates 

heat flux components in the radial, 

polar, and azimuthal directions, 

respectively 

On application of energy balance to differential control volume, the following general 

form of heat equation is obtained for spherical  coordinates 



Boundary and initial conditions 

• To determine the temperature distribution in a medium, it is necessary to solve 

the appropriate form of the heat equation 

 

• A solution depends on the physical conditions existing at the boundaries of the 

medium and, if the situation is time dependent, on conditions existing in the 

medium at some initial time 

 

• As heat equation is second order in the spatial coordinates, two boundary 

conditions must be expressed for each coordinate needed to describe the system 

 

• Since heat equation is first order in time, only one condition, termed the initial 

condition, must be specified 



Boundary conditions for heat diffusion 

equation at surface x = 0 for 1D system 
Surface maintained at fixed 

temperature Ts also termed as 

Dirichlet condition. Closely 

approximated when surface in contact 

with melting solid or boiling liquid 

Neumann or second condition 

corresponds to existence of constant 

heat flux at surface qs”.  This heat flux 

is related to Fourier’s law at surface. 

Realized by bonding thin film electric 

heater to surface 

A special case of second condition 

exits for perfectly insulated or 

adiabatic surface 

Boundary condition of third kind 

corresponds to existence of  convective 

heating or cooling of surface and is 

obtained from surface energy balance 
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1D steady state  conduction – Temp gradient in single coordinate 

system and temp at each point is independent of time

Our objectives are to determine for 1D steady state conduction case:

 Heat transfer with no generation of internal energy

 Determine expressions for temperature distribution and heat transfer rate in
planar, cylindrical and spherical geometries

 For planar, spherical and cylindrical geometries, introduce the concept of thermal
resistance

 We establish that thermal circuits can model heat flow similar to electrical circuits
for current flow



1D steady state conduction – Plane wall case

For 1D conduction in a plane wall,

temperature is function of x-coordinate only

and heat is transferred exclusively in this

direction

Temp distribution within the wall can be

obtained by solving heat equation with

appropriate boundary conditions:

for one-dimensional, steady-state conduction in a plane wall with no 

heat generation, the heat flux is a constant, independent of x

Further if k of wall material is assumed constant , integrating the above equation 

twice will give general solution:



1D steady state conduction – Plane wall case

To obtain the constants of integration, C1 and

C2, boundary conditions must be introduced.

On applying conditions of the first kind at x = 0

and x = L, in which case

At x = 0, general solution is Ts,1 = C2
At x = L,

Substituting the expression in general 

solution of temperature distribution 



1D steady state conduction – Plane wall case

 For 1D steady state conduction in plane wall with  no  heat generation and 

constant thermal conductivity, temperature varies linearly with x

 To determine heat transfer rate , apply Fourier’s law:

 For a plane wall heat rate ,q and heat flux,  qx” are constant and independent of x



Thermal resistance concept

• For 1D steady state conduction in plane wall with no heat generation and constant
thermal conductivity, temperature varies linearly with x

• A perfect analogy exists between the diffusion of heat and electrical charge

• An electrical resistance is associated with the conduction of electricity, a thermal
resistance may be associated with the conduction of heat

• Hence we can define resistance as the ratio of a driving potential to the corresponding
transfer rate:

• Recall perfect similarity between Ohm’s law for electrical conduction and heat

conduction rate



Thermal resistance concept
A thermal resistance is also associated with 

heat transfer by convection at the surface

From Newton’s law of cooling:

Thermal resistance for convection is then:

 Circuit representations provide a useful

tool for both conceptualizing and

quantifying heat transfer problems

 The equivalent thermal circuit for the

plane wall with convection surface

conditions as shown in figure is:

qx may be determined from separate consideration of each element in the network



Thermal resistance concept
In terms of overall temperature difference 

T∞, 1 ̶  T∞, 2 and total thermal resistance R tot

Heat transfer rate is expressed as:

As the conduction and convection resistances 

are in series:

Radiation exchange between the surface and 

surroundings is important if convection heat 

transfer coefficient is small and radiation 

thermal resistance is:



The Composite Wall
 Equivalent thermal circuits for

complex systems such as

composite walls involves any

number of series and parallel

resistances due to different

layers of thermal material

 1D heat transfer rate for such

system is expressed as:



The Composite Wall
With composite systems, it is convenient to work with 

overall heat transfer coefficient is defined by expression 

analogous to Newton’s law of cooling:

Overall heat transfer is related to total thermal

resistance :

UA = 
1𝑅𝑡𝑜𝑡



Equivalent thermal circuits for series –
parallel composite wall

 Although heat flow is multi dimensional

it is reasonable to assume 1D

conditions

 For case (a) it is presumed that surfaces

normal to x direction are isothermal

 For case (b) surfaces parallel to x-

direction are adiabatic

Different results are obtained for Rtot, and the corresponding values of q bracket the

actual heat transfer rate. These differences increase with increasing |kF − kG|, as

multidimensional effects become more significant



Contact Resistance- Temperature drop

 In Composite systems, the

temperature drop across the

interface between materials may

be appreciable

Temperature drop is attributable

to thermal contact resistance, Rt,c

For a unit area of the interface,

the resistance is defined as:

The existence of thermal contact resistance is principally due to surface roughness effects 

Heat transfer is due to conduction across actual contact area and due to conduction 

and or radiation across the gaps



Contact Resistance- Temperature drop
Contact resistance may be viewed as two parallel resistances: a)

due to contact spots b) due to gaps

For rough surfaces, contact area is typically small and the major

contribution of resistance is made by gaps

For solids whose k exceeds that of interfacial fluid, 

the contact resistance may be reduced by increasing 

area of contact spots 

Contact resistance can also be reduced by increasing contact pressure, reducing the 

roughness of mating surfaces, selecting interfacial fluid of large k

If the characteristic gap width L, becomes small, L/λmfp, becomes small . Hence k of 

interfacial gap is reduced by micro scale effects



Thermal contact resistance
Thermal contact resistance for different solid/solid and solid/fluid interfaces

Many applications involve contact between similar solids and wide range of possible 

filler materials. Two class of materials that are well suited to enhance interfacial k are 

soft metals and thermal greases. Silicon based thermal greases are attractive as they 

have k fifty times that of air



Thermal conductivity – Porous media
Porous media are combinations of stationary solid and fluid

If the fluid is either gas or liquid the resulting porous medium is said to be saturated

In an unsaturated medium all the three phases coexist  

Ex: Insulation systems, nanofluids, powder of bed with fluid in interstitial regions



Thermal conductivity – Porous media
 For a saturated porous medium that is subjected to surface temperatures T1 at x = 0

and T2 at x = L, the heat rate after steady state conduction is reached is:

 The above equation is valid if fluid motion and radiation heat transfer are negligible

 keff – effective thermal depends on following factors:- porosity or void fraction, ε,

ksolid, kfluid, size distribution and packing arrangement of individual powder particles,

contact resistance at interfaces of particles, nanoscale phenomenon



Thermal conductivity – Porous media
 If the medium is modeled as a series composite consisting of fluid of length εL and

solid of length (1 − ε)L

 On equating left hand side and right hand side  we get

 If the medium is described by an equivalent parallel composite wall consisting fluid

region of width w and solid region of width (1 − ε)w, the equivalent thermal

resistance is:



1D  conduction in radial systems – Cylinder
 Cylindrical and spherical systems often experience temperature gradients in the radial

direction only and may therefore be treated as 1D

 Recall that the general form of heat equation for cylindrical coordinates in 3D is :

 For steady state 1D case with no heat generation and storage the equation reduces to:

Note that k is 

considered variable 

in 1D expression of 

cylinder



1D  conduction in radial systems – Cylinder
 The rate at which energy is conducted across cylindrical surface is expressed as: 

 A = 2πrL is the area normal to direction of heat transfer. Since kr
𝑑𝑇𝑑𝑟 is independent of r,

the conduction heat transfer rate qr and (not heat flux qr”) is constant in radial direction

We determine temp distribution  

in cylinder by solving equation:

To solve this equation boundary 

conditions are:



1D  conduction in radial systems – Cylinder

 If the above temp distribution is now used with Fourier’s law: 



1D  conduction in radial systems – Cylinder



1D  conduction in radial systems – Cylinder

If U is defined in terms of the arbitrary inside area, A1 =

2π r1L



1D  conduction in radial systems – Sphere

For the differential control volume, energy conservation requires that qr = qr+dr

For steady state , 1D conditions with no heat generation the Fourier law:

A= 4πr2 is the area normal to direction of heat transfer

For radial systems, qr is constant and independent of r

Assuming constant thermal conductivity, k, the numerical expression for qr :

Thermal resistivity can then be expressed as: 



Summary of 1D steady state solutions to 

heat equation with no generation
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Critical thickness of insulation 
 Consider  a smaller diameter tube, cable or the wire whose outside surface has 

constant temperature and dissipates heat by convection to  surroundings  

 If the surface is covered with a layer of insulation it is desirable to evaluate 

variation in heat loss from tube surface as the thickness of insulation increases 

 As insulation is added, outer exposed surface temperature decreases due to 

higher conduction resistance but the surface area available for convective heat 

dissipation will increase 

 There are two conflicting effects leading to optimum insulation thickness 



Critical thickness of insulation - 

Cylinder 
 The inner temperature of insulation is fixed at 

Ti and the surface exposed to conduction 

environment is  T∞ 

 From thermal network, heat transfer is: 

 

 

 

 

 To determine outer radius of insulation which 

maximizes heat transfer: The maximization 

condition is: 

 The above maxima condition gives the result: 

 

 If the outer radius is less than critical value, 

heat transfer  will increase by adding more 

insulation. 

 For outer radii greater than critical value 

increase in insulation thickness will cause a 

decrease in heat transfer 



Critical thickness of insulation - 

Sphere 

The total thermal resistance  for spherical wall of outer radius , r  is:  

Rth =  
𝑟0 −𝑟𝑖4π𝑘𝑟𝑜𝑟𝑖 + 14π𝑟𝑜2ℎ0 = 

14π [{1𝑟𝑖  −  1  𝑟𝑜}]
1𝑘𝑖 + 

1ℎ𝑜𝑟𝑜2 
For resistance Rth to be minimum and Q to be maximum:  

𝑑𝑅𝑡ℎ  𝑑𝑟𝑜  =   
14π   [ 1𝑟02 𝑘𝑖   −  2ℎ0𝑟𝑜3 ]    = 0 

(r0)critical for  sphere =   
2𝑘𝑖ℎ0  
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Basic heat equation: 

Transient Conduction 

 Heat transfer problems are time dependent 

 Unsteady, or transient, problems typically arise when the boundary 

conditions of a system are changed 

 Consider a hot metal billet that is removed from a furnace and exposed 

to a cool airstream 

 Energy is transferred by conduction, convection and radiation to the 

surroundings  until the temperature at each point in billet decreases and 

reaches steady state 

 

In 1D transient problems  these 

temperature distributions are no 

longer valid 



Transient Conduction 
 Procedures for determining the time dependence of the temperature distribution 

within a solid during a transient process depend upon assumptions made upon the 

process 

 If temperature gradients within the solid may be neglected, a comparatively 

simple approach, termed the lumped capacitance method, may be used to 

determine the variation of temperature with time 

 Under conditions for which temperature gradients are not negligible, but heat 

transfer within the solid is one-dimensional, exact solutions to the heat equation 

may be used to compute the dependence of temperature on both location and 

time 

 Systems that display limited internal thermal resistance are of interest in this 

module 



Lumped Capacitance method 
 Consider a hot metal forging that is initially at a uniform temperature Ti and is 

quenched by immersing it in a liquid of lower temperature T∞ < Ti 

 If the quenching is said to begin at time t = 0, the temperature of the solid will 

decrease for time t > 0, until it eventually reaches T∞ due to convection heat 

transfer at solid – liquid interface 

 Lumped capacitance method assumes that temperature of solid is spatially 

uniform at any instant during transient process 

 Absence of thermal gradients implies  infinite thermal conductivity or negligible 

internal resistance 

 This approximation is feasible if conduction resistance is small compared to 

convection resistance  between solid and surroundings 



Lumped Capacitance method 
 In neglecting temperature gradients within the solid, we can no longer 

consider the problem from within the framework of the heat equation, since 

the heat equation is a differential equation governing the spatial temperature 

distribution within the solid 

 The transient temperature response is determined by formulating an overall 

energy balance on the entire solid. This balance must relate the rate of heat 

loss at the surface to the rate of change of the internal energy 



Lumped Capacitance method 

Applying energy balance to control volume shown in figure:  

or 

Introducing the temperature difference: 

(dθ /dt) = (dT/dt) if T∞ is constant 

Separating variables and integrating from the initial condition, for which t = 0 and T(0) = Ti 



Lumped Capacitance method 

 Difference between the solid and fluid temperatures decays exponentially to 

zero as t approaches infinity 

 The quantity (ρVc/hAs) may be interpreted as a thermal time constant 

 Rt is the resistance to convection heat 

transfer and Ct is the lumped thermal 

capacitance of the solid 

 Any increase in Rt or Ct will cause the solid 

to respond more slowly to changes in its 

thermal environment 



Lumped Capacitance method 
To determine the total energy transfer Q occurring up to some time t: 

The quantity Q is related to the change in the internal energy of the solid 

Applicability of lumped capacitance method:  

Consider steady-state conduction through the 

plane wall of area A 

One surface is maintained at a temperature Ts,1 and 

the other surface is exposed to a fluid of temperature 

T∞ < Ts,1. The temperature of this surface will be some 

intermediate value Ts,2, for which T∞ < Ts,2 < Ts,1 



Applying the surface energy balance:  

 The quantity (hL/k) appearing in above equation is a 

dimensionless parameter: Biot number, and plays a 

fundamental role in conduction problems that 

involve surface convection effects 

 Biot number provides a measure of the  

temperature drop in the solid relative to the 

temperature difference between the solid’s surface 

and the fluid 

 If Bi  <<  1, the resistance to conduction within the solid is much less than the 

resistance to convection across the fluid boundary layer 

 The assumption  of a uniform temperature distribution within the solid is 

reasonable if the Biot number is small 

Validity of lumped Capacitance method 



Transient temperature distribution for different Biot numbers 

Consider the plane wall of figure below, which is initially at a uniform temperature Ti 

and experiences convection cooling when it is immersed in a fluid of T∞ < Ti 

For 1D problem, temperature variation with position and time T(x, t) is a strong 

function of Biot number:   

 Bi  << 1 the temperature gradients in the solid are small and the 

assumption of a uniform temperature distribution,T(x, t) ≈ T(t) is 

reasonable 

 Bi >> 1, the temperature difference across the solid is much larger 

than that between the surface and the fluid 



Transient temperature distribution for different Biot numbers 

If the above condition is satisfied the error associated with  lumped capacitance is small 

Lc is called characteristic length and is the ratio of solid’s volume to surface area.  

Lc = L for plane wall of thickness 2L, and  ro/2 for cylinder, ro/3 for sphere 

Lc also corresponds  to the maximum spatial temperature difference 



Generalized lumped Capacitance analysis 

 In addition to convection from the adjoining fluid, radiation exchange can induce 

transient thermal conditions 

 Transient conditions can be induced by applying heat flux at surfaces 

 Similarly initiation of thermal energy generation also lead to  transient conditions 

 Figure below depicts the general situation for which thermal conditions within a 

solid may be influenced simultaneously by convection, radiation, an applied 

surface heat flux, and internal energy generation 

 The imposed heat flux qs and the convection radiation heat transfer occur at 

mutually exclusive portions of the surface 

 Though convection and radiation have been prescribed for the same surface, the 

surfaces may, in fact, differ (As,c ≠ As,r) 



Applying conservation of energy at any instant t 

Generalized lumped Capacitance analysis 

or  

The above equation is a  nonlinear, first-order, nonhomogeneous, ordinary differential 

equation that cannot be integrated to obtain an exact solution 



Generalized lumped Capacitance analysis 

Case A: Radiation only:  

Separating variables and integrating from the initial condition to any time t,  

Time required to reach temperature T is given by:  



Generalized lumped Capacitance analysis 
Case B: Negligible radiation:  

In the above general equation all quantities except T are independent of t:   

Let θ ≡ T − T∞, where dθ /dt = dT/dt, 

The equation reduces to the form :   

Let then  

Separating variables and integrating from 0 to t 

or 



Generalized lumped Capacitance analysis 
Case C: Convection only with variable convection coefficient:  

In free convection or boiling, the convection coefficient h varies with the temperature 

difference between the object and the fluid.  In such situations convection coefficient 

can be approximated as:  

Then  

Substituting  and d θ/dt = dT/dt into the preceding expression, separating variables and 

integrating gives 



Steel balls 12 mm in diameter are annealed by heating to 1150 K and then 

slowly cooling to 400 K in an air environment for which T∞ = 325 K and h = 20 

W/m2 K. Assuming the properties of the steel to be k = 40 W/mK, ρ = 7800 

kg/m3, and c = 600 J/kg K, estimate the time required for the cooling process. 

Problem 1:  



solution:  

As Biot number is << 0.1, lumped capacitance method can be applied for transient 

conduction analysis 



Problem 2:  

Carbon steel (AISI 1010) shafts of 0.1 m diameter are heat treated in a gas-fired furnace 

whose gases are at 1200 K and provide a convection coefficient of 100 W/m2 K. If the 

shafts enter the furnace at 300 K, how long must they remain in the furnace to achieve a 

centerline temperature of 800 K? 

ρ= 7832 kg / m3, k = 51.2 W/m.K,  c= 541 J/Kg K, α = 1.21x 105 m2/s 



Solution:  

First calculate Biot number to check applicability of  lumped capacitance method:    

As Biot number is << 0.1, lumped capacitance method can be applied  
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Physical mechanism of Convection 
 Heat transfer through a liquid or  gas, can be by 

conduction or convection, depending on the 

presence of any bulk fluid motion 

 Conduction in a fluid can be viewed as the 

limiting case of convection, corresponding to 

the case of quiescent fluid 

 Convection heat transfer is complicated by the 

fact that it involves fluid motion as well as heat 

conduction 

 Fluid motion enhances heat transfer, since it 

brings hotter and cooler chunks of fluid into 

contact, initiating higher rates of conduction at 

a greater number of sites in a fluid 



Physical mechanism of Convection 

The cooling of a hot block by 

forced convection 

 Hot iron block will cool faster if the fan is switched to 

a higher speed. Replacing air by water will enhance 

the convection heat transfer even more 

 Convection heat transfer depends on the fluid 

properties : dynamic viscosity μ, thermal  conductivity 

k, density ρ, and specific heat Cp, as well as the fluid 

velocity  

 Convection heat transfer also depends on geometry 

and roughness of solid surfaces and whether the flow 

is laminar or turbulent 

Convection is the most complex mechanism of heat transfer. 

The rate of convection heat transfer is observed to be proportional to the 

temperature difference and is conveniently expressed by Newton’s law of cooling 



No slip and No temperature jump condition 

 The fluid layer in direct contact with a solid 

surface “sticks” to the surface and there is no 

slip. In fluid flow, this phenomenon is known 

as the no-slip condition, and it is due to the 

viscosity of the fluid 

No-slip condition leads to velocity profile as shown 

 For two bodies at different temperatures in  

contact, heat transfer occurs until equilibrium  

temperature at the point of contact. A fluid 

and a solid surface having same temperature 

at the point of contact is known as no-

temperature-jump condition 

Heat transfer from the solid surface to the fluid layer adjacent to the surface is by 

pure conduction 



Classification of flows 
Viscous versus Inviscid flow 

 Internal resistance to flow is called the viscosity, 

which is a measure of internal stickiness of the 

fluid. Viscosity is caused by cohesive forces 

between the molecules in liquids, and by the 

molecular collisions in gases. In viscous flows the 

effects of viscosity are significant while in Inviscid 

flows viscous effects are negligible 

Internal versus external flow 

 The flow of an unbounded fluid over a surface 

such as a plate, a wire, or a pipe is external flow. 

The flow in a pipe or duct is internal flow if the 

fluid is completely bounded by solid surfaces 



Classification of flows 
Compressible versus incompressible flow 

 Mach number (Ma) calculation denotes whether a flow is compressible or 

incompressible.  In the expression below , V is flow velocity and a is speed of the 

sound of a fluid 

For incompressible flow:  

 Under small Mach number conditions, changes in fluid density are everywhere 

small in the flow field. Incompressible flow requires only momentum and 

continuity analysis 

> 0.3 For compressible flow:  

 If the density change is significant, it follows from the equation of state that the 

temperature and pressure changes are also substantial. Large temperature 

changes imply that the energy equation can no longer be neglected 



Classification of flows 
Laminar versus turbulent flow 

 The highly ordered fluid motion characterized by smooth streamlines is called 

laminar. The flow of high-viscosity fluids such as oils at low velocities is typically 

laminar 

 The highly disordered fluid motion that typically occurs at high velocities 

characterized by velocity fluctuations is called turbulent. The flow of low-viscosity 

fluids such as air at high velocities is typically turbulent 

 The flow regime greatly influences the heat transfer rates and the required power 

required for pumping the fluid 

Reynolds number characterizes whether flow is 

laminar or turbulent 



Classification of flows 
Natural versus Forced flow 

 In natural flows, any fluid motion is due to a natural means such as the buoyancy 

effect, which manifests itself as the rise of the warmer (and thus lighter) fluid and 

the fall of cooler (and thus denser) fluid 

 In forced flow, a fluid is forced to flow over a surface or in a pipe by external 

means such as a pump or a fan  

Natural flow  Forced flow  



Classification of flows 
Steady versus Unsteady (Transient) flow: 

 During steady flow, the fluid properties can change from point to point within a 

device, but at any fixed point they remain constant. Many devices such as 

turbines, compressors, boilers, condensers, and heat exchangers operate for long 

periods of time under the same conditions, and they are classified as steady-flow 

devices. In transient flow conditions the properties of a fluid at a fixed condition  

vary with time 

1D, 2D and 3D flows: 

 A flow field is best characterized by the velocity distribution, and thus a flow is 

said to be one, two-, or three-dimensional if the flow velocity  varies in one, 

two, or three primary dimensions, respectively 

 A typical fluid flow involves a three-dimensional geometry and the velocity may 

vary in all three dimensions rendering the flow three-dimensional [(x, y, z) in 

rectangular or (r,θ , z) in cylindrical coordinates 
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Concepts of  Dimensional analysis and similarity 



Heat rate equation for convection – Newton’s law of cooling 

 Convection heat transfer mode comprise 

of two mechanisms: random molecular 

motion (diffusion) and bulk/macroscopic 

motion of fluid 

 Convection is referred to cumulative 

transport and advection refers to bulk 

fluid motion alone 

 Fluid - surface interaction results in the 

formation of hydrodynamic boundary 

layer 

 In case of thermal gradient between 

surface and flow temperature, thermal 

boundary layer is developed 

 Boundary layer phenomenon governs an 

important role in convective heat transfer 

mode 

 In convection mode, sensible heat and 

latent heat exchange are feasible 

 Convective heat transfer coefficient 

depends upon boundary layer  



Necessity of dimensional analysis 

Large parachute being tested at NASA facility for MARS mission 

 Convection heat transfer depends on characteristics of fluid flow  

 Most practical fluid flow problems are too complex, both geometrically and 

physically, to be solved analytically. Experimental testing or CFD analysis is resorted 

to approximate the solution to analytical problems 

 The solution for such complex fluid problems is typically reported as experimental 

or numerical data points and smoothed curves. Such data has more generality if 

expressed in compact form and hence is the motivation for dimensional analysis 

 Dimensional analysis is a mainstay of fluid mechanics and is also widely used in all 

engineering fields 



Introduction of dimensional analysis 

 Dimensional analysis is a method for reducing the number and complexity of 

experimental variables that affect a given physical phenomenon through 

compacting technique 

 If a fluid flow phenomenon depends on n dimensional variables, dimensional 

analysis will reduce the problem to only k dimensionless variables, where the 

reduction n −  k = 1, 2, 3, or 4, depending on the problem complexity 

 

 Generally n −  k  equals number of  basic or fundamental dimensions. In fluid 

mechanics problems, four basic dimensions are Mass (M), Length (L), Time (T) 

and temperature Θ 

 Suppose the force F on a particular body shape immersed in a stream of fluid 

depended only on the body length L, stream velocity V, fluid density ρ , and fluid 

viscosity μ: 

 

 If the geometry and flow conditions are complicated  and the analytical solutions 

are not feasible  the function f(L, V,ρ ,μ ) must be determined experimentally or 

numerically 

Contd------ 



Introduction of dimensional analysis 

 Some fluid forces have a very weak or negligible Reynolds number dependence in 

wide region. The force coefficient in such cases may depend, in high-speed gas flow, 

on the Mach number, Ma  = V/a, where a is the speed of sound 

 In free-surface flows, such as ship drag, CF may depend upon Froude number, Fr  = 

V2/(gL), where g is the acceleration of gravity 

 In turbulent flow, force may depend upon the roughness ratio, ε/L, where ε is the 

roughness height of the surface 

 The function g is different mathematically from the original function f, but it 

contains all the same information. The experimental cost is minimized 

 Dimensional analysis will often give a great deal of insight into the form of the 

physical relationship of the variables of the problem 

 Dimensional analysis provides scaling laws that can convert data from a cheap, 

small model to design information for an expensive, large prototype 



Principle of Dimensional Homogeneity 

Each term in this equation is a displacement, or length, and has dimensions {L} 

Consider the relation that expresses the displacement of a falling body 

Consider Bernoulli’s equation for incompressible flow:  

Each term, including the constant, has dimensions of velocity squared, or {L2T−2} 

The motive behind dimensional analysis is that any dimensionally homogeneous 

equation can be written in an entirely equivalent nondimensional form that is more 

compact. 



Variables and constants 

Consider the following equations:  

 Dimensional variables are the quantities that actually vary during a given case and 

would be plotted against each other to show the data. Ex: S, t and p, V, z 

 Dimensional constants may vary from case to case but are held constant during a 

given run. Ex: S0, V0, g and ρ, g , C. They all have dimensions and conceivably could 

be nondimensionalized, but they are normally used to help nondimensionalize the 

variables in the problem 

 Pure constants have no dimensions and never did. They arise from mathematical 

manipulation. Angles and revolutions are dimensionless. Similarly counting 

numbers are also dimensionless 

 

 

 

 

 

 Integration and differentiation may change dimensions not homogeneity of Eq. 



Choice of variables and scaling parameters in 

dimensional analysis 

 Consider the equation of displacement of falling body again:  

 The above equation can be divided into basic variables and parameters:  

Here S and t are variables , S0, V0 and g are parameters 

 To nondimensionalize the displacement equation of falling body , first it needs to 

be checked how many dimensions are there in variables and parameters: 

 Therefore select two parameters to be scaling parameters or repeating variables 

For the falling-body problem, selection of any two of the three parameters to be 

scaling parameters leads to following three options 



Choice of variables and scaling parameters in 

dimensional analysis 

Option 1:  Scaling parameters S0 and V0: the effect of gravity g 

Let S* and t* be dimensionless parameters:  

Then free falling problem equation can be written as:  

There is a single dimensionless parameter α, which 

shows here the effect of gravity 

Gravity increases the parabolic rate of fall for t* > 0, but 

not the initial slope at t*= 0. 



Choice of variables and scaling parameters in 

dimensional analysis 
Option 2: Scaling parameters V0 and g: the effect of initial displacement S0. 

The same single parameter α again appears and 

here shows the effect of initial displacement, 

which merely moves the curves upward without 

changing their shape 



Choice of variables and scaling parameters in 

dimensional analysis 

Option 3: Scaling parameters S0 and g: the effect of initial speed V0 

The dimensionless parameters defined here are:  

in all three options, the same 

parameter α  appears but has a 

different meaning: 

dimensionless gravity, initial 

displacement, and initial 

velocity 

Note the number of dimensions 

have been reduced from  5 to 2 



Guidelines on selection of scaling variables 

The following are some guidelines for selecting scaling variables: 

 They must not form a dimensionless group among themselves, but adding one 

more variable will form a dimensionless quantity. For example:  

 Do not select output variables for your scaling parameters 

 If convenient, select popular, not obscure, scaling variables because they 

will appear in all dimensionless groups. For example select density, not 

surface tension, select body length, not surface roughness, select stream 

velocity, not speed of sound 

The foundation of the dimensional analysis method rests on two assumptions: 

(1) The proposed physical relation is dimensionally homogeneous, and (2) all the 

relevant variables have been included in the proposed relation 



Buckingham Pi theorem 

It was introduced by Buckingham in 1914: 

 The name pi comes from the mathematical notation , meaning a product of 

variables. The dimensionless groups found from the theorem are product groups 

denoted by π1, π2, π3, ---. 

 The method allows the pi groups to be found in sequential order without resorting 

to free exponents 

The first part of the pi theorem explains what reduction in variables to expect: 

If a physical process satisfies the PDH and involves n dimensional variables, 

it can be reduced to a relation between only k dimensionless variables or 

π’s. The reduction j =  n − k equals the maximum number of variables that 

do not form a pi among themselves and is always less than or equal to the 

number of dimensions describing the variables. 

Contd------ 



Buckingham Pi theorem 

The second part of the theorem shows how to find the pi groups one at a time: 

Find the reduction j, then select j scaling variables that do not form a pi among 

themselves. Each desired pi group will be a power product of these j variables 

plus one additional variable, which is assigned any convenient nonzero 

exponent. Each pi group thus found is independent 

 Suppose a process involves five variables: 

 Suppose there are three dimensions {MLT}  and hence j =  3. Then k  = 5  − 3 = 2 

 Pick out three convenient variables that do not form a pi, and suppose these 

turn out to be v2, v3, and v4. Then the two pi groups are formed by power 

products of these three plus one additional variable, either v1 or v5 

 Equating exponents of the various dimensions is guaranteed by the theorem to 

give unique values of a, b, and c for each pi. And they are independent 

because only π1 contains v1 and only π2 contains v5 



 List and count the n variables involved in the problem. If any important 

variables are missing, dimensional analysis will fail 

 List the dimensions of each variable according to {MLTΘ} or {FLTΘ}. 

 Find j. Initially guess j equal to the number of different dimensions present, and 

look for j variables that do not form a pi product. If no luck, reduce j by 1 and 

look again. With practice, you will find j rapidly 

 Select j scaling parameters that do not form a pi product. Make sure they have 

some generality if possible 

 Add one additional variable to your j repeating variables, and form a power 

product. Algebraically find the exponents that make the product dimensionless. 

Try to arrange for your output or dependent variables. Do this sequentially 

adding one new variable at a time, find all n−j = k pi  products 

 Write the final dimensionless function, and check the terms to make sure all pi 

groups are dimensionless 

Summary of steps involved in finding π products 



Dimensions of Fluid Mechanics problems 



Dimensional analysis -  an example 

 Suppose the force F on a particular body shape immersed in a stream of fluid 

depended only on the body length L, stream velocity V, fluid density ρ , and fluid 

viscosity μ: 

 

 The final numerical relation between variables is given by : 

Step 1 

Step 2 

Contd------ 



Dimensional analysis -  an example 

Step 3 

Step 4 

Step 5 

Length: 

Mass: 

Time: 

Solving algebraically: 



Dimensional analysis -  an example 

Finally, add viscosity to L, U, and  to find π2. Select any power you like for viscosity. 

By hindsight and custom, we select the power  −1 to place it in the denominator 

Length: 

Mass: 

Time: 

Solving algebraically: 

Step 6 



Dimensional analysis -  Second example 

The power input P to a centrifugal pump is a function of the volume flow Q, impeller 

diameter D, rotational rate Ω, and the density ρ,  and viscosity  of the fluid μ 

Hint: Consider Ω, ρ , and D as repeating variables 

Solution:  

Step 1: 

Step 2: 

Step 3: 

Contd------ 



Dimensional analysis -  Second example 

Step 4a: 

By equating exponents:  

Force: 

Length: 

Time: 

Solving algebraically: 

This first pi group, the output dimensionless variable, is called the power coefficient of 

a pump, CP 

Contd------ 



Dimensional analysis -  Second example 

Step 4b: 

Solving algebraically: 

The second pi group is called flow coefficient of the pump, CQ 

Step 4c: 

Solving algebraically: 

The original relation between six variables is reduced to three dimensionless groups: 



Step by step method of Ipsen for estimating non 

dimensional quantities 

Pi theorem has some inherent drawbacks:  

 All π groups contain the same repeating variables and might lack effectiveness 

 Involves laborious checking of repeating variables that donot form π groups  

Ipsen suggests an alternative method to obtain π groups without any checking:   

Consider the same classical drag function of body submerged in a fluid:  

There are three dimensions, {MLT}. Eliminate them successively by division or 

multiplication by a variable. Start with mass {M}. Pick a variable that contains 

mass and divide it into all the other variables with mass dimensions 



Step by step method of Ipsen for estimating non 

dimensional quantities 

 Discard ρ, and now there are only four variables. Next, eliminate time {T} 

Now we see that V is no longer relevant since only V contains time {T}. Finally, 

eliminate {L} through division by, say, appropriate powers of L itself 
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Concepts of continuity, momentum and energy equations 



Heat Equation- convection 

Conservation of energy for a) closed system over a time interval b) for control volume at an instant 

Previously in developing heat rate equation for conduction we applied 

conservation of energy for a differential control volume. For a prescribed 

geometry and boundary conditions the equations must be solved to determine 

the temperature distribution 

 

In case of moving fluid the effects of fluid motion on energy transfer across the 

surfaces of control volume must be considered along with those of conduction 

For convective heat transfer the solution of differential equation that provides 

temperature distribution requires knowledge of velocity field 

Here we consider flow of viscous fluid in which there is concurrent heat and 

mass transfer and by using Newtons laws of motion and conservation of mass and 

energy to predict velocity, temperature and mass concentration fields in a fluid 

 



Conservation of mass equation 
Here we restrict our attention to steady two-dimensional flow in x and y 

directions of a Cartesian coordinate system. Unit depth is assumed in z direction 

therefore the differential control volume of the element is (dx. dy. 1) 

  The conservation of mass principle is simply a statement that mass cannot be 

created or destroyed, and all the mass must be accounted for during an 

analysis 

 In steady flow, the amount of mass within the control volume remains 

constant, and thus the conservation of mass can be expressed as: 

Noting that mass flow rate is equal to the 

product of density, mean velocity, and 

cross-sectional area normal to flow, the 

rate at which fluid enters the control 

volume from the left surface is ρu(dy . 1) 



Conservation of mass equation 
 The rate at which the fluid leaves the control volume from the right surface 

can be expressed as: 

 

 

 

 The rate at which fluid enters and leaves control volume in y direction is:  

 

 

 

 On application of law of conservation of mass:  

ρv(dx . 1) and  

Simplifying and dividing by dx . dy . 1 gives 

This is the conservation of mass relation, also known as 

the continuity equation, or mass balance for steady two 

dimensional flow of a fluid with constant density 



Conservation of momentum equation 
 The differential forms of the equations of motion in the velocity boundary layer are 

obtained by applying Newton’s second law of motion to a differential control volume 

element in the boundary layer 

 According to Newton’s second law of motion, the net force acting on the control 

volume is equal to the mass times the acceleration of the fluid element within the 

control volume, which is also equal to the net rate of momentum outflow from the 

control volume 

 The forces acting on the control volume are body forces that act through the entire 

body of control volume and are proportional volume of the body. While surface 

forces act on a control surface and are proportional to surface area 

Contd--- 



Conservation of momentum equation 
 Mass of the fluid element within the control volume is: 

 

 

 Since flow is two dimensional  and u = u (x, y), total differential of u is : 

 

 

 Acceleration of fluid in x direction is : 

The forces acting on a surface are due to pressure and 

viscous effects. In two-dimensional flow, the viscous stress 

at any point on an imaginary surface within the fluid can 

be resolved into two perpendicular components: one 

normal to the surface called normal stress (which should 

not be confused with pressure) and another along the 

surface called shear stress 

Contd--- 



Conservation of momentum equation 
 Neglecting the normal stresses for simplicity, the surface forces acting on the 

control volume in the x-direction will be as shown in Fig. below: 

By substituting τ = μ 
𝑑𝑢𝑑𝑦 

This is the relation for the conservation of 

momentum in the x-direction, and is known as the x-

momentum equation. If there is a body force acting 

in the x-direction, it can be added to the right side of 

the equation provided that it is expressed per unit 

volume of the fluid 



Conservation of Energy equation 
 The energy balance for any system undergoing 

any process is expressed as: 

 

 

 For a steady flow process the general energy 

equation reduces to: 

 Since energy can be transferred by heat, 

work, and mass only, the energy balance 

for a steady-flow control volume can be 

written explicitly as: 

The total energy of a flowing fluid stream per unit mass is estream  =h +ke +pe where h 

is the enthalpy (which is the sum of internal energy and flow energy),pe = gz is the 

potential energy. Compared to enthalpy K.E and P.E is small and neglected 

Contd--- 



Conservation of Energy equation 
Energy is a scalar quantity, and thus energy interactions in 

all directions can be combined in one equation 

 Mass flow rate of the fluid entering the control volume 

from the left is ρu(dy . 1) 

 Rate of energy transfer to the control volume by mass 

in the x-direction is:  

Repeating the above exercise in y-direction and adding both x an y terms : 

Contd--- 



Conservation of Energy equation 
The net rate of heat conduction to the volume element in the x-direction is: 

Repeating this for the y-direction and adding the results, the net rate of 

energy transfer to the control volume by heat conduction becomes: 

Ignore the work done by body forces and viscous forces. The work done by 

pressure force is flow work which is already included in energy transferred 

by mass stream the 2D energy equation is given by:  

The net energy convected by the fluid out of the control volume is equal to the net 

energy transferred into the control volume by heat conduction 



Conservation of Energy equation 
 When the viscous shear stresses are not negligible, their effect is accounted for 

by expressing the energy equation as: 

 Viscous dissipation function φ play a dominant role in high-speed flows, 

especially when the viscosity of the fluid is high (like the flow of oil in journal 

bearings). This manifests itself as a significant rise in fluid temperature due to 

the conversion of the kinetic energy of the fluid to thermal energy.  

 

 Viscous dissipation is also significant for high-speed flights of aircraft 

 

 For the special case of  a stationary fluid , u = v = 0, energy equation reduces 

to a 2D heat conduction equation 



MODULE III  

FUNDAMENTALS OF CONVECTIVE 

HEAT TRANSFER 

HEAT TRANSFER - 80329 

Dr. Satish Idury 

Associate Professor 

 

 

Part 4 

Boundary layer theory  - Non dimensional correlation for Convective  

Heat transfer 



Velocity boundary layer 

Velocity boundary layer development on a flat plate 

 When fluid particles make contact with the surface, their velocity is reduced 

significantly relative to the fluid velocity upstream of the plate, and for most 

situations it is valid to assume that the particle velocity is zero at the wall 

 Fluid particles  act to retard the motion of particles in the adjoining fluid layer, 

which act to retard the motion of particles in the next layer and so on until at y = 

δ from the surface the effects become negligible 

 The quantity δ is termed the boundary layer thickness, and it is typically defined 

as the value of y for which u = 0.99u∞. The boundary layer velocity profile refers to 

the manner in which u varies with y through the boundary layer. 

 With increasing distance from the leading edge, the effects of viscosity penetrate 

farther into the free stream and the boundary layer grows (δ increases with x) 



Thermal boundary layer 

Thermal boundary layer development on an isothermal flat plate 

 Consider a flow over an isothermal plate. A thermal boundary layer  develops if 

the fluid free stream and surface temperature differ. At leading edge the 

temperature profile is uniform 

 Fluid particles  in contact with plate achieve thermal equilibrium at the plate’s 

surface temperature. Temperature gradients develop within the fluid layers due 

to exchange of energy with adjoining layers 

 The region of the fluid in which these temperature gradients exist is the thermal 

boundary layer, and its thickness δt is typically defined as the value of y for 

which the ratio is: 

 The relation between conditions in this boundary layer and the convection heat 

transfer coefficient can be demonstrated from the relations below: 



Significance of boundary layers 

 For flow over any surface, there will always exist a velocity boundary layer and 

hence surface friction. The velocity boundary layer is of extent δ (x) and is 

characterized by the presence of velocity gradients and shear stresses 

 A thermal boundary layer, and hence convection heat transfer, will always exist if 

the surface and free stream temperatures differ. The thermal boundary layer is of 

extent δt (x) and is characterized by temperature gradients and heat transfer 

 The principal manifestations of velocity and thermal boundary layers are surface 

friction and convection heat transfer. 

 The key boundary layer parameters are friction coefficient, Cf and convective heat 

transfer coefficient , h  



Laminar and turbulent velocity boundary layers 

 Boundary layer development on a flat plate is illustrated in Fig. below In many 

cases, laminar and turbulent flow conditions both occur, with the laminar section 

preceding the turbulent section 

 In the laminar boundary layer, the fluid flow is highly ordered and it is possible to 

identify streamlines along which fluid particles move. The boundary layer 

thickness grows and that velocity gradients at y = 0 decrease in the increasing x 

direction 

 Local surface shear stress τs also decreases with increasing x. The highly ordered 

behavior continues until a transition zone is reached, across which a conversion 

from laminar to turbulent conditions occurs 



Laminar and turbulent velocity boundary layers 

 Conditions within the transition zone change with time, with the flow sometimes 

exhibiting laminar behavior and sometimes exhibiting the characteristics of 

turbulent flow 

 Flow in the fully turbulent boundary layer is, in general, highly irregular and is 

characterized by random, three-dimensional motion. Mixing within the boundary 

layer carries high-speed fluid toward the solid surface and transfers slower-moving 

fluid farther into the free stream 

 Much of the mixing is promoted by stream wise vortices called streaks that are 

generated intermittently near the flat plate, where they rapidly grow and decay 



Laminar and turbulent velocity boundary layers 

 As a result of the interactions that lead to chaotic flow conditions, velocity and 

pressure fluctuations occur at any point within the turbulent boundary layer 

 Three different regions may be delineated within the turbulent boundary layer as 

a function of distance from the surface 

 In viscous sub-layer transport is dominated by diffusion and the velocity profile is 

nearly linear 

 In buffer layer diffusion and turbulent mixing are comparable, and there is a 

turbulent zone in which transport is dominated by turbulent mixing 



Laminar and turbulent velocity boundary layers 

 Fig.  below shows that the turbulent velocity profile is relatively flat due to the 

mixing that occurs within the buffer layer and turbulent region, giving rise to large 

velocity gradients within the viscous sub layer 

 τs is generally larger in the turbulent portion of the boundary layer of Fig. than in 

the laminar portion. 

 The transition from laminar to turbulent flow is ultimately due to triggering 

mechanisms, such as the interaction of unsteady flow structures that develop 

naturally within the fluid or small disturbances that exist within many typical 

boundary layers 

 The onset of turbulence depends on whether the triggering mechanisms are 

amplified or attenuated in the direction of fluid flow, which in turn depends on a 

dimensionless grouping of parameters called the Reynolds number, Rex 



Laminar and turbulent thermal boundary layers 

Variation of velocity boundary layer thickness δ and the local heat 

transfer coefficient h for flow over an isothermal flat plate 

 Since the velocity distribution determines the advective component of thermal 

energy transfer within the boundary layer, the nature of the flow also has a 

profound effect on convective heat transfer rates 

 For laminar conditions, the thermal boundary layer grow in the stream wise 

(increasing x) direction. Hence the temperature gradient in the fluid decreases at y 

= 0 in the streamwise direction 

 Turbulent mixing promotes large temperature gradients adjacent to the solid 

surface and corresponding increase in heat transfer coefficient across the 

transition region 

 Differences in thickness of velocity and thermal boundary layer tend to be smaller 

in turbulent flow  



The Boundary layer equations 

Development of the velocity, thermal, and concentration boundary layers for an arbitrary surface 

 The relevance of boundary layer to convection transport is depicted by 

considering the equations that govern boundary layer conditions  

 The boundary layer equations will be used extensively to determine important 

dimensionless parameters associated with convection heat transfer 

 Motion of a fluid in which there are coexisting velocity, temperature gradients 

must comply with several fundamental laws of nature. In particular, at each point 

in the fluid, conservation of mass, energy, as well as Newton’s second law of 

motion, must be satisfied 

 Equations representing these requirements are derived by applying the laws to a 

stationary differential control volume for the steady, two-dimensional flow of an 

incompressible fluid with constant properties 



Development of the velocity, thermal, and concentration boundary layers for an arbitrary surface 

Assumptions involved in boundary layer equations 

 Body forces are negligible, there is no thermal energy generation in the fluid and 

the flow is non-reacting 

 Boundary layer thicknesses are typically very small relative to the size of the 

object upon which they form, and the x-direction velocity, temperature gradients 

normal to object surface are very small  

 By neglecting the x-direction terms, the net shear stress, conduction heat  flux, 

in the x-direction are negligible. Since the boundary layers are so thin, the x-

direction pressure gradient within a boundary layer can be approximated as the 

free stream pressure gradient 



Assumptions involved in boundary layer equations 

 The form of p∞(x) depends on the surface geometry and may be obtained from 

a separate consideration of flow conditions in the free stream where shear 

stresses are negligible. Hence pressure gradient is treated as known quantity 

 

 

 

 

 

 

 

 

 

 

 Analytical solutions of boundary layers involve complicated mathematics  and 

detailed solutions can be obtained by finite difference or finite element 

techniques 

 

 Wide array of situations of engineering relevance involve turbulent convective 

heat transfer which is mathematically and physically more complex than 

laminar convection 

-- 2D continuity equation  

-- 2D momentum equation  

-- 2D energy equation  



Boundary layer similarity: The normalized boundary 

layer equations 

 The above equations are characterized by advection terms left hand side and 

diffusion terms on right hand side  

 

 The above situation is described by low speed forced convection flows which 

are found in many  engineering applications 

 

 Implications of similarity may be  developed in a rational manner by first non 

dimesionalizing the governing equations 



Boundary layer similarity parameters 

 The boundary layer equations are normalized by first defining dimensionless 

independent variables of the forms: 

where L is a characteristic length for the surface of interest 

 Dependent dimensionless variables may be defined as: 

where V is the velocity upstream of the surface 

 Dimensionless form of conservation equations can be developed using  

dimensionless variables  and as a consequence two important dimensionless 

similarity parameters evolve: Reynolds number and Prandtl number 

 Similarity parameters allow to extrapolate results of a surface experiencing a 

set of convective conditions to geometrically similar surfaces subjected to 

entirely different conditions  

 As long as similarity parameters and dimensionless boundary conditions are 

same for two sets of conditions, the solution of differential equations for 

velocity and temperature will be identical 



The boundary layer equations and their y-direction boundary conditions in 

nondimensional form 

 The momentum equation suggests that though conditions in velocity  boundary 

layer depends upon fluid properties ρ, μ, velocity, V and length scale L, this 

dependence may be simplified by grouping variables in the form of Reynolds 

number 

 

 The functional form of solution of the differential equation is given by: 

 Since the pressure distribution p*(x*) depends on the surface geometry and may 

be obtained independently by considering flow conditions in the free stream, 

the appearance of dp*/dx* momentum equation represents the influence of 

geometry on the velocity distribution 



Non dimensional correlation of momentum equation 

The shear stress at the surface, y* = 0, may be expressed as: 

Based on the above relation, friction coefficient can be expressed as: 

Since we know that : 

For a prescribed geometry: 

Friction coefficient, a dimensionless parameter of considerable importance to the 

engineer, may be expressed exclusively in terms of a dimensionless space 

coordinate and the Reynolds number 



Non dimensional correlations of energy equation 

 Intuitively, we expect that convective heat transfer coefficient, h depends on 

the fluid properties (k, cp, μ, and ρ), the fluid velocity V, the length scale L, 

and the surface geometry 

 

 

 

 

 Based on the above equation, the expression for temperature can be :  

 The dependence on dp*/dx* originates from the influence of the geometry 

on the fluid motion (u* and v*), which, in turn, affects the thermal conditions 

Nusselt number to thermal boundary layer  

is what friction to velocity boundary layer. It 

can be computed for different fluids  and 

different values of V and L  



Physical interpretation of dimensionless Reynolds number 

 Dimensionless parameters have physical interpretations that relate to conditions 

in the flow, not only for boundary layers but also for other flow types, such as 

the internal flows 

 Reynolds number ReL, may be interpreted as the ratio of inertia to viscous forces 

in a region of characteristic dimension L. Inertia forces are associated with 

increase in momentum of a moving fluid 

 Inertia forces (per unit mass) are of the form u ∂u/∂x. The order of magnitude 

approximation gives FI ~  V2/L 

 Similarly, the net shear force (per unit mass) is μ(∂u/∂y) and is approximated as 

Fs ≈ μV/L2 

 ReL determines the existence of laminar or turbulent flow. The magnitude ReL 

influences the velocity boundary layer thickness δ . With increasing ReL at a fixed 

location on a surface, viscous forces become less influential relative to inertia 

forces. Hence the effects of viscosity do not penetrate as far into the free stream, 

and the value of δ diminishes 



Physical interpretation of dimensionless Prandtl number 

 The Prandtl number, Pr is defined as the ratio of the kinematic viscosity, also 

referred to as the momentum diffusivity, ν, to the thermal diffusivity α. 

 Value of Pr strongly influences the relative growth of the velocity and thermal 

boundary layers 

 For laminar boundary layers (in which transport by diffusion is not overshadowed 

by turbulent mixing): 

 Prandtl number of gases is near unity, in which case δ t ≈ δ. For oils of highly 

viscous nature : Pr >> 1 and δ t <<δ 



Selected dimensionless groups of heat and mass transfer  -- Reference purpose 

Contd---- 
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Boundary layer analogies 
Cf and Nu are of primary interest to convection heat transfer problems  in this course 

 If two or more processes are governed by dimensionless equations of the same 

form, the processes are said to be analogous. The above equations for a particular 

geometry are interchangeable 
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Part 5 

External flows – Solutions of convection equations for Flat plates,  



Assumptions involved in deriving numerical relations for external flow 

 In this module we focus on the problem of computing heat transfer rates to or 

from a surface in external flow. In such a flow boundary layers develop freely, 

without constraints imposed by adjacent surfaces 

 Examples of external flow  include fluid motion over a flat plate (inclined or 

parallel to the free stream velocity) and flow over curved surfaces such as a 

sphere, cylinder, airfoil, or turbine blade 

 The derivations here are confined to problems of low-speed, forced convection 

with no phase change occurring within the fluid 

 In forced convection, the relative motion between the fluid and the surface is 

maintained by external means, such as a fan or a pump, and not by buoyancy 

forces due to temperature gradients in the fluid 



Assumptions involved in deriving numerical relations for external flow 

 The primary objective is to determine convection coefficients for different flow 

geometries. In particular, we wish to obtain specific forms of the functions that 

represent these coefficients 

 The subscript x emphasizes conditions at a particular location on the surface. 

The overbar indicates an average from x* = 0, where the boundary layer begins 

to develop, to the location of interest 

 The theoretical approach involves solving the boundary layer equations for a 

particular geometry. For example, obtaining the temperature profile T* from 

such a solution 



Experimental  method to determine Nusselt number 

 If a prescribed geometry, such as the flat plate in parallel flow, is heated electrically to 

maintain Ts > T∞, convection heat transfer occurs from the surface to the fluid 

 It would be a simple matter to measure Ts and T∞, as well as the electrical power, E ⋅ 
I, which is equal to the total heat transfer rate q. The convection coefficient ЋL, which 

is an average associated with the entire plate, could then be computed from 

Newton’s law of cooling 

 From knowledge of the characteristic length L and the fluid properties, the Nusselt, 

Reynolds, and Prandtl numbers could be computed from their definitions 

 The foregoing procedure could be repeated for a variety of test conditions. We could 
vary the velocity u∞ and the plate length L, as well as the nature of the fluid, using, 
for example, air, water, and engine oil, which have substantially different Prandtl 
numbers 



Experimental  method to determine Nusselt number 

 By experimenting with many different values of the Nusselt numbers 

corresponding to a wide range of Reynolds and Prandtl numbers, the results 

could be plotted on a log–log scale, as shown in Fig. a 

 The results associated with a given fluid, and hence a fixed Prandtl number, 

fall close to a straight line, indicating a power law dependence of the Nusselt 

number on the Reynolds number. Considering all the fluids, the data may 

then be represented by an algebraic expression of the form: 

 Since the values of C, m, and n are often independent of the nature of the 

fluid, the family of straight lines corresponding to different Prandtl numbers 

can be collapsed to a single line by plotting the results in terms of the ratio,   

ÑL /Prn, as shown in Fig. b 
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Experimental  method to determine Nusselt number 

 The above numerical expression for average Nusselt number will be invoked for 

many special cases, and it is important to note that the assumption of constant 
fluid properties is often implicit in the results 

 As the fluid properties vary with temperature across the boundary layer and this 

variation can certainly influence the heat transfer rate . Hence such variation is 

catered for in the above numerical expression in two ways as below: 

 In first, average Nusselt number  is used with all properties evaluated at a 

mean boundary layer temperature Tf, termed the film temperature 

 The alternate method is to evaluate all properties at T∞ and to multiply the 

right-hand side of the above Nusselt number Equation by an additional 

parameter to account for the property variations.  

 The parameter is commonly of the form (Pr∞/Prs)
r or (μ∞/μs)

r, where the 

subscripts ∞ and s designate evaluation of the properties at the free stream and 

surface temperatures, respectively 



Derivation for a laminar flow over isothermal flat plate: Methodology 

 The first step is analytical determination of the velocity and temperature 

distributions in the laminar boundary layers 

 From the knowledge of these distributions, expressions for local, average 

friction coefficients and Nusselt numbers can be determined 

Contd---- 



Derivation for a laminar flow over isothermal flat plate : A similarity solution 

 The major convection parameters may be obtained by solving the appropriate 

form of the boundary layer equations  

 Assuming steady, incompressible, laminar flow with constant fluid properties, 
negligible viscous dissipation and recognizing that dp/dx = 0, the boundary layer 
equations can be formulated as below:  

Continuity equation: 

Momentum equation: 

Energy equation: 

 Solution of these equations is simplified by the fact that for constant properties, 

conditions in the velocity (hydrodynamic) boundary layer are independent of 

temperature and species concentration 

 

 Once the hydrodynamic problem is solved momentum and energy equations can 

be solved easily 



Hydrodynamic solution to the flat plate 

 Hydrodynamic solution for the flat plate problem is obtained  by the method of 
Blasius, a German Engineer who invented this solution. The first step in this 
method is to define a stream function Ψ (x, y) such that:  
 
 
 

 Based on the stream function assumption, continuity equation , is automatically 

satisfied  and no longer needed.  

 Next new  dependent and independent variables, f and η, respectively, are then 

defined as follows:  

 
 
 
 

 This introduction of new independent variable,η called similarity variable allows 
transformation of two partial differential equations (momentum and energy 
equations) into a single ordinary differential equation 

 Blasius reasoned that the nondimensional velocity profile u/u∞ should remain 

unchanged when plotted against the nondimensional distance y/δ, where δ is 

the thickness of the local velocity boundary layer at a given x 
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Hydrodynamic solution to the flat plate 

 The Blasius solution is termed a similarity solution, and η is a similarity variable. 
This terminology is used because, despite growth of the boundary layer with 

distance x from the leading edge, the velocity profile u/u∞ remains geometrically 
similar 
 
 
 

 Since it has been proved by Stokes earlier that boundary layer thickness δ is 

proportional to √ 
𝑣𝑥𝑢∞  it leads to expression for similarity variable η 

 

 

 

 

 As per definition of stream function the velocity components u and v are:  
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Hydrodynamic solution to the flat plate 

Velocity component v can be simplified as:  

By differentiating the velocity components, it may also be shown that: 

Substituting the above terms in momentum  equation : 
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Hydrodynamic solution to the flat plate 

Hence the modified momentum equation can be written as 

Hence the hydrodynamic boundary layer problem is reduced to one of solving a 
nonlinear, third-order ordinary differential equation. The appropriate boundary 
conditions are: 

In term of similarity variables the boundary conditions are: 

The solution to the differential equation, 

subject to the conditions above, may be 

obtained by a series expansion or by numerical 

integration 

Flat plate laminar 

boundary layer functions 
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Hydrodynamic solution to the flat plate 

 The boundary layer thickness increases with increasing kinematic viscosity  
ν and with increasing distance from the leading edge but decreases with 
increasing free stream velocity . Hence a large free stream velocity  will 
suppress the boundary layer and causes it to be thinner 

 The shear stress on the wall can be determined from 

its definition and the ∂u/ ∂y relation: 

Substituting the value of the second derivative of 

f at η = 0 from the table:  

Then the local skin friction coefficient becomes: 
Flat plate laminar 

boundary layer functions 



Solution to the thermal energy equation 

 From knowledge of conditions in the velocity boundary layer, the energy 

equation can now be solved 

 By introducing a dimensionless temperature, T* and assuming a similarity 

solution of the form: T* = T (η) 

T* ≡ [(T - Ts)/(T∞ - Ts)] 

 The energy equation which originally is a partial differential equation reduces to: 

 Note the dependence of the thermal solution on hydrodynamic conditions 

through appearance of the variable f in the above equation. The appropriate 

boundary conditions are: 



Solution to the thermal energy equation 

 Energy equation may be solved by numerical integration for different values of 

the Prandtl number; representative temperature distributions are shown below: 

Similarity solution for laminar flow over an isothermal plate. (a) The x- component of the velocity. (b) 

Temperature distributions for Pr = 0.6, 1, and 7 

 The temperature distribution is identical to the velocity distribution for Pr = 1. 

Thermal effects penetrate farther into the velocity boundary layer with 

decreasing Prandtl number and transcend the velocity boundary layer for Pr < 1 

 A practical consequence of this solution is that, for Pr ≥ 0.6, results for the 

surface temperature gradient dT*/dη @ η =0 may be correlated by the following 

relation 



Solution to the thermal energy equation 

The ratio of the velocity to thermal boundary layer thickness is 



Problem: Engine oil at 100°C and a velocity of 0.1 m/s flows over both surfaces of a 

1m-long flat plate maintained at 20°C. Determine a)The velocity and thermal 

boundary layer thicknesses at the trailing edge b) The local heat flux and surface 

shear stress at the trailing edge  



Solution: : Calculate the Reynolds number to determine nature of the flow 

The velocity and thermal boundary layers are given by expressions:  

The local and convective heat flux are given by:  

Contd---- 

At x = L the flow is laminar, hence boundary layer thickness can be calculated as:  



Also, the local shear stress is: 
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Part 6 

External flows – Convective heat transfer correlations for Cylinders and Spheres 



The cylinder in a cross flow 

 As shown in Fig. the free stream fluid is brought to rest at the forward stagnation 

point, with an accompanying rise in pressure 

 From this forward stagnation point, the pressure decreases with increasing x, the 

streamline coordinate, and the boundary layer develops under the influence of a 

favorable pressure gradient (dp/dx < 0) 

 The pressure will eventually reach a minimum, and toward the rear of the cylinder 

further boundary layer development occurs in the presence of an adverse pressure 

gradient (dp/dx > 0) 

 Unlike conditions for the flat plate in parallel flow, upstream velocity, V differ, with 

u∞ now depending on the distance x from the stagnation point 



The cylinder in a cross flow 

 From Euler’s equation for an Inviscid flow, u∞(x) must exhibit behavior opposite to 

that of p(x). That is, from u∞ = 0 at the stagnation point, the fluid accelerates 

because of the favorable pressure gradient (du∞/dx > 0 when dp/dx < 0), reaches a 

maximum velocity when dp/dx = 0, and decelerates because of the adverse 

pressure gradient (du∞/dx < 0) when dp/dx > 0) 

Boundary layer formation and separation on a circular cylinder in cross flow 

 As the fluid decelerates, the velocity gradient at the surface, ∂u/∂y at y=0, 

eventually becomes zero. At this location, termed the separation point, fluid near 

the surface lacks sufficient momentum to overcome the pressure gradient, and 

continued downstream movement is impossible 

 Since the oncoming fluid also precludes flow back upstream, boundary layer 

separation must occur. This is a condition for which the boundary layer detaches 

from the surface, and a wake is formed in the downstream region. Flow in this 

region is characterized by vortex formation and is highly irregular 



The cylinder in a cross flow 

 The occurrence of boundary layer transition, which depends on the Reynolds 

number, strongly influences the position of the separation point. For the circular 

cylinder the characteristic length is the diameter, and the Reynolds number is 

defined as: 

The effect of turbulence on separation 

 Since the momentum of fluid in a turbulent boundary layer is larger than in the 

laminar boundary layer, it is reasonable to expect transition to delay the 

occurrence of separation 

 If ReD ≤ 2 × 105, the boundary layer is laminar, and separation occurs at θ ≈ 80°). 

However, if ReD ≥ 2 × 105, boundary layer transition occurs, and separation is 

delayed to θ ≈ 140° 



The cylinder in a cross flow 

Drag coefficients for a smooth circular cylinder in cross flow and for a sphere. 

Boundary layer separation angles are for a cylinder 

 Boundary layer transition processes strongly influence the drag force, FD, acting on 

the cylinder.  This force has two components, one of which is due to the boundary 

layer surface shear stress ( friction drag). The other component is due to a 

pressure differential in the flow direction resulting from formation of the wake ( 

form, or pressure, drag). A dimensionless drag coefficient CD may be defined as 

Af is the cylinder frontal area (the area projected perpendicular to the free stream 

velocity) 

 The large reduction in CD that occurs for ReD ≥ 2 × 105 is due to boundary layer 

transition, which delays separation, thereby reducing the extent of the wake 

region and the magnitude of the form drag 



The cylinder in a cross flow – Convection heat transfer correlation 

Local Nusselt number for airflow normal to circular cylinder 

 Experimental results for the variation of the local Nusselt number with θ are shown 

in Fig. for the cylinder in a cross flow of air . Nusselt number strongly varies with 

boundary layer development on the surface 

 For ReD ≤ 105,starting at the stagnation point, Nuθ decreases with increasing θ as a 

result of laminar boundary layer development. However, a minimum is reached at θ 

≈ 80°, where separation occurs and Nuθ increases with θ due to mixing associated 

with vortex formation in the wake 

 For ReD ≥105, variation of Nusselt number is characterized by two minima. The 

increase in Nuθ  with increasing ReD is due to corresponding reduction in boundary 

layer thickness 



The cylinder in a cross flow – Correlation relations 

At the forward stagnation point for Pr ≥ 0.6, boundary layer analysis yields an 

expression: 

An empirical correlation due to Hilpert that has been modified to account for 

fluids of various Prandtl numbers for Pr ≥0.7 : The above equation is applicable 

for cylinders as well as non-circular cross sections. In this equation all the 

properties are evaluated at film temperature 



The cylinder in a cross flow – Correlation relations 

Other correlations have been suggested for the circular cylinder in cross flow 

where all properties are evaluated at T∞ except Prs which is evaluated at Ts. . If Pr 

≤ 10, n = 0.37, If Pr≥ 10, n= 0.36 



The cylinder in a cross flow – Correlation relations 

Churchill and Bernstein have proposed a single comprehensive equation 

that covers the entire range of ReD for which data are available, as well 

as a wide range of Pr. The equation is recommended for all ReD, Pr ≥ 0.2 

and has the form: 

Each correlation is reasonable over a certain range of conditions, but 

for most engineering calculations one should not expect accuracy to 

much better than 20%. 



Sphere – Correlation relations 

Boundary layer effects associated with flow over a sphere are much like those for 

the circular cylinder, with transition and separation playing prominent roles. All 

the properties except μs are evaluated at T∞ 

In the limit of very small Reynolds numbers (creeping flow), the coefficient is 

inversely proportional to the Reynolds number and the specific relation is 

termed Stokes law 

A special case of convection heat and mass transfer from spheres relates to 

transport from freely falling liquid drops is given by relation:  
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Part 7 

Internal flows – Concepts of hydrodynamic and thermal entry  lengths, Flow 

through pipes and ducts  and their  empirical relations 



Introduction- Internal flow 

 Most fluids, especially liquids, are transported in 

circular pipes. This is because pipes with a circular 

cross section can withstand large pressure differences 

between the inside and the outside without 

undergoing any distortion 

 Noncircular pipes are usually used in applications such 

as the heating and cooling systems of buildings where 

the pressure difference is relatively small 

 For a fixed surface area, the circular tube gives the 

most heat transfer for the least pressure drop, which 

explains the overwhelming popularity of circular 

tubes in heat transfer equipment 

 Frictional heating must be considered for flows that 

involve highly viscous fluids with large velocity 

gradients 

 In most practical applications, the flow of a fluid 

through a pipe or duct can be approximated to be 

one-dimensional, and thus the properties can be 

assumed to vary only in direction of flow 



Mean velocity in a circular tube 

 In external flow, the free-stream velocity served as a 

convenient reference velocity for use in the evaluation of 

the Reynolds number and the friction coefficient 

 In internal flow , the fluid velocity in a tube changes from 

zero at the surface because of the no-slip condition, to a 

maximum at the tube center. Therefore, it is convenient 

to represent average or mean velocity  m,. For 

incompressible flow  m is constant when cross sectional 

area is constant 

where ṁ is the mass flow rate,  ρis the density, Ac is the 

cross sectional area, and   (r, x) is the velocity profile. 

Then the mean velocity for incompressible flow in a 

circular tube of radius R can be expressed as: 



Mean temperature in a circular tube 

 When a fluid is heated or cooled as it flows through a 

tube, the temperature of the fluid at any cross section 

changes from Ts at the surface of the wall to some 

maximum (or minimum in the case of heating) at the tube 

center. Therefore it is convenient average or mean 

temperature Tm that remains uniform at a cross section  

 As per conservation of  energy principle, energy 

transported by the fluid through a cross section in actual 

flow must be equal to the energy that would be 

transported through the same cross section if the fluid 

were at a constant temperature Tm 

where Cp is the specific heat of the fluid. Then the mean 

temperature of the fluid with constant density and 

specific heat flowing in circular pipe of radius R is: 



Laminar and turbulent flow in the tubes 

 Most pipe flows encountered in practice are 

turbulent. Laminar flow is encountered when 

highly viscous fluids such as oils flow in small 

diameter tubes or narrow passages 

In Re calculation, m is the mean fluid velocity, 

D is the diameter of the tube, and ν= μ/ρ is the 

kinematic viscosity of the fluid 

 For flow through noncircular tubes, the 

Reynolds number as well as the Nusselt number 

and the friction factor are based on the 

hydraulic diameter Dh defined as: 

where Ac is the cross sectional area of the tube 

and p is its perimeter 

 Transition from laminar to turbulent flow also 

depends on the degree of disturbance of the 

flow by surface roughness, pipe vibrations, and 

the fluctuations in the flow 



Hydrodynamic entrance region 

 For a fluid entering circular tube at uniform velocity, the fluid particles in the layer in 

contact with the surface of the tube will come to a complete stop. Subsequently 

adjacent layers  will slow down as a result of friction 

 To make up for this velocity reduction, the velocity of the fluid at the midsection of 

the tube will have to increase to keep the mass flow rate through the tube constant. 

As a result, a velocity boundary layer develops along the tube 

 The thickness of this boundary layer increases in the flow direction until the 

boundary layer reaches the tube center and thus fills the entire tube  

 The region from the tube inlet to the point at which the boundary layer merges at 

the centerline is called the hydrodynamic entrance region, and the length of this 

region is called the hydrodynamic entry length Lh 

 The region beyond the entrance region in which the velocity profile is fully 

developed and remains unchanged is called the hydrodynamically fully developed 

region. Here the velocity profile is parabolic in laminar flow and flatter in turbulent 

flow 



Thermal entrance region 

 Consider a fluid at a uniform temperature entering a circular tube whose surface 

is maintained at a different temperature. The  fluid particles in the layer in 

contact with the surface of the tube will assume the surface temperature 

 Due to convective heat transfer in the tube, thickness of thermal boundary layer 

formed also increases in the flow direction until the boundary layer reaches the 

tube center and thus fills the entire tube 

 The region of flow over which the thermal boundary layer develops and reaches 

the tube center is called the thermal entrance region, and the length of this 

region is called the thermal entry length Lt 

 The region beyond the thermal entrance region in which the dimensionless 

temperature profile expressed as (Ts −T)/(Ts − Tm) remains unchanged is called 

the thermally fully developed region 



Characteristics of hydrodynamically and  thermally fully developed regions 

 The friction factor is related to the shear stress at the surface, which is related to the 

slope of the velocity profile at the surface. Since the velocity profile remains 

unchanged in fully developed region, friction factor remains unchanged  too. A 

similar argument can be given for heat transfer coefficient in fully developed  region 

 The derivate (Ts −T)/(Ts − Tm) with respect to r must also be independent of x  

Both the friction and convection coefficients remain constant in the fully 

developed region of a tube 



Characteristics of hydrodynamically and  thermally fully developed regions 

 Unlike the velocity profile, the temperature profile can be different at different 

cross sections of the tube in the developed region, and it usually is. However, 

the dimensionless temperature profile defined above remains unchanged in 

the thermally developed region when the temperature or heat flux at the tube 

surface remains constant 

 For fluids with Pr  ~ 1, such as gases, the two boundary layers essentially 

coincide with each other. For fluids with Pr >> 1, such as oils, the velocity 

boundary layer outgrows the thermal boundary layer. Hence hydrodynamic 

entry length is smaller than thermal entry length 



Characteristics of hydrodynamically and  thermally fully developed regions 

 Consider a fluid that is being heated (or 

cooled) in a tube as it flows through it. The 

friction factor and the heat transfer 

coefficient are highest at the tube inlet 

where the thickness of the boundary layers 

is zero, and decrease gradually to the fully 

developed values 

 Pressure drop and heat flux are higher in the 

entrance regions of a tube, and the effect of 

the entrance region is always to enhance the 

average friction and heat transfer 

coefficients for the entire tube 

 This enhancement effect can be significant 

for short tubes but negligible for long ones 



Magnitude of hydrodynamic and thermal entry lengths 

In laminar flow, the hydrodynamic and thermal entry lengths are approximately:  

In the limiting case of Re =  2300, the hydrodynamic entry length is 115D 

 In turbulent flow, the intense mixing during random fluctuations usually 

overshadows the effects of momentum and heat diffusion, and therefore the 

hydrodynamic and thermal entry lengths are of about the same size and 

independent of the Prandtl number.  

 Also, the friction factor and the heat transfer coefficient remain constant in 

fully developed laminar or turbulent flow since the velocity and normalized 

temperature profiles do not vary in the flow direction 

In practice, it is generally agreed that the entrance effects are confined to be:  



Variation of Nusselt number in a turbulent flow 

 The variation of local Nusselt number along a tube in turbulent flow for both 

uniform surface temperature and uniform surface heat flux is given below for 

the range of Reynolds numbers encountered in heat transfer equipment 

 The Nusselt numbers and thus the convection heat transfer coefficients are 

much higher in the entrance region 

 The Nusselt number reaches a constant value for x > 10D 

 The Nusselt numbers for the uniform surface temperature and uniform 

surface heat flux conditions are identical in the fully developed regions, and 

nearly identical in the entrance regions. Therefore, Nusselt number is 

insensitive to the type of thermal boundary condition 



General thermal analysis of heat transfer to a fluid flowing in a tube 

 The conservation of energy equation for the steady flow of a fluid in a tube is: 

where Ti and Te are the mean fluid temperatures at the inlet and exit of the 

tube, respectively, and 𝑄  is the rate of heat transfer to or from the fluid. The 

temperature of a fluid flowing in a tube remains constant in the absence of 

any energy interactions through the wall of the tube 

 The thermal conditions at the surface can usually be approximated with 

reasonable accuracy to be constant surface temperature (Ts = constant) or 

constant surface heat flux qs = constant 

 Constant temperature condition is realized when a phase change process such 

as boiling or condensation occurs at the outer surface of a tube. The constant 

surface heat flux condition is realized when the tube is subjected to radiation or 

electric resistance heating uniformly from all directions 



In the case of qs=  constant, the rate of heat  

transfer: 

The mean fluid temperature at the tube exit is: 

Mean fluid temperature increases linearly in 

the flow direction in the case of constant 

surface heat flux, since the surface area 

increases linearly in the flow direction 

In the fully developed region, the surface 

temperature Ts will also increase linearly in the 

flow direction since h is constant and thus Ts − Tm  

= constant 



The slope of the mean fluid temperature Tm on a T-x diagram can be 

determined by applying the steady-flow energy balance to a tube slice of 

thickness dx 

Also, the requirement that the dimensionless 

temperature profile remains unchanged in the fully 

developed region: 

For a  developed flow in a tube subjected to 

constant surface heat flux, the temperature 

gradient is  independent of x 

Hence for a circular tube:  



From Newton’s law of cooling, the rate of heat transfer to or from a fluid flowing in a 

tube: 

where h is the average convection heat transfer 

coefficient, As = πDL for a circular pipe of length 

L), and Tave is some appropriate average 

temperature difference between the fluid and 

the surface.  

Tave can be approximated by the arithmetic mean 

temperature difference Tam 

where Tb = (Ti + Te)/2 is the bulk mean fluid 

temperature, which is the arithmetic average of 

the mean fluid temperatures at the inlet and the 

exit of the tube. 



Consider the heating of a fluid in a tube of constant 

cross section whose inner surface is maintained at a 

constant temperature of Ts.. Mean temperature of 

the fluid Tm will increase in the flow direction as a 

result of heat transfer. The energy balance on a 

differential control volume shown in Fig:  

Since differential surface area is dAs = pdx, where 

p is the perimeter of the tube, and that dTm = 

−d(Ts − Tm), since Ts is constant, the relation above 

can be rearranged as 

Integrating from x = 0 (tube inlet where Tm = Ti) to 

x = L (tube exit where Tm = Te) 



 As = pL is the surface area of the tube and h is the constant average 

convection heat transfer coefficient: 

 This relation can also be used to determine 

the mean fluid temperature Tm(x) at any x 

by replacing As  = pL by px 

 Temperature difference between the fluid 

and the surface decays exponentially in the 

flow direction, and the rate of decay 

depends on the magnitude of the exponent 

hAx /𝑚 ·Cp, as shown in Fig. 

 hAx /m ·Cp is a dimensionless parameter 

and is termed as NTU (number of transfer 

units) and is a measure of effectiveness of 

heat transfer systems 

 NTU > 5 indicates the exit temperature of 

the fluid is almost equal to surface 

temperature 



But it is known that:  

Therefore heat rate in constant surface 

temperature condition can be expressed as:  

ΔTln is termed as logarithmic mean temperature difference and is obtained by 

tracing actual temperature profile of the fluid along the tube and is the exact 

representation of average temperature difference between surface and the fluid at 

inlet 



Laminar flow in the tubes 

 Consider steady laminar flow of an incompressible fluid 

with constant properties in the fully developed region of a 

straight circular tube 

 We obtain the momentum and energy equations by 

applying momentum and energy balances to a differential 

volume element, and acquire the velocity and 

temperature profiles by solving them 

 Velocity and temperature profiles will be further  used to 

obtain relations for the friction factor and the Nusselt 

number 

 In fully developed laminar flow, each fluid particle moves 

at a constant axial velocity along a streamline and the 

velocity profile V(r) remains unchanged in the flow 

direction 

Assumptions in the derivations: 

 There is no motion in the radial direction, and thus the velocity component v in the 

direction normal to flow is everywhere zero. There is no acceleration since the flow is 

steady 



Laminar flow in the tubes 

 Consider a ring-shaped differential volume element of radius r, 

thickness dr and length dx oriented coaxially with the tube, as 

shown in Fig. 

 The volume element involves only pressure and viscous effects, 

and thus the pressure and shear forces must balance each 

other. A force balance on the volume element in the flow 

direction gives : 

Dividing by 2πdrdx and rearranging: 

r 
𝑃𝑥+𝑑𝑥 −𝑃𝑥𝑑𝑥  + 

𝑟τ 𝑟+𝑑𝑟− 𝑟τ 𝑟  𝑑𝑟  =  0 

Taking the limit as dr, dx → 0 gives 

Substituting τ =   −μ(dV/dr) and rearranging the desired equation  

Contd----- 



Laminar flow in the tubes 

The above equality must hold for any value of r and x, and an equality of the 

form f(r) = g(x) can happen only if both f(r) and g(x) are constants. Thus we 

conclude that dP/dx  is constant 

The above equation can be solved by rearranging and integrating it twice to give: 

V(r) = 
𝑟24μ(

𝑑𝑃𝑑𝑥)+C1lnr+C2 

The velocity profile V(r) is obtained by applying the boundary conditions ∂V/∂r 

= 0 at r  = 0 (because of symmetry about the centerline) and  V= 0 at r  = R (the 

no-slip condition at the tube surface) 

Therefore, the velocity profile in fully developed laminar flow in a tube is 

parabolic with a maximum at the centerline and minimum at the tube surface 

Contd----- 



Laminar flow in the tubes 

The mean velocity is determined from its definition: 

The mathematical relation between V(r) and Vm can be established by: 

The maximum velocity occurs at the centerline, and is determined from the 

above equation by substituting r = 0 

Pressure Drop: 

__________________________________________________________________ 

We note that dP/dx  constant, and integrate it from 

x = 0 where the pressure is P1 to x = L where the 

pressure is P2 



Pressure Drop: 
Laminar flow in the tubes 

But Vm = − 
𝑅28μ (

𝑑𝑃𝑑𝑥) 
Substituting  −  Δ𝑃𝐿  for 

𝑑𝑃𝑑𝑥 in the above equation:  

In practice, it is found convenient to express the pressure drop for all types of internal 

flows (laminar or turbulent flows, circular or noncircular tubes, smooth or rough 

surfaces) by assuming: (1)the flow section is horizontal so that there are no 

hydrostatic or gravity effects, (2) the flow section does not involve any work devices 

such as a pump or a turbine since they change the fluid pressure, and (3) the cross 

sectional area of the flow section is constant and thus the mean flow velocity is 

constant 

where the dimensionless quantity f is the friction factor also 

called Darcy friction factor   

. 

For a circular tube subjected to laminar flow, friction factor is a function of Re 



Laminar flow in the tubes 

 Consider steady laminar flow of a fluid in a circular tube of 

radius R. The fluid properties ρ, k, and Cp are constant, and the 

work done by viscous stresses is negligible 

 The fluid flows along the x-axis with velocity, V. The flow is 

fully developed so that is independent of x and thus V= V (r) 

Assumptions in the derivation:  

 Energy is transferred by mass in the x-direction, and 

by conduction in the r-direction (heat conduction in 

the x-direction is assumed to be negligible) 

 The steady-flow energy balance for a cylindrical shell element 

of thickness dr and length dx can be expressed as: 

where 𝒎  = ρVAc=  ρV(2πrdr) 

Substituting and dividing by 2πrdrdx and rearranging gives: 



Laminar flow in the tubes 

By taking limits on L.H.S and R.H.S w.r.t dx, dr         0 gives 

But conduction heat transfer 𝑄  is given by 

Fourier’s law of heat conduction: 

The rate of net energy transfer to the control volume by mass flow is equal to 

the net rate of heat conduction in the radial direction 

Substituting and using α =  k/ρCp gives 

Contd---- 



Laminar flow in the tubes 

- Constant Surface Heat Flux condition 

For fully developed flow in a circular pipe subjected to constant surface heat flux: 

The governing differential equation for  temperature field in circular tube is:   

But the velocity at a radius and mean velocity are related by:  

Equation -i 

Equation -ii 

Equation -iii 

Substituting Eqn.iii and Eq.i in Eqn.ii gives :  

The above equation is a second order differential equation , the general solution is 

obtained by separating variables and integrating twice:  

Contd---- 



Laminar flow in the tubes 

- Constant Surface Heat Flux condition 

By integrating twice : 

𝒒𝒔 𝒌𝑹(𝒓𝟐 − 𝒓𝟒𝟒𝑹𝟐)+C1 lnr+C2 
T (r) = 

The above equation is subject to boundary conditions ,at r=0, 
𝜕𝑇𝜕𝑟 = 0 and at r=R, T = Ts 

But we know the man temperature  and mean velocity in a circular tube is given by:  

Substituting mean temperature and mean velocity in temperature field equation  we get:  



Laminar flow in the tubes 

- Constant Surface temperature condition 

 The solution procedure for constant surface temperature is more complex as it 

requires iterations, but the final Nusselt number relation obtained is equally 

simple as that of constant surface heat flux condition: 

 The thermal conductivity k for use in the Nu relations above should be 

evaluated at the bulk mean fluid temperature, which is the arithmetic average 

of the mean fluid temperatures at the inlet and the exit of the tube 

 For laminar flow, the effect of surface roughness on the friction factor and the 

heat transfer coefficient is negligible 





Convection correlations for developing laminar flow in entrance region 

 For a circular tube of length L subjected to constant surface temperature, the 

average Nusselt number for the thermal entrance region is:  

 Nusselt number is larger at the entrance region, and it approaches asymptotically 

to the fully developed value of 3.66 as L→ ∞ 

 When the difference between the surface and the fluid temperatures is large, it 

may be necessary to account for the variation of viscosity with temperature 

 The average Nusselt number for developing laminar flow in a circular tube in that 

case can be determined as: 

 All properties are evaluated at the bulk mean fluid temperature, except for μs, 

which is evaluated at the surface temperature 



Turbulent flow in the tubes 

 Turbulent flow is commonly utilized in practice because of the higher heat transfer 

coefficients associated with it. Most correlations for the friction and heat transfer 

coefficients in turbulent flow are based on experimental studies because of the 

difficulty in dealing with turbulent flow theoretically 

 For smooth tubes, the friction factor in turbulent flow can be determined from the 

explicit first Petukhov equation: 

 Once the friction factor is available, this equation can be used conveniently to 

evaluate the Nusselt number for both smooth and rough tubes 

 For fully developed turbulent flow in smooth tubes, a simple relation for the 

Nusselt number can be obtained by substituting the simple power law relation     

f  = 0.184 Re−0.2 for the friction factor in the above equation: 

Contd---- 



Turbulent flow in the tubes 

where n = 0.4 for heating and 0.3 for cooling of the fluid flowing through the 

tube. This equation is known as the Dittus–Boelter equation 

 The fluid properties are evaluated at the bulk mean fluid temperature Tb =(Ti + Te)/2 

 When the temperature difference between the fluid and the wall is very large, it 

may be necessary to use a correction factor to account for the different viscosities 

near the wall and at the tube center 

 Gnielinski’s equation should be preferred in calculations because it greatly  

eliminate error . Again properties should be evaluated at the bulk mean fluid 

temperature  

 The relations above are not very sensitive to the thermal conditions at the tube 

surfaces and can be used for both 𝑇 s=  constant and 𝑞 s = constant cases 



Turbulent flow in the tubes – Role of rough surfaces 

 Any irregularity or roughness on the surface disturbs the laminar sublayer, and 

affects the flow. Therefore, unlike laminar flow, the friction factor and the 

convection coefficient in turbulent flow are strong functions of surface 

roughness 

 The friction factor in fully developed turbulent flow depends on the Reynolds 

number and the relative roughness ε/D and is given by Colebrook  implicit 

equation: 



Turbulent flow in the tubes – Role of rough surfaces 

 Commercially available pipes differ from those used in 

the experiments in that the roughness of pipes in the 

market is not uniform, and it is difficult to give a precise 

description of it. 

 The relative roughness of pipes may increase with use 

as a result of corrosion, scale buildup, and 

precipitation. As a result, the friction factor may 

increase by a factor of 5 to 10 

 A simplified explicit equation for f is given by:  

 In turbulent flow, wall roughness increases the heat 

transfer coefficient h by a factor of 2 or more 



 The velocity and temperature profiles in turbulent flow are nearly straight lines in 

the core region, and any significant velocity and temperature gradients occur in the 

viscous sublayer 

 Despite the small thickness of laminar sublayer (usually much less than 1 percent of 

the pipe diameter), the characteristics of the flow in this layer are very important 

since they set the stage for flow in the rest of the pipe 

 Consequently, the turbulent flow relations given above for circular tubes can also be 

used for noncircular tubes with reasonable accuracy by replacing the diameter D in 

the evaluation of the Reynolds number by the hydraulic diameter, Dh 



 Some simple heat transfer equipment consist of two concentric tubes, and are called 

double-tube heat exchangers 

 In these devices, one fluid flows through the tube while the other flows through the 

annular space. The governing differential equations for both flows are identical 

 Consider a concentric annulus of inner diameter Di and outer diameter Do. The 

hydraulic diameter of annulus is: 



Nusselt number for fully developed 

laminar flow in an annulus with 

one surface isothermal and the 

other adiabatic 

 Annular flow is associated with two Nusselt 

numbers—Nui on the inner tube surface 

and Nuo on the outer tube surface—since it 

may involve heat transfer on both surfaces 

 The Nusselt numbers for fully developed 

laminar flow with one surface isothermal 

and the other adiabatic are given as:   

 For fully developed turbulent flow, the inner and outer convection coefficients are 

approximately equal to each other, and the tube annulus can be treated as a 

noncircular duct with a hydraulic diameter of Dh = Do − Di.  

 The Nusselt number in this case can be determined from a suitable turbulent flow 

relation such as the Gnielinski's equation 

 To improve the accuracy of Nusselt 

numbers obtained from these relations 

for annular flow, Petukhov and Roizen 

recommended correction  factors as:  
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Natural Convection - Introduction

The temperature of the air adjacent to the egg is higher, and thus its density is

lower, since at constant pressure the density of a gas is inversely proportional to its

temperature

The motion that results from the continual replacement of the heated air in the

vicinity of the egg by the cooler air nearby is called a natural convection current

Natural convection is just as effective in the heating of cold surfaces in a warmer

environment as it is in the cooling of hot surfaces in a cooler environment

In a gravitational field, there is a net force that pushes upward a light fluid placed

in a heavier fluid. This upward force is termed as buoyancy



Natural Convection – Importance of Buoyancy

Without buoyancy, heat transfer between a hot (or cold) surface and the fluid

surrounding it would be by conduction instead of by natural convection

In natural convection heat transfer studies, the primary

variable is temperature, and it is desirable to express the

net buoyancy force in terms of temperature differences

Volume expansion coefficient β, represents variation of

density with temperature at constant pressure

where ρ is the density and T is the temperature of the

quiescent fluid away from the surface

A large β value of for a fluid means a large change in density with temperature, and

that the product βΔT represents the fraction of volume change of a fluid that

corresponds to a temperature change ΔT at constant pressure



Natural Convection – Importance of Buoyancy

The larger the temperature difference between the fluid adjacent to a hot (or cold)

surface and the fluid away from it, the larger the buoyancy force and the stronger

the natural convection currents, and thus the higher the heat transfer rate

The magnitude of the natural convection heat transfer between a surface and a fluid

is directly related to the flow rate of the fluid. The flow rate in natural convection is

established by the dynamic balance of buoyancy and friction

Most heat transfer correlations in natural

convection are based on experimental

measurements using instrument Mach – Zehnder

interferometer which gives a plot of isotherms in the

vicinity of a surface

The friction force increases as more and more

solid surfaces are introduced, seriously disrupting

the fluid flow and heat transfer

Isotherms in natural convection over

a hot plate in air



Natural Convection – Equation of motion
Here  we derive the equation of motion that governs the natural convection flow in 

laminar boundary layer

Continuity equation in natural convection: 

Energy equation in natural convection: 

The conservation of mass and energy equations in natural

convection are same as that of forced convection.

However the momentum equation needs to be modified

to incorporate buoyancy

Consider a vertical hot flat plate immersed in a

quiescent fluid body. We assume the natural convection

flow to be steady, laminar, two-dimensional, and the

fluid to be Newtonian with constant properties

including density

Contd.---



Natural Convection – Equation of motion

The density difference ρ − ρ∞ is to be considered since it is

this density difference between the inside and the outside of

the boundary layer that gives rise to buoyancy force and

sustains flow. (This is known as the Boussinesq approximation.)

Gravity acts in the −x direction. As the flow is steady and

two-dimensional, the x- and y-components of velocity within

boundary layer are u = u(x, y) and v = v(x, y), respectively

Velocity and temperature profiles for natural convection

over a vertical hot plate shows fluid velocity is zero at the

outer edge of velocity boundary layer while temperature

gradually decreases to T∞

In case of cold surfaces, the shape of the velocity and

temperature profiles remains the same but their direction is

reversed



Natural Convection – Equation of motion derivation

Forces acting on a differential control

volume in the natural convection

boundary layer over a vertical flat plate

Consider a differential volume element of height dx, length

dy, and unit depth in the z-direction (normal to the paper)

Newton’s second law of motion for this control volume

can be expressed as:

The acceleration in the x-direction is obtained by taking 

the total differential of u(x, y) and  

The forces acting on the differential volume element

in the vertical direction are the pressure forces and

shear forces (the normal stresses on top and bottom

are small and are ignored

Contd.---

Eq.2

Eq.3

Eq.1



Natural Convection – Equation of motion derivation

Forces acting on a differential control

volume in the natural convection

boundary layer over a vertical flat plate

Contd.---

Eq.3

Since 

Substituting Eqs. 2 and 3 into Eq. 1 and dividing by ρ.

dx.  dy . 1 gives the conservation of momentum in the x-

direction as :

The x-momentum equation in the quiescent fluid

outside the boundary layer can be obtained from

the relation above as a special case by setting u = 0.

Eq.4

Eq.5

Velocity component in y direction, the force balance in this direction gives:

Eq.6



Natural Convection – Equation of motion derivation

Eq.6

The last term on R.H.S represents the net upward force per unit volume of the fluid

(the difference between the buoyant force and the fluid weight). This is the force that

initiates and sustains convection currents.

But we know that Eq.7

On substituting Eq.7 in R.H.S of Eq.6 and dividing entire Eq.6 by ρ we get:

Eq.8

The set of three partial differential equations (the continuity, momentum, and the

energy equations) that govern natural convection flow over vertical isothermal

plates can be reduced to a set of two ordinary nonlinear differential equations by

the introduction of a similarity variable



GRASHOF NUMBER

The governing equations of natural convection and the boundary conditions can be

nondimensionalized by dividing all dependent and independent variables by

suitable constant quantities: all lengths by a characteristic length Lc , all velocities

at arbitrary velocity

Eq.9

The non dimensional form of  free convection 

equation is given by:

The dimensionless parameter in the brackets represents the

natural convection effects, and is called the Grashof number

GrL. It represents the ratio of buoyancy force to viscous

forces acting on the fluid.



GRASHOF NUMBER

The role played by the Reynolds number in forced convection is played by

the Grashof number in natural convection and it provides a criterion to

determine whether a flow is laminar or turbulent in natural convection

For vertical plates, for example, the critical Grashof number is observed to be about 109

When a surface is subjected to external flow, the problem involves both natural and

forced convection. The relative importance of each mode of heat transfer is

determined by the value of the coefficient GrL/Re2
L

Natural convection effects are negligible if GrL/Re2
L << 1

Forced convection effects are negligible if GrL/Re2
L >> 1

Both free and forced convection effects are dominant if GrL/Re2
L ~~ 1



Natural Convection over surfaces
Natural convection heat transfer on a surface depends on the geometry of the

surface as well as its orientation, variation of temperature on the surface, thermo

physical properties of the fluid

The complexities of fluid motion make it very difficult to obtain simple analytical

relations for heat transfer by solving the governing equations of motion and energy

With the exception of some simple cases, heat transfer relations in natural

convection are based on experimental studies

Where Rayleigh number 

is the product of Grashof 

and Prandtl numbers 

The simple empirical correlations for the average Nusselt number, Nu in natural

convection are of the form:

The values of the constants C and n depend on the geometry of the surface and the

flow regime, which is characterized by the range of the Rayleigh number



Empirical correlations for the average Nusselt number for natural convection over surfaces

Contd.---

Heat transfer on an inclined plate is complex due to

resolution of forces on an inclined plane which are

bound to alter boundary layer formation

Nusselt number can be determined from the

vertical plate relations provided that g in the

Rayleigh number relation is replaced by g cosϑ
for ϑ < 60



Empirical correlations for the average Nusselt number for natural convection over surfaces

Contd.---

The rate of heat transfer to or from a horizontal

surface depends on whether the surface is facing

upward or downward

The characteristic length for horizontal surfaces is

calculated from:



Empirical correlations for the average Nusselt number for natural convection over surfaces

The boundary layer over a hot horizontal cylinder start to develop at the

bottom, increasing in thickness along the circumference, and forming a

rising. Local Nu is highest at the bottom and lowest at the top of cylinder.

The opposite is true for cold horizontal cylinder in the warmer medium
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Boiling - Introduction
Boiling is a liquid-to-vapor phase change process just like evaporation, but there are

significant differences between the two

Evaporation occurs at the liquid–vapor interface when the vapor pressure is less

than the saturation pressure of the liquid at a given temperature and does not

involve bubble formation or bubble motion

Boiling, occurs at the solid–liquid interface when a liquid is brought into contact

with a surface maintained at a temperature Ts sufficiently above the saturation

temperature Tsat of the liquid. Boiling is a complicated phenomenon because of the

large number of variables involved in the process and the complex fluid motion

patterns caused by the bubble formation and growth

Boiling heat flux from a solid surface to the fluid is expressed as:



Boiling - Introduction
hfg represents the energy absorbed as a unit mass of liquid vaporizes at a specified

temperature or pressure and is the primary quantity of energy during boiling heat

transfer

Bubbles owe their existence to the surface-tension at the liquid–vapor interface due

to the attraction force on molecules at the interface toward the liquid phase

The boiling processes in practice do not occur under equilibrium conditions, and the

bubbles are generally not in thermodynamic equilibrium with the surrounding liquid

The pressure difference between the liquid and the vapor is balanced by the surface

tension at the interface

The temperature difference between the vapor in a bubble and the surrounding liquid

is the driving force for heat transfer between the two phases



Boiling - Classification
Boiling is classified as pool boiling or flow boiling, depending on the presence of

bulk fluid motion

Boiling is called pool boiling in the absence of bulk fluid flow and flow boiling (or

forced convection boiling) in the presence of it

In pool boiling any motion of fluid is due to natural convection currents while in flow

boiling fluid is forced by means of an external device like pump

Pool and flow boiling are further classified as subcooled boiling or saturated boiling,

depending on the bulk liquid temperature.

Boiling is said to be subcooled (or local) when the temperature of the main body of

the liquid is below the saturation temperature Tsat and saturated (or bulk) when the

temperature of the liquid is equal to Tsat



Boiling regimes and boiling curve

Typical boiling curve of water at 1 atm pressure

Boiling takes different forms, depending on the value of the excess temperature ΔTexcess

The general shape of the boiling curve remains the same for different fluids

The specific shape of the curve depends on the fluid–heating surface material

combination and the fluid pressure, but it is practically independent of the geometry of

the heating surface

Contd.-----



Boiling regimes and boiling curve
Natural Convection Boiling (to Point A on the Boiling Curve)

A pure substance at a specified pressure starts boiling when it reaches the

saturation temperature at that pressure. But in practice bubble formation will happen

only after a certain superheat is provided

The fluid motion in this mode of boiling is governed by natural convection currents, 

and heat transfer from the heating surface to the fluid is by natural convection

Nucleate Boiling (between Points A and C)

The first bubbles start forming at point A of the boiling curve at various

preferential sites on the heating surface. The bubbles form at an increasing number

of nucleation sites as we move along the boiling curve toward point C

In region A–B, isolated bubbles are formed at various preferential nucleation sites

on the heated surface. But these bubbles are dissipated in the liquid shortly after

they separate from the surface

In region B–C, the heater temperature is further increased, bubbles form at such

great rates at such a large number of nucleation sites that they form numerous

continuous columns of vapor in the liquid

Contd.-----



Boiling regimes and boiling curve

At large values of ΔTexcess, the rate of evaporation at the heater surface reaches such

high values that a large fraction of the heater surface is covered by bubbles, making it

difficult for the liquid to reach the heater surface and wet it

Nucleate boiling is the most desirable boiling regime in practice because high heat

transfer rates can be achieved in this regime with relatively small values of ΔTexcess,

typically under 30°C for water

The heat flux increases at a lower rate with increasing ΔTexcess, and reaches a

maximum at point C. The heat flux at this point is called critical heat flux ,

Transition Boiling (between Points C and D on the Boiling Curve)

As the ΔTexcess is increased past point C, the heat flux decreases. A large fraction of

the heater surface is covered by a vapor film, which acts as an insulation due to the

low thermal conductivity of the vapor relative to that of the liquid

Operation in the transition boiling regime, which is also called the unstable film

boiling regime, is avoided in practice

Contd.-----



Boiling regimes and boiling curve
Film Boiling (beyond Point D)

In this region the heater surface is completely covered by a continuous stable vapor

film. The presence of a vapor film between the heater surface and the liquid is

responsible for the low heat transfer rates in the film boiling region

The heat transfer rate increases with increasing excess temperature as a result of

heat transfer from the heated surface to the liquid through the vapor film by radiation,

which becomes significant at high temperatures

Point C on the boiling curve is also called the

burnout point, and the heat flux at this point

the burnout heat flux



a) b)

c)

(a) nucleate boiling, (b) transition boiling, and (c) film boiling

Various boiling regimes during boiling of methanol on a horizontal

1-cm-diameter steam-heated copper tube



Heat transfer correlations in Pool boiling
Boiling regimes discussed above differ considerably in their character, and thus

different heat transfer relations need to be used for different boiling regimes

In the natural convection boiling regime, boiling is governed by natural convection

currents, and heat transfer rates in this case can be determined accurately using natural

convection relations

Nucleate Boiling

In the nucleate boiling regime, the rate of heat transfer strongly depends on the nature

of nucleation (the number of active nucleation sites on the surface, the rate of bubble

formation at each site, etc.), which is difficult to predict. The type and condition of

heated surface also affect heat transfer

Empirical correlation proposed by Rohsenow  is widely used in nucleation boiling regime:

Contd.-----



Contd.-----

Heat transfer correlations in Pool boiling

Csf values for various fluid–surface combinations can be used for any geometry. It is

found that the rate of heat transfer during nucleate boiling is essentially

independent of the geometry and orientation of the heated surface



Heat transfer correlations in Pool boiling
Peak heat flux:

In the design of boiling heat transfer equipment, it is extremely important for the

designer to have a knowledge of the maximum heat flux in order to avoid the danger of

burnout. The maximum (or critical) heat flux in nucleate pool boiling was determined

theoretically

ρv increases but and hfg decrease with increasing pressure, and thus the change in

q max with pressure depends on which effect dominates

Contd.-----

is to be calculated for estimating Ccr



Heat transfer correlations in Pool boiling
Minimum Heat Flux

Minimum heat flux, which occurs at the Leidenfrost point, is of practical interest

since it represents the lower limit for the heat flux in the film boiling regime

Film Boiling

The heat flux for film boiling on a horizontal

cylinder or sphere of diameter D is given by:

kv is the thermal conductivity of the vapor in

W/m · °C

Vapor properties are evaluated at the film temperature, given as Tf = (Ts + Tsat)/2, the

average temperature of the vapor film. The liquid properties and hfg are to be evaluated

at the saturation temperature at the specified pressure

Contd.-----



Heat transfer correlations in Pool boiling
At high surface temperatures (typically above 300°C), heat transfer across the

vapor film by radiation becomes significant and needs to be considered

Treating the vapor film as a transparent medium sandwiched between two

large parallel plates and approximating the liquid as a blackbody, radiation heat

transfer can be determined from:

In case of film boiling, radiation and convection mechanisms adversely affect 

each other:  

If

Rough surfaces enhances nucleation sites and increases boiling heat transfer
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Condensation - Introduction
Condensation occurs when the temperature of a vapor is reduced below its

saturation temperature Tsat. It can also occur on the free surface of a liquid or a gas

when the liquid or the gas to which the vapor is exposed is below Tsat

In film condensation, the condensate wets the surface and forms a liquid film on

the surface that slides down under the influence of gravity

In dropwise condensation, the condensed vapor forms droplets on the surface

instead of a continuous film, and the surface is covered by countless droplets of

varying diameters

Heat transfer rates are more than 10 times larger than those associated with film

condensation can be achieved with dropwise condensation



Film condensation on vertical  plate
The thickness of the film increases in the flow

direction x because of continued condensation at

the liquid–vapor interface

hfg (the latent heat of vaporization) is released

during condensation and is transferred through the

film to the plate surface at temperature Ts

Velocity of the condensate at the wall is zero

because of the “no-slip” condition and reaches a

maximum at the liquid–vapor interface

The temperature of the condensate is Tsat at the

interface and decreases gradually to Ts at the wall

Heat transfer in condensation depends on

whether the condensate flow is laminar or

turbulent



Reynolds number – flow regime for condensation

Dh = 4Ac /p = 4δ =  hydraulic diameter of the condensate flow

p = wetted perimeter of the condensate

Ac =  p= wetted perimeter X film thickness, m2

ρl =  density of the liquid, kg/m3

μl =  viscosity of the liquid, kg/m · s

Eq.1



Flow regime in condensation

If the condensate is cooled from superheated vapor state at Tv to Ts then

obviously heat transfer will be more than hfg and is given by:

Rate of heat transfer can be expressed as:

The temperature of the liquid film varies

from Tsat on the liquid–vapor interface to Ts at

the wall surface. Properties of the liquid

should be evaluated at the film temperature Tf

= (Tsat + Ts)/2,

Eq.2

Eq.3

By substituting Eq.2 in Eq.1

hfg, should be evaluated at Tsat since it is not

affected by the subcooling of the liquid

The flow of liquid film exhibits different regimes, depending on the value of the

Reynolds number



Nusselt theory on film condensation

Consider a vertical plate of height L and width b maintained at a

constant temperature Ts that is exposed to vapor at the

saturation temperature Tsat , Ts <  Tsat

Assumptions  in the derivation

Plate and the vapor are maintained at constant

temperatures of Ts and Tsat, respectively, and the

temperature across the liquid film varies linearly

Heat transfer across the liquid film is by pure

conduction

The velocity of the vapor is low (or zero) so

that it exerts no drag on the condensate (no

viscous shear on the liquid–vapor interface)

The flow of the condensate is laminar and

the properties of the liquid are constant

The acceleration of the condensate layer is

negligible

Contd.---



Nusselt theory on film condensation

Contd.---

since the acceleration of the fluid is zero

Eq.4

Cancelling (bdx) throughout Eq.4 gives

Integrating from y = 0 where u = 0 (because of

the no-slip boundary condition) to y = y where

u = u(y) gives:

Eq.5



Nusselt theory on film condensation

Contd.---

The mass flow rate of the condensate at a location x,

where the boundary layer thickness δ is:

Substituting the u(y) relation from Eq.5 in Eq.6 

Eq.6

whose derivative with respect to x is:

Eq.7

Eq.8

which represents the rate of condensation of

vapor over a vertical distance dx. The rate of

heat transfer from the vapor to the plate

through the liquid film is simply equal to the

heat released as the vapor is condensed



Nusselt theory on film condensation

The rate of heat transfer from the vapor to the plate

through the liquid film is simply equal to the heat

released as the vapor is condensed is:

Eq.9

Eq.10

Equating Eq.8 and Eq.9

Contd.---



Nusselt theory on film condensation

Integrating from x = 0 where δ = 0 (the top of

the plate) to x = x where δ= δ(x), the liquid

film thickness at any location x is:

Contd.---

Eq.11

Eq.12

The heat transfer rate from the vapor to the

plate at a location x is:



Nusselt theory on film condensation

Inserting Eq.12 in Eq.11 the local heat transfer coefficient hx is 

The average heat transfer coefficient over the entire plate is determined to be:

The above expression does not take into account the effects of the

nonlinear temperature profile in the liquid film and the cooling of the liquid

below the saturation temperature. Both these effects can be accounted by

replacing hfg with h*fg

Eq.13

Eq.14



Other correlations for Condensation heat transfer

Wavy laminar flow on vertical plates:

Turbulent flow on vertical plates:

Heat transfer coefficient hvert in terms of Re by substituting Eq.7 in Eq.1:



Correlations for Condensation heat transfer for other geometries

Eq.5

The above equation developed for vertical plates can also

be used for laminar film condensation on the upper

surfaces of plates that are inclined by an angle from the

vertical, by replacing g in that equation by g cosϑ

Inclined plates:

Vertical tubes:

The above equation for vertical plates can also be used to calculate the average heat

transfer coefficient for laminar film condensation on the outer surfaces of vertical tubes

provided that the tube diameter is large relative to the thickness of the liquid film

Eq.14

Contd.---



Correlations for Condensation heat transfer for other geometries

Horizontal tubes and spheres:

Nusselt’s analysis of film condensation on vertical plates can also be extended to

horizontal tubes and spheres

Eq.15

The average heat transfer coefficient for film condensation on the outer surfaces of a

horizontal tube is determined to be:

D is the diameter of the horizontal tube. Eq.15 can easily be modified for a sphere

by replacing the constant 0.729 by 0.815

A comparison of the heat transfer coefficient relations for a vertical tube of height

L and a horizontal tube of diameter D:

it is common practice to place the tubes in a condenser horizontally to maximize the

condensation heat transfer coefficient on the outer surfaces of the tubes

Contd.---



Other factors affecting heat transfer in film condensation

Effect of Vapor Velocity

When the vapor velocity is high, the vapor will “pull” the liquid at the interface along

since the vapor velocity at the interface must drop to the value of the liquid velocity

If the vapor flows downward this additional force will increase the average velocity

of the liquid and thus decrease the film thickness. This, in turn, will decrease the

thermal resistance of the liquid film and thus increase heat transfer. Upward vapor

flow has opposite effects

Experimental studies show that the presence of

noncondensable gases in the vapor has a detrimental effect on

condensation heat transfer

Presence of Noncondensable Gases in Condensers

Gas layer acts as a barrier between the vapor and the surface,

and makes it difficult for the vapor to reach the surface and

hence vapor has to diffuse first through noncondensable gas

before reaching the surface

Heat transfer in the presence of a noncondensable gas

strongly depends on the nature of the vapor flow and the flow

velocity



Correlations for Condensation heat transfer for other geometries

Film condensation inside Horizontal tubes :

Most condensation processes encountered in refrigeration and air-conditioning

applications, however, involve condensation on the inner surfaces of horizontal or

vertical tubes

Heat transfer analysis of condensation inside tubes is complicated by the fact that it is

strongly influenced by the vapor velocity and the rate of liquid accumulation on the

walls of the tubes. The numerical expression for low vapor velocities is:

Eq.16

Reynolds number of the vapor is to be evaluated at the tube inlet conditions using

the internal tube diameter as the characteristic length



Dropwise Condensation

Dropwise condensation, characterized by countless droplets of varying diameters

on the condensing surface instead of a continuous liquid film, is one of the most

effective mechanisms of heat transfer, and extremely large heat transfer coefficients

can be achieved with this mechanism

Small droplets that form at the nucleation sites on the surface grow as a result of

continued condensation, coalesce into large droplets, and slide down when they

reach a certain size, clearing the surface and exposing it to vapor

Dropwise condensation of steam on a vertical surface

There is no liquid film in this case to resist heat transfer. As a result, with dropwise

condensation, heat transfer coefficients can be achieved that are more than 10

times larger than those associated with film condensation

Contd.---



Dropwise Condensation

The challenge in dropwise condensation is not to achieve it, but rather, to sustain it 

for prolonged periods of time

Dropwise condensation is achieved by adding a promoting chemical into the

vapor, treating the surface with a promoter chemical, or coating the surface with a

polymer such as Teflon or a noble metal

Promoters used include various waxes and fatty acids such as oleic, stearic, and

linoic acids

High heat transfer coefficients achievable with dropwise condensation are of little

significance if the material of the condensing surface is not a good conductor like

copper or if the thermal resistance on the other side of the surface is too large

Heat transfer correlations for dropwise condensation of steam on copper surfaces: 
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Heat exchangers – classification  and overall heat transfer coefficient  



What is heat exchanger? 

 Heat exchangers are devices that facilitate the exchange of heat between two fluids 

that are at different temperatures while keeping them from mixing with each other 

A gas-to-liquid compact heat exchanger for a residential air-conditioning system 

 Heat exchangers are commonly used in practice in a wide range of applications, 

from heating and air-conditioning systems in a household, to chemical processing 

and power production in large plants 

 Heat transfer in a heat exchanger usually involves convection in each fluid and 

conduction through the wall separating the two fluids 

 Heat exchangers are manufactured in a variety of types due to practical application 

and therefore there are various classification of heat exchangers 



Classification of heat exchangers 
 The simplest type of heat exchanger consists of two concentric pipes of 

different diameters, as shown in Fig. called the double-pipe heat exchanger 

 Two types of flow arrangement are possible in a double-pipe heat exchanger. 

In parallel flow, both the hot and cold fluids enter the heat exchanger at the 

same end and move in the same direction 

 In counter flow, the hot and cold fluids enter the heat exchanger at opposite 

ends and flow in opposite directions 



Classification of heat exchangers 

 Heat exchanger, which is specifically designed to realize a large heat transfer 

surface area per unit volume, is the compact heat exchanger 

A gas-to-liquid compact heat exchanger for a residential air-conditioning system 

 The large surface area in compact heat exchangers is obtained by attaching 

closely spaced thin plate or corrugated fins to the walls separating the two fluids 

 Compact heat exchangers are commonly used in gas-to-gas and gas-to liquid (or 

liquid-to-gas) heat exchangers to counteract the low heat transfer coefficient 

associated with gas flow with increased surface area 

 The ratio of the heat transfer surface area of a heat exchanger to its volume is 

called the area density . A heat exchanger with   700 m2/m3 is classified as being 

compact 



Classification of heat exchangers 
 In compact heat exchangers, the two fluids usually move perpendicular to each 

other, and such flow configuration is called cross-flow. The cross-flow is further 

classified as unmixed and mixed flow, depending on the flow configuration  

 In (a) the cross-flow is said to be unmixed since the plate fins force the fluid to flow 

through a particular interfin spacing and prevent it from moving in the transverse 

direction (i.e., parallel to the tubes). The cross-flow in (b) is said to be mixed since 

the fluid now is free to move in the transverse direction 

 The presence of mixing in the fluid can have a significant effect on the heat transfer 

characteristics of the heat exchanger 



Compact heat exchanger configurations 

Compact heat exchanger cores. (a) Fin–tube (flat tubes, continuous plate fins). (b) Fin–tube (circular 

tubes, continuous plate fins). (c) Fin–tube (circular tubes, circular fins). (d) Plate–fin (single pass). (e) 

Plate–fin (multipass) 



Shell and tube heat exchanger 
 The most common type of heat exchanger in industrial applications is the shell-

and-tube heat exchanger, shown in Fig. Shell-and-tube heat exchangers contain a 

large number of tubes (sometimes several hundred) packed in a shell with their 

axes parallel to that of the shell 

 Baffles are commonly placed in the shell to force the shell-side fluid to flow 

across the shell to enhance heat transfer and to maintain uniform spacing 

between the tube 

 Shell and tube heat exchangers are not suitable for use in automotive and 

aircraft applications because of their relatively large size and weight 

 Shell-and-tube heat exchanger open to some large flow areas called headers at 

both ends of the shell, where the tube-side fluid accumulates before entering 

the tubes and after leaving them 



Shell and tube heat exchanger 

 Heat exchangers in which all the tubes make one U-turn in the shell, for 

example, are called one-shell-pass and two tube- passes heat exchangers 

 Heat exchanger that involves two passes in the shell and four passes in the 

tubes is called a two-shell-passes and four-tube-passes heat exchanger 



Overall heat transfer coefficient 

 In a heat exchanger, heat is first transferred from the 

hot fluid to the wall by convection, through the wall 

by conduction, and from the wall to the cold fluid 

again by convection. Any radiation effects are usually 

included in the convection heat transfer coefficients 

 As shown in Fig. the subscripts i and o represent the 

inner and outer surfaces of the heat exchanger. 

  For a double-pipe heat exchanger, we have Ai = πDiL 

and Ao = πDoL, and the thermal resistance of the wall: 

where k is the thermal conductivity of the wall material and L 

is the length of the tube. Then the total thermal resistance 



Overall heat transfer coefficient 

 It is convenient to combine all the thermal resistances in the path of heat flow 

from the hot fluid to the cold one into a single resistance R 

where U is the overall heat transfer coefficient, whose unit is W/m2 · °C, which is 

identical to the unit of the ordinary convection coefficient h 

 Overall heat transfer coefficient U of a heat exchanger is meaningless unless the 

area on which it is based is specified 

 When the wall thickness of the tube is small and the thermal conductivity of the 

tube material is high, as is usually the case, the thermal resistance of the tube is 

negligible (Rwall ~~ 0) and the inner and outer surfaces of the tube are almost 

identical (Ai  = Ao = As) 



Overall heat transfer coefficient 

where U  = Ui   =  Uo 

When one of the convection coefficients is much smaller than the other (say, hi  << 

ho), we have 1/hi >> 1/ho, and thus U ~~ hi. Therefore, the smaller heat transfer 

coefficient creates a bottleneck on the path of heat flow and seriously impedes 

heat transfer 



Overall heat transfer coefficient 

 When the tube is finned on one side to enhance heat transfer, the total heat transfer 

surface area on the finned side becomes 

 For short fins of high thermal conductivity, we can use this total area in the 

convection resistance relation Rconv = 1/hAs since the fins in this case will be very 

nearly isothermal 

 If the fin is not isothermal, the effective surface area can be determined by :   

where ηfin is the fin efficiency. This way, the temperature drop along the fins is 

accounted for. Note that  ηfin  = 1 for isothermal fins 



Fouling in heat exchangers 

Image courtesy : Google 



Fouling factor 

 The performance of heat exchangers usually deteriorates with time as a result of 

accumulation of deposits on heat transfer surfaces. 

 The layer of deposits represents additional resistance to heat transfer and causes 

the rate of heat transfer in a heat exchanger to decrease 

 The net effect of these accumulations on heat transfer is represented by a 

fouling factor Rf , which is a measure of the thermal resistance introduced by 

fouling 

Fouling in heat exchangers occurs by following factors:  

 

 Precipitation of solid deposits in a fluid on heat transfer surfaces 

 Corrosion and other chemical fouling 

 Biological fouling 

  
 The fouling factor is obviously zero for a new heat exchanger and increases with 

time as the solid deposits build up on the heat exchanger surface 

Fouling increases with increasing temperature and decreasing velocity 



Fouling factor 
For an unfinned shell-and-tube heat exchanger the overall heat transfer coefficient 

expression gets modified by considering internal and external fouling factors: 

Representative fouling 

factors (thermal resistance due 

to fouling for a unit surface area) 

With inclusion of surface fouling and fin (extended 

surface) effects, the overall heat transfer coefficient is 

further modified as below:  

In the above expression c and h refers to 

cold and hot side of heat exchanger 

respectively and ηo is the overall surface 

efficiency or temperature effectiveness of a 

finned surface 



Fouling factor 

The quantity ηo in the above equation is the overall surface efficiency or 

temperature effectiveness of a finned surface. It is defined such that, for the hot 

or cold surface without fouling, the heat transfer rate is 

where Tb is the base surface temperature and A is the total (fin plus exposed 

base) surface area 

where Af is the entire fin surface area and ηf is the efficiency of a single fin. the 

ratio of fin surface area to the total surface area has been expressed as Af /A 

If a straight or pin fin of length L is used and an adiabatic tip is assumed: 

h should be replaced by below expression if fouling is considered:  



Analysis of heat exchangers – general assumptions 

 An engineer often lands in a position to select a heat exchanger that will 

achieve a specified temperature change in a fluid stream of known mass flow 

rate, or to predict the outlet temperatures of the hot and cold fluid streams in a 

specified heat exchanger 

 Log mean temperature difference (or LMTD) method is best suited for the first 

task viz. quantifying temperature changes in a fluid stream of known mass flow 

rate 

 Effectiveness–NTU method is suited for predicting outlet temperatures of hot 

and cold fluid streams 

 Heat exchangers are steady flow devices, hence the mass flow rate of each fluid 

remains constant, and the fluid properties such as temperature and velocity at 

any inlet or outlet remain the same 

 The fluid streams experience little or no change in their velocities and 

elevations, and thus the kinetic and potential energy changes are negligible. 

Within a particular temperature range, specific heat is regarded constant 

 Axial heat conduction along the tube is usually insignificant and can be 

considered negligible and heat exchanger is insulated 



Analysis of heat exchangers – general assumptions 
 The first law of thermodynamics requires that the rate of heat transfer from the 

hot fluid be equal to the rate of heat transfer to the cold one: 

where the subscripts c and h stand for cold and hot fluids, respectively 

 Heat transfer rate 𝑄  is taken to be a positive quantity, and its direction is 

understood to be from the hot fluid to the cold one in accordance with the 

second law of thermodynamics 

 The product of the mass flow rate and the specific heat of a fluid is called heat 

capacity 

In a heat exchanger, the fluid with a large heat capacity rate will experience a small 

temperature change, and the fluid with a small heat capacity rate will experience a 

large temperature change. Doubling the mass flow rate of a fluid while leaving 

everything else unchanged will halve the temperature change of that fluid 



Analysis of heat exchangers – general assumptions 

The only time the temperature rise of a 

cold fluid is equal to the temperature  

drop of the hot fluid is when the heat 

capacity rates of the two fluids are 

equal to each other 



Analysis of heat exchangers – general assumptions 

 One of the fluids in a condenser or a boiler 

undergoes a phase-change process, and the rate 

of heat transfer is expressed as: 

where 𝑚   is the rate of evaporation or 

condensation of the fluid and hfg is the 

enthalpy of vaporization of the fluid at the 

specified temperature or pressure 

C= 𝑚  Cp →∞  when T → 0, so that the heat 

transfer rate Q =  𝑚  Cp ΔT is a finite quantity 

during phase change process 

 The rate of heat transfer in a heat exchanger can 

also be expressed in an analogous manner to 

Newton’s law of cooling as: 

where U is the overall heat transfer coefficient, As 

is the heat transfer area, and ΔTm is an 

appropriate average temperature difference 

between the two fluids 
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Log Mean Temperature Difference  method (LMTD)

 The rate of heat transfer in a heat exchanger can be expressed in a manner that is

analogous to Newton’s law of cooling

 In order to develop a relation for the equivalent

average temperature difference (ΔTm) between

the two fluids, consider the parallel-flow double-

pipe heat exchanger shown

 The temperature difference ΔT between the hot

and cold fluids is large at the inlet of the heat

exchanger but decreases exponentially toward

the outlet

 Assuming the outer surface of heat exchanger to

be insulated and disregarding changes in

potential and kinetic energies, an energy

balance on fluid for a differential section of heat

exchanger can be expressed



Log Mean Temperature Difference  method (LMTD)

 An energy balance on each fluid in a differential

section of the heat exchanger is:

 The rate of heat loss from the hot fluid at any

section of a heat exchanger is equal to the rate

of heat gain by the cold fluid in that section

 The rate of heat transfer in the differential

section of the heat exchanger is:



Log Mean Temperature Difference  method (LMTD)

 The rate of heat transfer in the differential

section of the heat exchanger is:

Eq.1

Eq.2

On substitution of Eq.2 in Eq.1

 Integrating from the inlet of the heat exchanger 

to its outlet

But from first law of thermodynamics it is known that:

Eq.4

Eq.3

Contd---



Log Mean Temperature Difference  method (LMTD)
On substitution of Eq.4 in right hand side of Eq.3 and further simplification gives

where ΔTlm is given by:

 ΔTlm is the log mean temperature difference,

which is the suitable form of the average

temperature difference for use in the analysis of

heat exchangers

 ΔT1 and ΔT2 represents the temperature difference

between two fluids at inlet and outlet of a heat

exchanger

 ΔTlm is obtained by tracing the actual temperature

profile of the fluids along the heat exchanger and is

an exact representation of the average

temperature difference between the hot and cold

fluids. ΔTlm truly represents the exponential decay

of local temperature difference

 ΔTlm < ΔTam. Therefore ΔTam will overestimate the

range of heat transfer



LMTD – Counter flow heat exchangers

 Hot and cold fluids enter the heat exchanger

from opposite ends, and the outlet temperature

of the cold fluid in this case may exceed the

outlet temperature of the hot fluid

 In the limiting case, the cold fluid will be heated

to the inlet temperature of the hot fluid.

However, the outlet temperature of the cold

fluid can never exceed the inlet temperature of

the hot fluid, since this would be a violation of

the second law of thermodynamics.

 The relation above for the LMTD developed

using a parallel-flow heat exchange is equally

applicable for counter flow heat exchanger

 ΔT1 and ΔT2 are expressed as shown below: 



LMTD – Counter flow heat exchangers

 For specified inlet and outlet temperatures, the log mean temperature

difference for a counter-flow heat exchanger is always greater than

that for a parallel-flow heat exchanger

 ΔTlm, CF > ΔTlm, PF and thus a smaller surface

area (and thus a smaller heat exchanger) is

needed to achieve a specified heat transfer

rate in a counter-flow heat exchanger

 In a counter-flow heat exchanger, the

temperature difference between the hot and

the cold fluids will remain constant along the

heat exchanger when the heat capacity rates

of the two fluids are equal

 ΔT = constant when (Ch =Ccor ሶ𝒎hCph = ሶ𝒎cCpc). Then we have ΔT1 = ΔT2, and the

LMTD relation gives ΔTlm =
𝟎𝟎, which is indeterminate. It can be shown by the

application of L’Hôpital’s rule that in this case we have ΔTlm = ΔT1 = ΔT2



Multipass and Cross-Flow Heat Exchangers:

Use of a Correction Factor
 LMTD relations for cross-flow and multipass shell-and-tube heat exchangers, are

too complicated because of the complex flow conditions. Hence the following

relation is used for cross flow and multi pass heat exchangers from the expression

of counter flow ΔTlm.

 F is the correction factor, which depends on the geometry of the heat exchanger

ΔTlm, CF is the log mean temperature difference for the case

of a counter-flow heat exchanger with the same inlet and

outlet temperatures

 The correction factor is less than unity for a cross-flow and multipass shell and-

tube heat exchanger, F ≤ 1

 Correction factor F for a heat exchanger is a measure of deviation of the ΔTlm

from the corresponding values for the counter-flow case



Multipass and Cross-Flow Heat Exchangers:

Use of a Correction Factor

Two temperature ratios defined are: 

where the subscripts 1 and 2 represent the inlet

and outlet, respectively. For a shell-and-tube

heat exchanger, T and t represent the shell- and

tube-side temperatures, respectively

F is determined from charts

P ranges from 0 to 1. The value of R, on the other

hand, ranges from 0 to infinity, with R = 0

corresponding to the phase-change

(condensation or boiling) on the shell-side and R

→∞ to phase-change on the tube side



Correction factor F charts for common shell-and-tube and cross-flow heat exchangers



Correction factor F charts for common shell-and-tube and cross-flow heat exchangers



The effectiveness – NTU method

 LMTD is used in heat exchanger analysis when the inlet and the outlet temperatures

of the hot and cold fluids are known or can be determined from an energy balance. This

method is very suitable for determining the size of a heat exchanger to realize

prescribed outlet temperatures when the mass flow rates and the inlet and outlet

temperatures of the hot and cold fluids are specified

 A second kind of problem encountered in heat exchanger analysis is the

determination of the heat transfer rate and the outlet temperatures of the hot and cold

fluids for prescribed fluid mass flow rates and inlet temperatures when the type and

size of the heat exchanger are specified.

The heat transfer surface area As of the heat exchanger in the second case is known,

but the outlet temperatures are not known. Here the task is to determine the heat

transfer performance of a specified heat exchanger or to determine if a heat exchanger

available in storage will do the job

Effectiveness–NTU method, which greatly simplified heat exchanger analysis is

based on dimensionless parameter called heat transfer effectiveness ε



The effectiveness – NTU method

The actual heat transfer rate in a heat exchanger can be determined from an

energy balance on the hot or cold fluids and can be expressed as:

where Cc and Ch are heat capacities of  hot and cold fluids respectively 

To determine the maximum possible heat transfer rate in a heat exchanger,

we first recognize that the maximum temperature difference in a heat

exchanger is the difference between the inlet temperatures of the hot and cold

fluids as:

The heat transfer in a heat exchanger will reach its maximum value when

(1) the cold fluid is heated to the inlet temperature of the hot fluid or (2) the

hot fluid is cooled to the inlet temperature of the cold fluid. These two

limiting conditions will not be reached simultaneously unless the heat

capacity rates of the hot and cold fluids are identical (i.e., Cc = Ch)



The effectiveness – NTU method

The fluid with smaller heat capacity rate will experience a larger

temperature change, and thus it will be the first to experience the maximum

temperature, at which point the heat transfer will come to a halt. Therefore,

the maximum possible heat transfer rate in a heat exchanger is:

The effectiveness of a heat exchanger enables us to determine the heat

transfer rate without knowing the outlet temperatures of the fluids

The effectiveness of a heat exchanger depends on the geometry of the heat

exchanger as well as the flow arrangement

Different types of heat exchangers have different effectiveness relations



The effectiveness – Parallel flow heat exchanger

During LMTD analysis we derived that: 

Since

The above LMTD expression can be written as: 

However we know from the actual heat transfer expression: 

Eq.1

Eq.2

Rearranging this gives below equation 

Adding and subtracting Tc,in in L.H.S numerator of  Eq.1 and also substituting for Th,out 

from Eq.2   in Eq.1 gives:

Contd---



The effectiveness – Parallel flow heat exchanger

which simplifies to:

From the definition of effectiveness we know that:

Eq.4

Eq.3

Substituting Eq.4 in L.H.S of Eq.3  
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The effectiveness – Parallel flow heat exchanger

Taking either Cc or Ch to be Cmin (both approaches give the same result), the relation 

above can be expressed more conveniently as

Cmin is the smaller heat capacity ratio and Cmax is the larger one, and it makes no

difference whether Cmin belongs to the hot or cold fluid.

UAs /Cmin is a dimensionless term and is called number of transfer units (NTU) 

For a specified values of U and Cmin, the value of NTU is a measure of the heat

transfer surface area As. Thus, the larger the NTU, the larger the heat

exchanger

In heat exchanger analysis, another dimensionless

quantity called the capacity ratio c as



Table.I. Effectiveness relation for heat exchangers



Table.II. Effectiveness relation for heat exchangers

The effectiveness relations given in Table. I and Table. II are equivalent.

Table.I gives the effectiveness (ε) directly when NTU is known and the

numerical relations in Table.II give NTU directly when ε is known



General observations on effectiveness relations

The value of the effectiveness ranges from 0 to 1. It increases rapidly with NTU for

small values (up to about NTU 1.5) but rather slowly for larger values

Heat exchanger with a large NTU (usually larger than 3) and thus a large size cannot

be justified economically, since a large increase in NTU in this case corresponds to a

small increase in effectiveness

Thus, a heat exchanger with a very high effectiveness may be highly desirable from a

heat transfer point of view but rather undesirable from an economical point of view
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General observations on effectiveness relations

For a given NTU and capacity ratio c = Cmin /Cmax, the counter-flow heat

exchanger has the highest effectiveness, followed closely by the cross-flow heat

exchangers with both fluids unmixed. The lowest effectiveness values are

encountered in parallel-flow heat exchangers

The effectiveness of a heat exchanger is independent of the capacity ratio, c for

NTU values of less than about 0.3
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General observations on effectiveness relations

The value of the capacity ratio, c ranges between 0 and 1. For a given NTU, the

effectiveness becomes a maximum for c = 0 and a minimum for c = 1. The case c

Cmin /Cmax → 0 corresponds to Cmax →∞ , which is realized during a phase-change

process in a condenser or boiler. All effectiveness relations in this case reduce to:


