

Malla Reddy College Engineering

(Autonomous)
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad, Telangana-500100 www.mrec.ac.in

Department of Information Technology

III B. TECH I SEM (A.Y.2018-19)

Lecture Notes

On

80606 Python Programming

http://www.mrec.ac.in/

Course

Prerequisites: NIL

Objectives:

This course enables the students to understand the fundamentals of python

programming, describe the various operators and control flow statements,

analyze various data structures, make use of functions, discuss about

MODULE s, packages in python, object oriented concepts, exception

handling, illustrate advanced concepts like multithreading, graphics and

generate various test cases.

MODULE I: Python Programming-Introduction [09 Periods]

Introduction- History of Python, Need of Python Programming, Applications Basics of

Python Programming Using the REPL (Shell) Running Python Scripts.

Data Types - Variables, Assignment, Keywords, Input-Output, Indentation-

Types - Integers, Strings, Booleans.

MODULE II: Operators and Expressions [09 Periods]

Operators - Operators- Arithmetic Operators, Comparison (Relational) Operators,
Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators,

Identity Operators.

Expressions - Expressions and order of evaluations Control Flow- if, if-elif-

else, for, while, break, continue.

MODULE III: Data Structures and Functions [10 Periods]

A: Data Structures - Lists - Operations, Slicing, Methods; Tuples, Sets,

Dictionaries, Sequences, Comprehensions.

B: Functions - Defining Functions, Calling Functions, Passing Arguments,

Keyword Arguments, Default Arguments, Variable-length arguments,

Anonymous Functions, Fruitful, Functions (Function Returning Values)

Scope of the Variables in a Function - Global and Local Variables.

MODULE IV: MODULEs, Packages and Exception handling [10

Periods] MODULEs - Creating MODULE s, import statement, from.

Import statement; name spacing, Python packages, Introduction to PIP,

Installing Packages via PIP, Using Python Packages Object Oriented

2018-19

Onwards

(MR-18)

MALLA REDDY ENGINEERING COLLEGE

(Autonomous)

B.Tech.

V Semester

Code: 80606

Python Programming
L T P

Credits: 3 3 - 3

Programming OOP in Python: Classes, 'self variable', Methods, Constructor,

Method, Inheritance, Overriding Methods, Data hiding.

Error and Exceptions - Difference between an error and Exception,

Handling Exception, try except block, Raising Exceptions, User Defined

Exceptions

MODULE V: Library functions and testing [10 Periods]

Brief Tour of the Standard Library - Operating System Interface - String Pattern

Matching, Mathematics, Internet Access, Dates and Times, Data Compression,
Multithreading, GUI Programming, Turtle Graphics.

PYTHON PROGRAMMING MREC

Testing - Why testing is required?, Basic concepts of testing, Unit testing in

Python, Writing Test cases, Running Tests.

TEXT BOOKS
1. Vamsi Kurama, “Python Programming: A Modern Approach”, Pearson

Publications.

2. Mark Lutz,” Learning Python”, Orielly Publishers

REFERENCES
1. Allen Downey, “Think Python”, Green Tea Press

2. W. Chun, “Core Python Programming”, Pearson.

3. Kenneth A. Lambert, “Introduction to Python”, Cengage

E–RESOURCES
1. http://kvspgtcs.org/wp-content/uploads/2013/08/Python-Programming-for-the-

Absolute-Beginner.pdf 2

2. http://www.bogotobogo.com/python/files/pytut/Python%20Essential%20Reference,%

20Fourth%20Edition%20(2009).pdf

3. https://periodicals.osu.eu/ictejournal/dokumenty/2015-02/ictejournal-2015-2-article- 1.pdf

4. http://ptgmedia.pearsoncmg.com/images/9780132678209/samplepages/0132678209.p df

5. http://www.learnerstv.com/Free-Computer-Science-Video-lectures-ltv163-Page1.htm

Course Outcomes
At the end of the course, students will be able to
1. Understand the basics of python programming languages

2. Illustrate simple programs with control structures

3. Apply advanced concepts like data structures and make use of functions.

4. Develop simple applications by using MODULE s, packages and exception handling

mechanisms.

5. Demonstrate projects that make use of libraries and generate test cases for the projects.

CO- PO Mapping

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

COs
Programme Outcomes(POs) PSOs

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CO1 1 1 1 1

CO2 1 1 3 - 1 1

CO3 1 1 1 1 2 1 2 1

CO4 1 1 2 2

CO5 1 1 2 1

http://kvspgtcs.org/wp-content/uploads/2013/08/Python-Programming-for-the-Absolute-Beginner.pdf%202
http://kvspgtcs.org/wp-content/uploads/2013/08/Python-Programming-for-the-Absolute-Beginner.pdf%202
http://kvspgtcs.org/wp-content/uploads/2013/08/Python-Programming-for-the-Absolute-Beginner.pdf%202
http://www.bogotobogo.com/python/files/pytut/Python%20Essential%20Reference%2C%20Fourth%20Edition%20(2009).pdf
http://www.bogotobogo.com/python/files/pytut/Python%20Essential%20Reference%2C%20Fourth%20Edition%20(2009).pdf
http://www.bogotobogo.com/python/files/pytut/Python%20Essential%20Reference%2C%20Fourth%20Edition%20(2009).pdf
https://periodicals.osu.eu/ictejournal/dokumenty/2015-02/ictejournal-2015-2-article-1.pdf
https://periodicals.osu.eu/ictejournal/dokumenty/2015-02/ictejournal-2015-2-article-1.pdf
http://ptgmedia.pearsoncmg.com/images/9780132678209/samplepages/0132678209.pdf
http://ptgmedia.pearsoncmg.com/images/9780132678209/samplepages/0132678209.pdf
http://www.learnerstv.com/Free-Computer-Science-Video-lectures-ltv163-Page1.htm

PYTHON PROGRAMMING MREC

INDEX

UNIT

TOPIC

PAGE NO

I

INTRODUCTION DATA,
1

EXPRESSIONS, STATEMENTS

Introduction to Python and installation 1

data types: Int 6

float 7

Boolean 8

string 8

List 10

variables 11

expressions 13

statements 16

precedence of operators 17

comments 18

modules 19

functions ----- function and its use 20

flow of execution 21

parameters and arguments 26

II

CONTROL FLOW, LOOPS 35
Conditionals: Boolean values and 35
operators,

conditional (if) 36

alternative (if-else) 37

chained conditional (if-elif-else) 39

Iteration: while, for, break, continue. 41

III

FUNCTIONS, ARRAYS 55

Fruitful functions: return values 55

parameters 57

local and global scope 59

function composition 62

recursion 63

Strings: string slices 64

immutability 66

string functions and methods 67

string module 72

Python arrays 73

Access the Elements of an Array 75

Array methods 76

PYTHON PROGRAMMING MREC

IV

LISTS, TUPLES, DICTIONARIES 78

Lists 78

list operations 79

list slices 80

list methods 81

list loop 83

mutability 85

aliasing 87

cloning lists 88

list parameters 89

list comprehension 90

Tuples 91

tuple assignment 94

tuple as return value 95

tuple comprehension 96

Dictionaries 97

operations and methods 97

comprehension 102

V FILES, EXCEPTIONS, 103
MODULES, PACKAGES

Files and exception: text files 103

reading and writing files 104

command line arguments 109

errors and exceptions 112

handling exceptions 114
modules (datetime, time, OS , calendar, 121
math module)

Explore packages 134

PYTHON PROGRAMMING MREC

1

UNIT – I

INTRODUCTION DATA, EXPRESSIONS, STATEMENTS

Introduction to Python and installation, data types: Int, float, Boolean, string, and list;

variables, expressions, statements, precedence of operators, comments; modules, functions--

- function and its use, flow of execution, parameters and arguments.

Introduction to Python and installation:

Python is a widely used general-purpose, high level programming language. It was initially

designed by Guido van Rossum in 1991 and developed by Python Software Foundation. It

was mainly developed for emphasis on code readability, and its syntax allows programmers

to express concepts in fewer lines of code.

Python is a programming language that lets you work quickly and integrate systems more

efficiently.

There are two major Python versions- Python 2 and Python 3.

• On 16 October 2000, Python 2.0 was released with many new features.

• On 3rd December 2008, Python 3.0 was released with more testing and includes

new features.

Beginning with Python programming:

1) Finding an Interpreter:

Before we start Python programming, we need to have an interpreter to interpret and run our

programs. There are certain online interpreters like https://ide.geeksforgeeks.org/,

http://ideone.com/ or http://codepad.org/ that can be used to start Python without installing

an interpreter.

Windows: There are many interpreters available freely to run Python scripts like IDLE

(Integrated Development Environment) which is installed when you install the python

software from http://python.org/downloads/

2) Writing first program:

Script Begins

Statement1

https://www.geeksforgeeks.org/python-programming-language/
https://ide.geeksforgeeks.org/
http://ideone.com/
http://codepad.org/
http://python.org/

PYTHON PROGRAMMING MREC

2

Statement2

Statement3

Script Ends

Differences between scripting language and programming language:

Why to use Python:

The following are the primary factors to use python in day-to-day life:

1. Python is object-oriented

Structure supports such concepts as polymorphism, operation overloading

and multiple inheritance.

2. Indentation

Indentation is one of the greatest feature in python

PYTHON PROGRAMMING MREC

3

3. It’s free (open source)

Downloading python and installing python is free and easy

4. It’s Powerful

• Dynamic typing

• Built-in types and tools

• Library utilities

• Third party utilities (e.g. Numeric, NumPy, sciPy)

• Automatic memory management

5. It’s Portable

• Python runs virtually every major platform used today

• As long as you have a compactable python interpreter installed, python

programs will run in exactly the same manner, irrespective of platform.

6. It’s easy to use and learn

• No intermediate compile

• Python Programs are compiled automatically to an intermediate form

called byte code, which the interpreter then reads.

• This gives python the development speed of an interpreter without

the performance loss inherent in purely interpreted languages.

• Structure and syntax are pretty intuitive and easy to grasp.

7. Interpreted Language

Python is processed at runtime by python Interpreter

8. Interactive Programming Language

Users can interact with the python interpreter directly for writing the programs

9. Straight forward syntax

The formation of python syntax is simple and straight forward which also makes

it popular.

Installation:

There are many interpreters available freely to run Python scripts like IDLE (Integrated

Development Environment) which is installed when you install the python software from

http://python.org/downloads/

Steps to be followed and remembered:

Step 1: Select Version of Python to Install.

Step 2: Download Python Executable Installer.

Step 3: Run Executable Installer.

Step 4: Verify Python Was Installed On Windows.

http://python.org/downloads/

PYTHON PROGRAMMING MREC

4

Step 5: Verify Pip Was Installed.

Step 6: Add Python Path to Environment Variables (Optional)

Working with Python

Python Code Execution:

Python’s traditional runtime execution model: Source code you type is translated to

byte code, which is then run by the Python Virtual Machine (PVM). Your code is

automatically compiled, but then it is interpreted.

Source Byte code Runtime

m.py m.pyc
PVM

Source code extension is .py

Byte code extension is .pyc (Compiled python code)

There are two modes for using the Python interpreter:

• Interactive Mode

• Script Mode

PYTHON PROGRAMMING MREC

5

Running Python in interactive mode:

Without passing python script file to the interpreter, directly execute code to Python prompt.

Once you’re inside the python interpreter, then you can start.

>>> print("hello

world") hello world

Relevant output is displayed on subsequent lines without the >>> symbol

>>> x=[0,1,2]

Quantities stored in memory are not displayed by default.

>>> x

#If a quantity is stored in memory, typing its name will display

it. [0, 1, 2]

>>>

2+3 5

The chevron at the beginning of the 1st line, i.e., the symbol >>> is a prompt the python

interpreter uses to indicate that it is ready. If the programmer types 2+6, the interpreter

replies 8.

Running Python in script mode:

PYTHON PROGRAMMING MREC

6

Alternatively, programmers can store Python script source code in a file with

the .py extension, and use the interpreter to execute the contents of the file. To execute the

script by the interpreter, you have to tell the interpreter the name of the file. For example, if

you have a script name MyFile.py and you're working on Unix, to run the script you have to

type:

python MyFile.py

Working with the interactive mode is better when Python programmers deal with small

pieces of code as you can type and execute them immediately, but when the code is more

than 2-4 lines, using the script for coding can help to modify and use the code in future.

Example:

Data types:

The data stored in memory can be of many types. For example, a student roll number is

stored as a numeric value and his or her address is stored as alphanumeric characters. Python

has various standard data types that are used to define the operations possible on them and

the storage method for each of them.

Int:

Int, or integer, is a whole number, positive or negative, without decimals, of unlimited

length.

>>> print(24656354687654+2)

24656354687656

>>> print(20)

20

>>> print(0b10)

2

PYTHON PROGRAMMING MREC

7

>>> print(0B10)

2

>>> print(0X20)

32

>>> 20

20

>>> 0b10

2

>>> a=10

>>> print(a)

10

To verify the type of any object in Python, use the type() function:

>>> type(10)

<class 'int'>

>>> a=11

>>> print(type(a))

<class 'int'>

Float:

Float, or "floating point number" is a number, positive or negative, containing one or

more decimals.

Float can also be scientific numbers with an "e" to indicate the power of 10.

>>> y=2.8

>>> y

2.8

>>> y=2.8

>>> print(type(y))

<class 'float'>

>>> type(.4)

<class 'float'>

>>> 2.

PYTHON PROGRAMMING MREC

8

2.0

Example:

x = 35e3

y = 12E4

z = -87.7e100

print(type(x))

print(type(y))

print(type(z))

Output:

<class 'float'>

<class 'float'>

<class 'float'>

Boolean:

Objects of Boolean type may have one of two values, True or False:

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

String:

1. Strings in Python are identified as a contiguous set of characters represented in

the quotation marks. Python allows for either pairs of single or double quotes.

• 'hello' is the same as "hello".

• Strings can be output to screen using the print function. For example: print("hello").

>>> print(" MREC

college") MREC college

>>> type(" MREC

college") <class 'str'>

PYTHON PROGRAMMING MREC

9

>>> print(' MREC

college') MREC college

>>> " "

' '

If you want to include either type of quote character within the string, the simplest way is to

delimit the string with the other type. If a string is to contain a single quote, delimit it with

double quotes and vice versa:

>>> print(" MREC is an autonomous (')

college") MREC is an autonomous (') college

>>> print(' MREC is an autonomous (")

college') MREC is an autonomous (") college

Suppressing Special Character:

Specifying a backslash (\) in front of the quote character in a string “escapes” it and causes

Python to suppress its usual special meaning. It is then interpreted simply as a literal single

quote character:

>>> print(" MREC is an autonomous (\')

college") MREC is an autonomous (') college

>>> print(' MREC is an autonomous (\")

college') MREC is an autonomous (") college

The following is a table of escape sequences which cause Python to suppress the
usual special interpretation of a character in a string:

>>> print('a\

....b')

a. .. b

>>> print('a\

b\

c')

PYTHON PROGRAMMING MREC

10

abc

>>> print('a \n b')

a

b

>>> print(" MREC

\n college") MREC

college

Escape Usual Interpretation of
“Escaped” Interpretation Sequence Character(s) After Backslash

\' Terminates string with single quote opening delimiter Literal single quote (') character

\" Terminates string with double quote opening delimiter Literal double quote (") character

\newline Terminates input line Newline is ignored

\\ Introduces escape sequence Literal backslash (\) character

In Python (and almost all other common computer languages), a tab character can

be specified by the escape sequence \t:

>>> print("a\tb")

ab

List:

• It is a general purpose most widely used in data structures

• List is a collection which is ordered and changeable and allows duplicate

members. (Grow and shrink as needed, sequence type, sortable).

• To use a list, you must declare it first. Do this using square brackets and

separate values with commas.

• We can construct / create list in many ways.

Ex:

>>> list1=[1,2,3,'A','B',7,8,[10,11]]

>>> print(list1)

[1, 2, 3, 'A', 'B', 7, 8, [10, 11]]

PYTHON PROGRAMMING MREC

11

>>> x=list()

>>> x

[]

>>> tuple1=(1,2,3,4)

>>> x=list(tuple1)

>>> x

[1, 2, 3, 4]

Variables:

Variables are nothing but reserved memory locations to store values. This means that when

you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what can

be stored in the reserved memory. Therefore, by assigning different data types to variables,

you can store integers, decimals or characters in these variables.

Rules for Python variables:

• A variable name must start with a letter or the underscore character

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters and underscores (A-z, 0-

9, and _)

• Variable names are case-sensitive (age, Age and AGE are three different variables)

Assigning Values to Variables:

Python variables do not need explicit declaration to reserve memory space. The declaration

happens automatically when you assign a value to a variable. The equal sign (=) is used to

assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the

right of the = operator is the value stored in the variable.

PYTHON PROGRAMMING MREC

12

For example −

a= 100

b = 1000.0

c = "John"

print (a)

print (b)

print (c)

An integer assignment

A floating point

A string

This produces the following result −

100

1000.0

John

Multiple Assignment:

Python allows you to assign a single value to several variables simultaneously.

For example :

a = b = c = 1

Here, an integer object is created with the value 1, and all three variables are assigned to

the same memory location. You can also assign multiple objects to multiple variables.

For example −

a,b,c = 1,2," MREC“

Here, two integer objects with values 1 and 2 are assigned to variables a and b

respectively, and one string object with the value "john" is assigned to the variable c.

Output Variables:

The Python print statement is often used to output variables.

Variables do not need to be declared with any particular type and can even change type

after they have been set.

PYTHON PROGRAMMING MREC

13

x = 5 # x is of type int

x = " MREC " # x is now of type str

print(x)

Output: MREC

To combine both text and a variable, Python uses the “+” character:

Example

x = "awesome"

print("Python is " + x)

Output

Python is awesome

You can also use the + character to add a variable to another variable:

Example

x = "Python is "

y = "awesome"

z = x + y

print(z)

Output:

Python is awesome

Expressions:

An expression is a combination of values, variables, and operators. An expression

is evaluated using assignment operator.

Examples: Y=x + 17

>>> x=10

>>> z=x+20

>>> z

30

PYTHON PROGRAMMING MREC

14

>>> x=10

>>> y=20

>>> c=x+y

>>> c

30

A value all by itself is a simple expression, and so is a variable.

>>> y=20

>>> y

20

Python also defines expressions only contain identifiers, literals, and operators. So,

Identifiers: Any name that is used to define a class, function, variable module, or object is

an identifier.

Literals: These are language-independent terms in Python and should exist independently in

any programming language. In Python, there are the string literals, byte literals, integer

literals, floating point literals, and imaginary literals.

Operators: In Python you can implement the following operations using the corresponding

tokens.

Operator Token

add +

subtract -

multiply *

Integer Division /

15

remainder %

Binary left shift <<

Binary right shift >>

and &

or \

Less than <

Greater than >

Less than or equal to <=

Greater than or equal to >=

Check equality ==

Check not equal !=

PYTHON PROGRAMMING MREC

16

Some of the python expressions are:

Generator expression:

Syntax: (compute(var) for var in iterable)

>>> x = (i for i in 'abc') #tuple comprehension

>>> x

<generator object <genexpr> at 0x033EEC30>

>>> print(x)

<generator object <genexpr> at 0x033EEC30>

You might expect this to print as ('a', 'b', 'c') but it prints as <generator object <genexpr>

at 0x02AAD710> The result of a tuple comprehension is not a tuple: it is actually a

generator. The only thing that you need to know now about a generator now is that you

can iterate over it, but ONLY ONCE.

Conditional expression:

Syntax: true_value if Condition else false_value

>>> x = "1" if True else "2"

>>> x

'1'

Statements:

A statement is an instruction that the Python interpreter can execute. We have normally two

basic statements, the assignment statement and the print statement. Some other kinds of

statements that are if statements, while statements, and for statements generally called as

control flows.

Examples:

An assignment statement creates new variables and gives them values:

>>> x=10

http://en.wikipedia.org/wiki/Statement_%28programming%29

PYTHON PROGRAMMING MREC

17

>>> college=" MREC"

An print statement is something which is an input from the user, to be printed / displayed

on to the screen (or) monitor.

>>> print(" MREC

colege") MREC college

Precedence of Operators:

Operator precedence affects how an expression is evaluated.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has

higher precedence than +, so it first multiplies 3*2 and then adds into 7.

Example 1:

>>> 3+4*2

11

Multiplication gets evaluated before the addition operation

>>> (10+10)*2

40

Parentheses () overriding the precedence of the arithmetic operators

Example 2:

a = 20

b = 10

c = 15
d = 5

e = 0

print("Value of (a + b) * c / d is ", e)

e = ((a + b) * c) / d # (30 * 15) / 5

print("Value of ((a + b) * c) / d is ", e)

e = (a + b) * (c / d); # (30) * (15/5)

e = (a + b) * c / d #(30*15)/5

PYTHON PROGRAMMING MREC

18

print("Value of (a + b) * (c / d) is ", e)

e = a + (b * c) / d; # 20 + (150/5)

print("Value of a + (b * c) / d is ", e)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-
32/pyyy/opprec.py Value of (a + b) * c / d is 90.0

Value of ((a + b) * c) / d is 90.0

Value of (a + b) * (c / d) is 90.0

Value of a + (b * c) / d is 50.0

Comments:

Single-line comments begins with a hash(#) symbol and is useful in mentioning that

the whole line should be considered as a comment until the end of line.

A Multi line comment is useful when we need to comment on many lines. In python,

triple double quote(“ “ “) and single quote(‘ ‘ ‘)are used for multi-line commenting.

Example:

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/comm.py

PYTHON PROGRAMMING MREC

19

Modules:

Modules: Python module can be defined as a python program file which contains a python

code including python functions, class, or variables. In other words, we can say that our

python code file saved with the extension (.py) is treated as the module. We may have a

runnable code inside the python module. A module in Python provides us the flexibility to

organize the code in a logical way. To use the functionality of one module into another, we

must have to import the specific module.

Syntax:

import <module-name>

Every module has its own functions, those can be accessed with . (dot)

Note: In python we have help ()

Enter the name of any module, keyword, or topic to get help on writing Python programs

and using Python modules. To quit this help utility and return to the interpreter, just type

"quit".

Some of the modules like os, date, and calendar so on……

>>> import sys

>>> print(sys.version)

3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:21:23) [MSC v.1916 32 bit (Intel)]

>>> print(sys.version_info)

sys.version_info(major=3, minor=8, micro=0, releaselevel='final', serial=0)

>>> print(calendar.month(2021,5))

>>> print(calendar.isleap(2020))

True

>>> print(calendar.isleap(2017))

False

PYTHON PROGRAMMING MREC

20

Functions:

Functions and its use: Function is a group of related statements that perform a specific

task. Functions help break our program into smaller and modular chunks. As our program
grows larger and larger, functions make it more organized and manageable. It avoids

repetition and makes code reusable.

Basically, we can divide functions into the following two types:

1. Built-in functions - Functions that are built into Python.

Ex: abs(),all().ascii(),bool()………so

on…. integer = -20

print('Absolute value of -20 is:', abs(integer))

Output:

Absolute value of -20 is: 20

2. User-defined functions - Functions defined by the users themselves.

def add_numbers(x,y):

sum = x + y

return sum

print("The sum is", add_numbers(5, 20))

Output:

The sum is 25

Flow of Execution:

1. The order in which statements are executed is called the flow of execution
2. Execution always begins at the first statement of the program.

3. Statements are executed one at a time, in order, from top to bottom.

4. Function definitions do not alter the flow of execution of the program, but remember
that statements inside the function are not executed until the function is called.

5. Function calls are like a bypass in the flow of execution. Instead of going to the next

statement, the flow jumps to the first line of the called function, executes all the
statements there, and then comes back to pick up where it left off.

https://www.programiz.com/python-programming/built-in-function
https://www.programiz.com/python-programming/user-defined-function

PYTHON PROGRAMMING MREC

21

Note: When you read a program, don’t read from top to bottom. Instead, follow the flow of
execution. This means that you will read the def statements as you are scanning from top to
bottom, but you should skip the statements of the function definition until you reach a point
where that function is called.

Example:

#example for flow of execution

print("welcome")

for x in range(3):

print(x)

print("Good morning college")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/flowof.py

welcome

0

1

2

Good morning college

The flow/order of execution is: 2,3,4,3,4,3,4,5

PYTHON PROGRAMMING MREC

22

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/flowof.py

hi

hello

Good morning

MREC

done!

The flow/order of execution is: 2,5,6,7,2,3,4,7,8

Parameters and arguments:

Parameters are passed during the definition of function while Arguments are passed
during the function call.

Example:

#here a and b are parameters

def add(a,b): #//function definition

return a+b

#12 and 13 are arguments

#function call

result=add(12,13)

print(result)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/paraarg.py

25

There are three types of Python function arguments using which we can call a function.

1. Default Arguments

2. Keyword Arguments

3. Variable-length Arguments

Syntax:

def functionname():

PYTHON PROGRAMMING MREC

23

statements

.

.

.

functionname()

Function definition consists of following components:

1. Keyword def indicates the start of function header.

2. A function name to uniquely identify it. Function naming follows the same rules of
writing identifiers in Python.

3. Parameters (arguments) through which we pass values to a function. They are optional.

4. A colon (:) to mark the end of function header.

5. Optional documentation string (docstring) to describe what the function does.

6. One or more valid python statements that make up the function body. Statements must
have same indentation level (usually 4 spaces).

7. An optional return statement to return a value from the function.

Example:

def hf():

hello

world hf()

In the above example we are just trying to execute the program by calling the function. So

it will not display any error and no output on to the screen but gets executed.

To get the statements of function need to be use print().

#calling function in

python: def hf():

print("hello

world") hf()

Output:

hello world

https://www.programiz.com/python-programming/keywords-identifier#rules
https://www.programiz.com/python-programming/keywords-identifier#rules
https://www.programiz.com/python-programming/keywords-identifier#rules
https://www.programiz.com/python-programming/keywords-identifier#rules

PYTHON PROGRAMMING MREC

24

def hf():

print("hw")

print("gh kfjg 66666")

hf()

hf()

hf()

Output:

hw

gh kfjg 66666

hw

gh kfjg 66666

hw

gh kfjg 66666

def add(x,y):

c=x+y

print(c)

add(5,4)

Output:

9

def add(x,y):

c=x+y

return c

print(add(5,4))

Output:

9

PYTHON PROGRAMMING MREC

25

def add_sub(x,y):

c=x+y

d=x-y

return c,d

print(add_sub(10,5))

Output:

(15, 5)

The return statement is used to exit a function and go back to the place from where it was

called. This statement can contain expression which gets evaluated and the value is returned.

If there is no expression in the statement or the return statement itself is not present inside a

function, then the function will return the None object.

def hf():

return "hw"

print(hf())

Output:

hw

def hf():

return "hw"

hf()

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-

32/pyyy/fu.py >>>

PYTHON PROGRAMMING MREC

26

def hello_f():

return "hellocollege"

print(hello_f().upper())

Output:

HELLOCOLLEGE

Passing Arguments

def hello(wish):

return '{}'.format(wish)

print(hello(" MREC"))

Output:

MREC

Here, the function wish() has two parameters. Since, we have called this function with two

arguments, it runs smoothly and we do not get any error. If we call it with different number

of arguments, the interpreter will give errors.

def wish(name,msg):

"""This function greets to

the person with the provided message"""

print("Hello",name + ' ' + msg)

wish(" MREC","Good morning!")

Output:

Hello MREC Good morning!

PYTHON PROGRAMMING MREC

27

Below is a call to this function with one and no arguments along with their respective

error messages.

>>> wish(" MREC") # only one argument

TypeError: wish() missing 1 required positional argument: 'msg'

>>> wish() # no arguments

TypeError: wish() missing 2 required positional arguments: 'name' and 'msg'

def hello(wish,hello):

return “hi” '{},{}'.format(wish,hello) print(hello("

MREC","college"))

Output:

hi MREC,college

#Keyword Arguments

When we call a function with some values, these values get assigned to the

arguments according to their position.

Python allows functions to be called using keyword arguments. When we call functions

in this way, the order (position) of the arguments can be changed.

(Or)

If you have some functions with many parameters and you want to specify only some
of them, then you can give values for such parameters by naming them - this is called
keyword arguments - we use the name (keyword) instead of the position (which we

have been using all along) to specify the arguments to the function.

There are two advantages - one, using the function is easier since we do not need to
worry about the order of the arguments. Two, we can give values to only those
parameters which we want, provided that the other parameters have default argument
values.

def func(a, b=5, c=10):

print 'a is', a, 'and b is', b, 'and c is', c

PYTHON PROGRAMMING MREC

28

func(3, 7)

func(25, c=24)

func(c=50, a=100)

Output:

a is 3 and b is 7 and c is 10

a is 25 and b is 5 and c is 24

a is 100 and b is 5 and c is 50

Note:

The function named func has one parameter without default argument values,
followed by two parameters with default argument values.

In the first usage, func(3, 7), the parameter a gets the value 3, the parameter b gets
the value 5 and c gets the default value of 10.

In the second usage func(25, c=24), the variable a gets the value of 25 due to the
position of the argument. Then, the parameter c gets the value of 24 due to naming i.e.

keyword arguments. The variable b gets the default value of 5.

In the third usage func(c=50, a=100), we use keyword arguments completely to
specify the values. Notice, that we are specifying value for parameter c before that for
a even though a is defined before c in the function definition.

For example: if you define the function like below

def func(b=5, c=10,a): # shows error : non-default argument follows default argument

def print_name(name1, name2):

""" This function prints the name """

print (name1 + " and " + name2 + " are friends")

#calling the function

print_name(name2 = 'A',name1 = 'B')

PYTHON PROGRAMMING MREC

29

Output:

B and A are friends

#Default Arguments

Function arguments can have default values in Python.

We can provide a default value to an argument by using the assignment operator (=)

def hello(wish,name='you'):

return '{},{}'.format(wish,name)

print(hello("good morning"))

Output:

good morning,you

def hello(wish,name='you'):

return '{},{}'.format(wish,name) //print(wish + ‘ ‘ + name)

print(hello("good morning","nirosha")) // hello("good morning","nirosha")

Output:

good morning,nirosha // good morning nirosha

Note: Any number of arguments in a function can have a default value. But once we have
a default argument, all the arguments to its right must also have default values.

This means to say, non-default arguments cannot follow default arguments. For example,
if we had defined the function header above as:

def hello(name='you', wish):

Syntax Error: non-default argument follows default argument

def sum(a=4, b=2): #2 is supplied as default argument

PYTHON PROGRAMMING MREC

30

""" This function will print sum of two

numbers if the arguments are not supplied

it will add the default value """

print (a+b)

sum(1,2) #calling with arguments

sum() #calling without arguments

Output:

3

6

Variable-length arguments

Sometimes you may need more arguments to process function then you mentioned in the
definition. If we don’t know in advance about the arguments needed in function, we can use

variable-length arguments also called arbitrary arguments.

For this an asterisk (*) is placed before a parameter in function definition which can hold
non-keyworded variable-length arguments and a double asterisk (**) is placed before a
parameter in function which can hold keyworded variable-length arguments.

If we use one asterisk (*) like *var, then all the positional arguments from that point till the

end are collected as a tuple called ‘var’ and if we use two asterisks (**) before a variable
like **var, then all the positional arguments from that point till the end are collected as a

dictionary called ‘var’.

def wish(*names):

"""This function greets all

the person in the names tuple."""

names is a tuple with
arguments for name in names:

print("Hello",name) wish("

MREC","CSE","SIR","MADAM")

http://www.trytoprogram.com/python-programming/python-tuples/
http://www.trytoprogram.com/python-programming/python-dictionary/

PYTHON PROGRAMMING MREC

31

Output:

Hello MREC

Hello CSE

Hello SIR

Hello MADAM

#Program to find area of a circle using function use single return value function
with argument.

pi=3.14

def areaOfCircle(r):

return pi*r*r

r=int(input("Enter radius of circle"))

print(areaOfCircle(r))

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-
32/pyyy/fu1.py Enter radius of circle 3

28.259999999999998

#Program to write sum different product and using arguments with return value

function.

def calculete(a,b):

total=a+b

diff=a-b

prod=a*b

div=a/b

mod=a%b

PYTHON PROGRAMMING MREC

32

return total,diff,prod,div,mod

a=int(input("Enter a value"))

b=int(input("Enter b value"))

#function call

s,d,p,q,m = calculete(a,b)

print("Sum= ",s,"diff= ",d,"mul= ",p,"div= ",q,"mod= ",m)

#print("diff= ",d)

#print("mul= ",p)

#print("div= ",q)

#print("mod= ",m)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-
32/pyyy/fu1.py Enter a value 5

Enter b value 6

Sum= 11 diff= -1 mul= 30 div= 0.8333333333333334 mod= 5

#program to find biggest of two numbers using functions.

def biggest(a,b):

if a>b :

return a

else :

return b

a=int(input("Enter a value"))

b=int(input("Enter b value"))

#function call

big= biggest(a,b)

print("big number= ",big)

Output:

PYTHON PROGRAMMING MREC

33

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter a value 5

Enter b value-2

big number= 5

#program to find biggest of two numbers using functions. (nested if)

def biggest(a,b,c):

if a>b :
if a>c :

return a

else :

return c

else :
if b>c :

return b

else :

return c

a=int(input("Enter a value"))

b=int(input("Enter b value"))

c=int(input("Enter c value"))

#function call

big= biggest(a,b,c)

print("big number= ",big)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter a value 5

Enter b value -6

Enter c value 7

big number= 7

#Writer a program to read one subject mark and print pass or fail use single

return values function with argument.

def result(a):

if a>40:

return "pass"

PYTHON PROGRAMMING MREC

34

else:

return "fail"

a=int(input("Enter one subject marks"))

print(result(a))

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter one subject marks 35

fail

#Write a program to display mrecet cse dept 10 times on the screen. (while loop)

def usingFunctions():

count =0

while count<10:
print(" MREC cse

dept",count) count=count+1

usingFunctions()

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

MREC cse dept 0
MREC cse dept

1 MREC cse
dept 2 MREC

cse dept 3
MREC cse dept

4 MREC cse
dept 5 MREC
cse dept 6

MREC cse dept

7 MREC cse
dept 8 MREC
cse dept 9

PYTHON PROGRAMMING MREC

35

UNIT – II

CONTROL FLOW, LOOPS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained

conditional (if-elif-else); Iteration: while, for, break, continue.

Control Flow, Loops:

Boolean Values and Operators:

A boolean expression is an expression that is either true or false. The following examples

use the operator ==, which compares two operands and produces True if they are equal and

False otherwise:

>>> 5==5

True

>>> 5==6

False

True and False are special values that belong to the type bool; they are not strings:

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

The == operator is one of the relational operators; the others are: x != y # x is not equal to

y x > y # x is greater than y x < y # x is less than y

x >= y # x is greater than or equal to y x <= y # x is less than or equal to y

Note:

All expressions involving relational and logical operators will evaluate to either true or false

PYTHON PROGRAMMING MREC

36

Conditional (if):

The if statement contains a logical expression using which data is compared and a

decision is made based on the result of the comparison.

Syntax:

if expression:

statement(s)

If the boolean expression evaluates to TRUE, then the block of statement(s) inside the if

statement is executed. If boolean expression evaluates to FALSE, then the first set of

code after the end of the if statement(s) is executed.

if Statement Flowchart:

Fig: Operation of if statement

Example: Python if Statement

a = 3

if a > 2:

print(a, "is greater")

print("done")

a = -1

if a < 0:

print(a, "a is smaller")

print("Finish")

Output:

PYTHON PROGRAMMING MREC

37

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-
32/pyyy/if1.py 3 is greater

done

-1 a is smaller

Finish

a=10

if a>9:

print("A is Greater than 9")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-

32/pyyy/if2.py A is Greater than 9

Alternative if (If-Else):

An else statement can be combined with an if statement. An else statement contains the

block of code (false block) that executes if the conditional expression in the if statement

resolves to 0 or a FALSE value.

The else statement is an optional statement and there could be at most only one else

Statement following if.

Syntax of if - else :

if test expression:

Body of if stmts

else:

Body of else stmts

If - else Flowchart :

PYTHON PROGRAMMING MREC

38

Fig: Operation of if – else statement

Example of if - else:

a=int(input('enter the number'))

if a>5:

print("a is greater")

else:

print("a is smaller than the input given")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-

32/pyyy/ifelse.py enter the number 2

a is smaller than the input given

--

a=10

b=20

if a>b:

print("A is Greater than B")

else:

print("B is Greater than A")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-
32/pyyy/if2.py B is Greater than A

PYTHON PROGRAMMING MREC

39

Chained Conditional: (If-elif-else):

The elif statement allows us to check multiple expressions for TRUE and execute a

block of code as soon as one of the conditions evaluates to TRUE. Similar to the else,

the elif statement is optional. However, unlike else, for which there can be at most one

statement, there can be an arbitrary number of elif statements following an if.

Syntax of if – elif - else :

If test expression:

Body of if stmts

elif test expression:

Body of elif stmts

else:

Body of else stmts

Flowchart of if – elif - else:

Fig: Operation of if – elif - else statement

Example of if - elif – else:

a=int(input('enter the number'))

b=int(input('enter the number'))

c=int(input('enter the number'))

if a>b:

PYTHON PROGRAMMING MREC

40

print("a is greater")

elif b>c:

print("b is greater")

else:

print("c is greater")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/ifelse.py

enter the number5

enter the number2

enter the number9

a is greater

>>>

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/ifelse.py

enter the number2

enter the number5

enter the number9

c is greater

var = 100

if var == 200:

print("1 - Got a true expression value")

print(var)
elif var == 150:

print("2 - Got a true expression value")

print(var)
elif var == 100:

print("3 - Got a true expression value")

print(var)
else:

print("4 - Got a false expression value")

print(var)

print("Good bye!")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/ifelif.py

3 - Got a true expression value

100

Good bye!

PYTHON PROGRAMMING MREC

41

Iteration:

A loop statement allows us to execute a statement or group of statements multiple times as
long as the condition is true. Repeated execution of a set of statements with the help of loops
is called iteration.

Loops statements are used when we need to run same code again and again, each time with
a different value.

Statements:

In Python Iteration (Loops) statements are of three types:

1. While Loop
2. For Loop

3. Nested For Loops

While loop:

Loops are either infinite or conditional. Python while loop keeps reiterating a block

of code defined inside it until the desired condition is met.

The while loop contains a boolean expression and the code inside the loop

is repeatedly executed as long as the boolean expression is true.

The statements that are executed inside while can be a single line of code or a block

of multiple statements.

Syntax:

while(expression):

Statement(s)

Flowchart:

PYTHON PROGRAMMING MREC

42

Example Programs:

1.
i=1

while i<=6:

print(" MREC

college") i=i+1

output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/wh1.py

MREC college

MREC

college

MREC

college

MREC

college

MREC

college

MREC

college

2.
i=1

while i<=3: print("

MREC",end=" ") j=1

while j<=1:

print("CSE DEPT",end="")

j=j+1

i=i+1

print()

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/wh2.py

MREC CSE DEPT

MREC CSE DEPT

43

MREC CSE DEPT

3.

i=1

PYTHON PROGRAMMING MREC

44

j=1

while i<=3: print("

MREC",end=" ")

Output:

while j<=1:

print("CSE DEPT",end="")

j=j+1

i=i+1

print()

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/wh3.py

MREC CSE DEPT

MREC

MREC

4.

i = 1
while (i < 10):

print (i)

i = i+1

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/wh4.py

1

2

3

4

5

6

7

8

9

2.

a = 1

b = 1

while (a<10):

print ('Iteration',a)

a = a + 1

b = b + 1

PYTHON PROGRAMMING MREC

45

if (b == 4):

break

print ('While loop terminated')

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-
32/pyyy/wh5.py Iteration 1

Iteration 2
Iteration 3

While loop terminated

count = 0

while (count < 9):

print("The count is:", count)

count = count + 1

print("Good bye!")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/wh.py

= The count is: 0

The count is: 1

The count is: 2

The count is: 3

The count is: 4

The count is: 5

The count is: 6

The count is: 7

The count is: 8

Good bye!

For loop:

Python for loop is used for repeated execution of a group of statements for the desired

number of times. It iterates over the items of lists, tuples, strings, the dictionaries and other

iterable objects

Syntax: for var in sequence:

 Statement(s) A sequence of values assigned to var in each iteration

Holds the value of item

in sequence in each iteration

PYTHON PROGRAMMING MREC

46

Sample Program:

numbers = [1, 2, 4, 6, 11, 20]

seq=0

for val in numbers:

seq=val*val

print(seq)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/fr.py

1

4

16

36

121

400

Flowchart:

PYTHON PROGRAMMING MREC

47

Iterating over a list:

#list of items
list = ['M','R','C','E','T']
i = 1

#Iterating over the list

for item in list:

print ('college ',i,' is ',item)

i = i+1

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/lis.py

college 1 is M

college 2 is R

college 3 is C

college 4 is E

college 5 is T

Iterating over a Tuple:

tuple = (2,3,5,7)

print ('These are the first four prime numbers ')

#Iterating over the tuple

for a in tuple:

print (a)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/fr3.py

These are the first four prime numbers
2

3

5
7

Iterating over a dictionary:

#creating a dictionary

college = {"ces":"block1","it":"block2","ece":"block3"}

#Iterating over the dictionary to print keys

print ('Keys are:')

PYTHON PROGRAMMING MREC

48

for keys in college:

print (keys)

#Iterating over the dictionary to print values

print ('Values are:')
for blocks in college.values():

print(blocks)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/dic.py

Keys are:

ces

it

ece
Values are:

block1

block2

block3

Iterating over a String:

#declare a string to iterate over

college = ' MREC'

#Iterating over the string

for name in college:
print (name)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/strr.py

M

R

C

E

T

Nested For loop:

When one Loop defined within another Loop is called Nested Loops.

Syntax:

for val in sequence:

for val in sequence:

PYTHON PROGRAMMING MREC

49

statements

statements

Example 1 of Nested For Loops (Pattern Programs)

for i in range(1,6):

for j in range(0,i):

print(i, end=" ")

print('')

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-

32/pyyy/nesforr.py 1

2 2

3 3 3

4444

55555

Example 2 of Nested For Loops (Pattern Programs)

for i in range(1,6):

for j in range(5,i-1,-1):

print(i, end=" ")

print('')

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/nesforr.py

Output:

11111

2222

3 3 3

4 4

PYTHON PROGRAMMING MREC

50

Break and continue:

In Python, break and continue statements can alter the flow of a normal loop. Sometimes

we wish to terminate the current iteration or even the whole loop without checking test

expression. The break and continue statements are used in these cases.

Break:

The break statement terminates the loop containing it and control of the program flows to
the statement immediately after the body of the loop. If break statement is inside a nested
loop (loop inside another loop), break will terminate the innermost loop.

Flowchart:

The following shows the working of break statement in for and while loop:

for var in sequence:

code inside for

loop If condition:

break (if break condition satisfies it jumps to outside loop)

code inside for loop

code outside for loop

PYTHON PROGRAMMING MREC

51

while test expression

code inside while

loop If condition:

break (if break condition satisfies it jumps to outside loop)

code inside while loop

code outside while loop

Example:

for val in " MREC COLLEGE":

if val == " ":

break

print(val)

print("The end")

Output:

M

R

C

E

T
The end

Program to display all the elements before number 88

for num in [11, 9, 88, 10, 90, 3, 19]:

print(num)

if(num==88):

print("The number 88 is found")

print("Terminating the loop")

break

Output:

11

9

88

The number 88 is found

PYTHON PROGRAMMING MREC

52

Terminating the loop

for letter in "Python": # First Example

if letter == "h":

break

print("Current Letter :", letter)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/br.py =

Current Letter : P

Current Letter : y

Current Letter : t

Continue:

The continue statement is used to skip the rest of the code inside a loop for the current

iteration only. Loop does not terminate but continues on with the next iteration.

Flowchart:

The following shows the working of break statement in for and while loop:

PYTHON PROGRAMMING MREC

53

for var in sequence:

code inside for

loop If condition:

continue (if break condition satisfies it jumps to outside loop)

code inside for loop

code outside for loop

while test expression

code inside while

loop If condition:

continue(if break condition satisfies it jumps to outside loop)

code inside while loop

code outside while loop

Example:

Program to show the use of continue statement inside loops

for val in "string":

if val == "i":

continue

print(val)

print("The end")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/cont.py

s

t

r

n

g

The end

program to display only odd numbers

for num in [20, 11, 9, 66, 4, 89, 44]:

PYTHON PROGRAMMING MREC

54

Skipping the iteration when number is
even if num%2 == 0:

continue

This statement will be skipped for all even
numbers print(num)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/cont2.py

11

9

89

for letter in "Python": # First Example

if letter == "h":
continue

print("Current Letter :", letter)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/con1.py

Current Letter : P

Current Letter : y

Current Letter : t

Current Letter : o

Current Letter : n

Pass:

In Python programming, pass is a null statement. The difference between a comment and
pass statement in Python is that, while the interpreter ignores a comment entirely, pass is not
ignored.

pass is just a placeholder for functionality to be added later.

Example:

sequence = {'p', 'a', 's', 's'}

for val in sequence:

pass

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/f1.y.py

https://www.programiz.com/python-programming/statement-indentation-comments

PYTHON PROGRAMMING MREC

55

>>>

Similarily we can also write,

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

PYTHON PROGRAMMING MREC

56

UNIT – III

FUNCTIONS, ARRAYS

Fruitful functions: return values, parameters, local and global scope, function composition,

recursion; Strings: string slices, immutability, string functions and methods, string module;

Python arrays, Access the Elements of an Array, array methods.

Functions, Arrays:

Fruitful functions:

We write functions that return values, which we will call fruitful functions. We have seen
the return statement before, but in a fruitful function the return statement includes a return
value. This statement means: "Return immediately from this function and use the following
expression as a return value."

(or)

Any function that returns a value is called Fruitful function. A Function that does not

return a value is called a void function

Return values:

The Keyword return is used to return back the value to the called function.

returns the area of a circle with the given radius:

def area(radius):

temp = 3.14 * radius**2

return temp

print(area(4))

(or)

def area(radius):

return 3.14 * radius**2

print(area(2))

Sometimes it is useful to have multiple return statements, one in each branch of
a conditional:

def absolute_value(x):

if x < 0:

PYTHON PROGRAMMING MREC

57

return -x

else:

return x

Since these return statements are in an alternative conditional, only one will be executed.

As soon as a return statement executes, the function terminates without executing any
subsequent statements. Code that appears after a return statement, or any other place the
flow of execution can never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through the program
hits a return statement. For example:

def absolute_value(x):

if x < 0:

return -x

if x > 0:

return x

This function is incorrect because if x happens to be 0, both conditions is true, and the
function ends without hitting a return statement. If the flow of execution gets to the end of a
function, the return value is None, which is not the absolute value of 0.

>>> print
absolute_value(0) None

By the way, Python provides a built-in function called abs that computes absolute values.

Write a Python function that takes two lists and returns True if they have at least
one common member.

def common_data(list1, list2):

for x in list1:

for y in list2:

if x == y:

result = True

return result

print(common_data([1,2,3,4,5], [1,2,3,4,5]))

print(common_data([1,2,3,4,5], [1,7,8,9,510]))

print(common_data([1,2,3,4,5], [6,7,8,9,10]))

Output:

C:\Users\ MREC\AppData\Local\Programs\Python\Python38-32\pyyy\fu1.py

PYTHON PROGRAMMING MREC

58

True

True

None

def area(radius):

b = 3.14159 * radius**2

return b

Parameters:

Parameters are passed during the definition of function while Arguments are passed
during the function call.

Example:

#here a and b are parameters

def add(a,b): #//function definition

return a+b

#12 and 13 are arguments

#function call

result=add(12,13)

print(result)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/paraarg.py

25

Some examples on functions:

To display vandemataram by using function use no args no return type

#function defination

def display():

print("vandemataram")

print("i am in main")

PYTHON PROGRAMMING MREC

59

#function call

display()
print("i am in main")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

i am in main

vandemataram

i am in main

#Type1 : No parameters and no return type

def Fun1() :

print("function 1")
Fun1()

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

function 1

#Type 2: with param with out return type

def fun2(a) :

print(a)

fun2("hello")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Hello

#Type 3: without param with return type

def fun3():

return "welcome to python"

print(fun3())

PYTHON PROGRAMMING MREC

60

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

welcome to python

#Type 4: with param with return type

def fun4(a):

return a

print(fun4("python is better then c"))

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

python is better then c

Local and Global scope:

Local Scope:

A variable which is defined inside a function is local to that function. It is accessible from

the point at which it is defined until the end of the function, and exists for as long as the

function is executing

Global Scope:

A variable which is defined in the main body of a file is called a global variable. It will be

visible throughout the file, and also inside any file which imports that file.

The variable defined inside a function can also be made global by using the

global statement.

def function_name(args):

.............

global x #declaring global variable inside a function

..............

create a global variable

PYTHON PROGRAMMING MREC

61

x = "global"

def f():

print("x inside :", x)

f()

print("x outside:", x)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

x inside : global

x outside: global

create a local variable

def f1():

y = "local"

print(y)

f1()

Output:

local

If we try to access the local variable outside the scope for example,

def f2():

y = "local"

f2()

print(y)

Then when we try to run it shows an error,

Traceback (most recent call last):

File "C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py",
line 6, in <module>

PYTHON PROGRAMMING MREC

62

print(y)

NameError: name 'y' is not defined

The output shows an error, because we are trying to access a local variable y in a
global scope whereas the local variable only works inside f2() or local scope.

use local and global variables in same code

x = "global"

def f3():

global x
y = "local"

x = x * 2

print(x)

print(y)

f3()

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-
32/pyyy/fu1.py globalglobal

local

In the above code, we declare x as a global and y as a local variable in the f3(). Then,
we use multiplication operator * to modify the global variable x and we print both x
and y.

After calling the f3(), the value of x becomes global global because we used the x * 2
to print two times global. After that, we print the value of local variable y i.e local.

use Global variable and Local variable with same name

x = 5

def f4():

x = 10
print("local x:", x)

f4()

print("global x:", x)

PYTHON PROGRAMMING MREC

63

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

local x: 10

global x: 5

Function Composition:

Having two (or more) functions where the output of one function is the input for another. So

for example if you have two functions FunctionA and FunctionB you compose them by

doing the following.

FunctionB(FunctionA(x))

Here x is the input for FunctionA and the result of that is the input for FunctionB.

Example 1:

#create a function compose2

>>> def compose2(f, g):

return lambda x:f(g(x))

>>> def d(x):

return x*2

>>> def e(x):

return x+1

>>> a=compose2(d,e) # FunctionC = compose(FunctionB,FunctionA)

12

In the above program we tried to compose n functions with the main function created.

Example 2:

>>> colors=('red','green','blue')

>>> fruits=['orange','banana','cherry']

>>> zip(colors,fruits)

PYTHON PROGRAMMING MREC

64

<zip object at 0x03DAC6C8>

>>> list(zip(colors,fruits))

[('red', 'orange'), ('green', 'banana'), ('blue', 'cherry')]

Recursion:

Recursion is the process of defining something in terms of itself.

Python Recursive Function

We know that in Python, a function can call other functions. It is even possible for

the function to call itself. These type of construct are termed as recursive functions.

Factorial of a number is the product of all the integers from 1 to that number. For

example, the factorial of 6 (denoted as 6!) is 1*2*3*4*5*6 = 720.

Following is an example of recursive function to find the factorial of an integer.

Write a program to factorial using

recursion def fact(x):
if x==0:

result = 1

else :

result = x * fact(x-
1) return result

print("zero factorial",fact(0))

print("five factorial",fact(5))

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/rec.py

zero factorial 1

five factorial 120

def calc_factorial(x):

"""This is a recursive function

to find the factorial of an integer"""

if x == 1:

return 1

else:

return (x * calc_factorial(x-1))

https://www.programiz.com/python-programming/function

PYTHON PROGRAMMING MREC

65

num = 4

print("The factorial of", num, "is", calc_factorial(num))

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/rec.py
The factorial of 4 is 24

Strings:

A string is a group/ a sequence of characters. Since Python has no provision for arrays,
we simply use strings. This is how we declare a string. We can use a pair of single or
double quotes. Every string object is of the type ‘str’.

>>> type("name")

<class 'str'>

>>> name=str()

>>> name

''

>>> a=str(' MREC')

>>> a

' MREC'

>>> a=str(MREC)

>>> a[2]

'c'

>>> fruit = 'banana'

>>> letter = fruit[1]

The second statement selects character number 1 from fruit and assigns it to letter.
The expression in brackets is called an index. The index indicates which character in
the sequence we want

String slices:

A segment of a string is called a slice. Selecting a slice is similar to selecting a character:

Subsets of strings can be taken using the slice operator ([] and [:]) with indexes starting at

0 in the beginning of the string and working their way from -1 at the end.

Slice out substrings, sub lists, sub Tuples using index.

Syntax:[Start: stop: steps]

Slicing will start from index and will go up to stop in step of steps.

Default value of start is 0,

PYTHON PROGRAMMING MREC

66

Stop is last index of list

And for step default is 1

For example 1−

str = 'Hello World!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

Output:

Hello World!

H

llo

llo World!

Hello World!Hello World!

Hello World!TEST

Example 2:

>>> x='computer'

>>> x[1:4]

'omp'

>>> x[1:6:2]

'opt'

>>> x[3:]

PYTHON PROGRAMMING MREC

67

'puter'

>>> x[:5]

'compu'

>>> x[-1]

'r'

>>> x[-3:]

'ter'

>>> x[:-2]

'comput'

>>> x[::-

2] 'rtpo'

>>> x[::-1]

'retupmoc'

Immutability:

It is tempting to use the [] operator on the left side of an assignment, with the intention of

changing a character in a string.

For example:

>>> greeting=' MREC college!'

>>> greeting[0]='n'

TypeError: 'str' object does not support item assignment

The reason for the error is that strings are immutable, which means we can’t change an

existing string. The best we can do is creating a new string that is a variation on the original:

>>> greeting = 'Hello, world!'

>>> new_greeting = 'J' + greeting[1:]

>>> new_greeting

'Jello, world!'

Note: The plus (+) sign is the string concatenation operator and the asterisk (*) is the
repetition operator

PYTHON PROGRAMMING MREC

68

String functions and methods:

There are many methods to operate on String.

S.no Method name Description
1. isalnum() Returns true if string has at least 1 character and all

characters are alphanumeric and false otherwise.
2. isalpha() Returns true if string has at least 1 character and all

characters are alphabetic and false otherwise.
3. isdigit() Returns true if string contains only digits and false

otherwise.

4. islower() Returns true if string has at least 1 cased character and all cased
characters are in lowercase and false
otherwise.

5. isnumeric() Returns true if a string contains only numeric
characters and false otherwise.

6. isspace() Returns true if string contains only whitespace
characters and false otherwise.

7. istitle() Returns true if string is properly “titlecased” and
false otherwise.

8. isupper() Returns true if string has at least one cased character and all
cased characters are in uppercase
and false otherwise.

9. replace(old, new Replaces all occurrences of old in string with new
[, max]) or at most max occurrences if max given.

10. split() Splits string according to delimiter str (space if not
provided) and returns list of substrings;

11. count() Occurrence of a string in another string
12. find() Finding the index of the first occurrence of a string

in another string
13. swapcase() Converts lowercase letters in a string to uppercase

and viceversa

14. startswith(str, Determines if string or a substring of string (if starting index
beg=0,end=le beg and ending index end are given) starts with substring str;
n(string)) returns true if so and false

 otherwise.

Note:

All the string methods will be returning either true or false as the result

1. isalnum():

PYTHON PROGRAMMING MREC

69

Isalnum() method returns true if string has at least 1 character and all characters

are alphanumeric and false otherwise.

Syntax:

String.isalnum()

Example:

>>> string="123alpha"

>>> string.isalnum() True

2. isalpha():

isalpha() method returns true if string has at least 1 character and all characters

are alphabetic and false otherwise.

Syntax:

String.isalpha()

Example:

>>> string="nikhil"

>>> string.isalpha()

True

3. isdigit():

isdigit() returns true if string contains only digits and false otherwise.

Syntax:

String.isdigit()

Example:

>>> string="123456789"

>>> string.isdigit()

True

4. islower():

Islower() returns true if string has characters that are in lowercase and false otherwise.

Syntax:

PYTHON PROGRAMMING MREC

70

String.islower()

Example:

>>> string="nikhil"

>>> string.islower()

True

5. isnumeric():

isnumeric() method returns true if a string contains only numeric characters and

false otherwise.

Syntax:

String.isnumeric()

Example:

>>> string="123456789"

>>> string.isnumeric()

True

6. isspace():

isspace() returns true if string contains only whitespace characters and false otherwise.

Syntax:

String.isspace()

Example:

>>> string=" "

>>> string.isspace()

True

7. istitle()

istitle() method returns true if string is properly “titlecased”(starting letter of each word

is capital) and false otherwise

Syntax:

String.istitle()

PYTHON PROGRAMMING MREC

71

Example:

>>> string="Nikhil Is Learning"

>>> string.istitle()

True

8. isupper()

isupper() returns true if string has characters that are in uppercase and false otherwise.

Syntax:

String.isupper()

Example:

>>> string="HELLO"

>>> string.isupper()

True

9. replace()

replace() method replaces all occurrences of old in string with new or at most

max occurrences if max given.

Syntax:

String.replace()

Example:

>>> string="Nikhil Is Learning"

>>> string.replace('Nikhil','Neha')

'Neha Is Learning'

10. split()

split() method splits the string according to delimiter str (space if not provided)

Syntax:

String.split()

Example:

>>> string="Nikhil Is Learning"

>>> string.split()

PYTHON PROGRAMMING MREC

72

['Nikhil', 'Is', 'Learning']

11. count()

count() method counts the occurrence of a string in another string Syntax:

String.count()

Example:

>>> string='Nikhil Is Learning'

>>> string.count('i')

3

12. find()

Find() method is used for finding the index of the first occurrence of a string in

another string

Syntax:

String.find(„string‟)

Example:

>>> string="Nikhil Is Learning"

>>> string.find('k')

2

13. swapcase()

converts lowercase letters in a string to uppercase and viceversa

Syntax:

String.find(„string‟)

Example:

>>> string="HELLO"

>>> string.swapcase()

'hello'

14. startswith()

Determines if string or a substring of string (if starting index beg and ending index end

are given) starts with substring str; returns true if so and false otherwise.

PYTHON PROGRAMMING MREC

73

Syntax:

String.startswith(„string‟)

Example:

>>> string="Nikhil Is Learning"

>>> string.startswith('N')

True

15. endswith()

Determines if string or a substring of string (if starting index beg and ending index end

are given) ends with substring str; returns true if so and false otherwise.

Syntax:

String.endswith(„string‟)

Example:

>>> string="Nikhil Is Learning"

>>> string.startswith('g')

True

String module:

This module contains a number of functions to process standard Python strings. In
recent versions, most functions are available as string methods as well.

It’s a built-in module and we have to import it before using any of its constants and classes

Syntax: import string

Note:

help(string) --- gives the information about all the variables ,functions, attributes and
classes to be used in string module.

Example:

import string

print(string.ascii_letters)

print(string.ascii_lowercase)

print(string.ascii_uppercase)

print(string.digits)

PYTHON PROGRAMMING MREC

74

print(string.hexdigits)

#print(string.whitespace)

print(string.punctuation)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-
32/pyyy/strrmodl.py ===

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

0123456789abcdefABCDEF

!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

Python String Module Classes

Python string module contains two classes – Formatter and Template.

Formatter

It behaves exactly same as str.format() function. This class becomes useful if you want

to subclass it and define your own format string syntax.

Syntax: from string import Formatter

Template

This class is used to create a string template for simpler string substitutions

Syntax: from string import Template

Python arrays:

Array is a container which can hold a fix number of items and these items should be of the
same type. Most of the data structures make use of arrays to implement their algorithms.
Following are the important terms to understand the concept of Array.

Element− Each item stored in an array is called an element.

Index − Each location of an element in an array has a numerical index, which is

used to identify the element.

Array Representation

https://www.journaldev.com/23487/python-string-format

PYTHON PROGRAMMING MREC

75

Arrays can be declared in various ways in different languages. Below is an illustration.

Elements

Int array [10] = {10, 20, 30, 40, 50, 60, 70, 80, 85, 90}

Type Name Size Index 0

As per the above illustration, following are the important points to be considered.

Index starts with 0.

Array length is 10 which means it can store 10 elements.

Each element can be accessed via its index. For example, we can fetch an element

at index 6 as 70

Basic Operations

Following are the basic operations supported by an array.

Traverse − print all the array elements one by one.

Insertion − Adds an element at the given index.

Deletion − Deletes an element at the given index.

Search − Searches an element using the given index or by the value.

Update − Updates an element at the given index.

Array is created in Python by importing array module to the python program. Then
the array is declared as shown below.

from array import *

arrayName=array(typecode, [initializers])

Typecode are the codes that are used to define the type of value the array will hold.
Some common typecodes used are:

Typecode Value

b Represents signed integer of size 1 byte/td>

B Represents unsigned integer of size 1 byte

PYTHON PROGRAMMING MREC

76

c Represents character of size 1 byte

i Represents signed integer of size 2 bytes

I Represents unsigned integer of size 2 bytes

f Represents floating point of size 4 bytes

d Represents floating point of size 8 bytes

Creating an array:

from array import *

array1 = array('i', [10,20,30,40,50])

for x in array1:

print(x)

Output:

>>>

RESTART: C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/arr.py

10

20

30

40
50

Access the elements of an Array:

Accessing Array Element

We can access each element of an array using the index of the element.

from array import *

array1 = array('i', [10,20,30,40,50])
print (array1[0])

print (array1[2])

PYTHON PROGRAMMING MREC

77

Output:

RESTART: C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/arr2.py

10

30

Array methods:

Python has a set of built-in methods that you can use on lists/arrays.

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the first item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

PYTHON PROGRAMMING MREC

78

Note: Python does not have built-in support for Arrays, but Python Lists can be used instead.

Example:

>>> college=[" MREC","it","cse"]

>>> college.append("autonomous")

>>> college

[' MREC', 'it', 'cse', 'autonomous']

>>> college.append("eee")

>>> college.append("ece")

>>> college

[' MREC', 'it', 'cse', 'autonomous', 'eee', 'ece']

>>> college.pop()

'ece'

>>> college

[' MREC', 'it', 'cse', 'autonomous', 'eee']

>>> college.pop(4)

'eee'

>>> college

[' MREC', 'it', 'cse', 'autonomous']

>>> college.remove("it")

>>> college

[' MREC', 'cse', 'autonomous']

PYTHON PROGRAMMING MREC

79

UNIT – IV

LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list

parameters, list comprehension; Tuples: tuple assignment, tuple as return value, tuple

comprehension; Dictionaries: operations and methods, comprehension;

Lists, Tuples, Dictionaries:

List:

Ex:

It is a general purpose most widely used in data structures

List is a collection which is ordered and changeable and allows duplicate members.

(Grow and shrink as needed, sequence type, sortable).

To use a list, you must declare it first. Do this using square brackets and separate

values with commas.

We can construct / create list in many ways.

>>> list1=[1,2,3,'A','B',7,8,[10,11]]

>>> print(list1)

[1, 2, 3, 'A', 'B', 7, 8, [10, 11]]

>>> x=list()

>>> x

[]

>>> tuple1=(1,2,3,4)

>>> x=list(tuple1)

>>> x

[1, 2, 3, 4]

PYTHON PROGRAMMING MREC

80

List operations:

These operations include indexing, slicing, adding, multiplying, and checking for
membership

Basic List Operations:

Lists respond to the + and * operators much like strings; they mean concatenation
and repetition here too, except that the result is a new list, not a string.

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes

Because lists are sequences, indexing and slicing work the same way for lists as they do
for strings.

Assuming following input −

L = [' MREC', 'college', ' MREC!']

Python Expression Results Description

L[2] MREC Offsets start at zero

PYTHON PROGRAMMING MREC

81

L[-2] college Negative: count from the right

L[1:] ['college', ' MREC!'] Slicing fetches sections

List slices:

>>> list1=range(1,6)

>>> list1

range(1, 6)

>>> print(list1)

range(1, 6)

>>> list1=[1,2,3,4,5,6,7,8,9,10]

>>> list1[1:]

[2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> list1[:1]

[1]

>>> list1[2:5]

[3, 4, 5]

>>> list1[:6]

[1, 2, 3, 4, 5, 6]

>>> list1[1:2:4]

[2]

>>> list1[1:8:2]

[2, 4, 6, 8]

List methods:

The list data type has some more methods. Here are all of the methods of list objects:

Del()

PYTHON PROGRAMMING MREC

82

Append()

Extend()

Insert()

Pop()

Remove()

Reverse()

Sort()

Delete: Delete a list or an item from a list

>>> x=[5,3,8,6]

>>> del(x[1]) #deletes the index position 1 in a list

>>> x

[5, 8, 6]

>>> del(x)

>>> x # complete list gets deleted

Append: Append an item to a list

>>> x=[1,5,8,4]

>>> x.append(10)

>>> x

[1, 5, 8, 4, 10]

Extend: Append a sequence to a list.

>>> x=[1,2,3,4]

>>> y=[3,6,9,1]

>>> x.extend(y)

>>> x

[1, 2, 3, 4, 3, 6, 9, 1]

Insert: To add an item at the specified index, use the insert () method:

>>> x=[1,2,4,6,7]

PYTHON PROGRAMMING MREC

83

>>> x.insert(2,10) #insert(index no, item to be inserted)

>>> x

[1, 2, 10, 4, 6, 7]

>>> x.insert(4,['a',11])

>>> x

[1, 2, 10, 4, ['a', 11], 6, 7]

Pop: The pop() method removes the specified index, (or the last item if index is

not specified) or simply pops the last item of list and returns the item.

>>> x=[1, 2, 10, 4, 6, 7]

>>> x.pop()

7

>>> x

[1, 2, 10, 4, 6]

>>> x=[1, 2, 10, 4, 6]

>>> x.pop(2)

10

>>> x

[1, 2, 4, 6]

Remove: The remove() method removes the specified item from a given list.

>>> x=[1,33,2,10,4,6]

>>> x.remove(33)

>>> x

PYTHON PROGRAMMING MREC

84

[1, 2, 10, 4, 6]

>>> x.remove(4)

>>> x

[1, 2, 10, 6]

>>> x=[1,2,3,4,5,6,7]

>>> x.reverse()

>>> x

[7, 6, 5, 4, 3, 2, 1]

>>> x=[7, 6, 5, 4, 3, 2, 1]

>>> x.sort()

>>> x

[1, 2, 3, 4, 5, 6, 7]

>>> x=[10,1,5,3,8,7]

>>> x.sort()

>>> x

[1, 3, 5, 7, 8, 10]

List loop:

Loops are control structures used to repeat a given section of code a certain number of

times or until a particular condition is met.

Method #1: For loop

#list of items

list = ['M','R','C','E','T']

PYTHON PROGRAMMING MREC

85

i = 1

#Iterating over the list

for item in list:

print ('college ',i,' is ',item)

i = i+1

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/lis.py

college 1 is M

college 2 is R

college 3 is C

college 4 is E

college 5 is T

Method #2: For loop and range()

In case we want to use the traditional for loop which iterates from number x to number y.

Python3 code to iterate over a
list list = [1, 3, 5, 7, 9]

getting length of list

length = len(list)

Iterating the index

same as 'for i in range(len(list))'

for i in range(length):

print(list[i])

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/listlooop.py

1

3
5

7

9

Method #3: using while loop

Python3 code to iterate over a
list list = [1, 3, 5, 7, 9]

Getting length of list

PYTHON PROGRAMMING MREC

86

length = len(list)

i = 0

Iterating using while
loop while i < length:

print(list[i])

i += 1

Mutability:

A mutable object can be changed after it is created, and an immutable object

can't. Append: Append an item to a list

>>> x=[1,5,8,4]

>>> x.append(10)

>>> x

[1, 5, 8, 4, 10]

Extend: Append a sequence to a list.

>>> x=[1,2,3,4]

>>> y=[3,6,9,1]

>>> x.extend(y)

>>> x

Delete: Delete a list or an item from a list

>>> x=[5,3,8,6]

>>> del(x[1]) #deletes the index position 1 in a list

>>> x

[5, 8, 6]

Insert: To add an item at the specified index, use the insert () method:

>>> x=[1,2,4,6,7]

>>> x.insert(2,10) #insert(index no, item to be inserted)

PYTHON PROGRAMMING MREC

87

>>> x

[1, 2, 10, 4, 6, 7]

>>> x.insert(4,['a',11])

>>> x

[1, 2, 10, 4, ['a', 11], 6, 7]

Pop: The pop() method removes the specified index, (or the last item if index is

not specified) or simply pops the last item of list and returns the item.

>>> x=[1, 2, 10, 4, 6, 7]

>>> x.pop()

7

>>> x

[1, 2, 10, 4, 6]

>>> x=[1, 2, 10, 4, 6]

>>> x.pop(2)

10

>>> x

[1, 2, 4, 6]

Remove: The remove() method removes the specified item from a given list.

>>> x=[1,33,2,10,4,6]

>>> x.remove(33)

>>> x

[1, 2, 10, 4, 6]

PYTHON PROGRAMMING MREC

88

>>> x.remove(4)

>>> x

[1, 2, 10, 6]

Reverse: Reverse the order of a given list.

>>> x=[1,2,3,4,5,6,7]

>>> x.reverse()

>>> x

[7, 6, 5, 4, 3, 2, 1]

Sort: Sorts the elements in ascending order

>>> x=[7, 6, 5, 4, 3, 2, 1]

>>> x.sort()

>>> x

[1, 2, 3, 4, 5, 6, 7]

>>> x=[10,1,5,3,8,7]

>>> x.sort()

>>> x

[1, 3, 5, 7, 8, 10]

Aliasing:

1. An alias is a second name for a piece of data, often easier (and more useful)
than making a copy.

2. If the data is immutable, aliases don’t matter because the data can’t change.

3. But if data can change, aliases can result in lot of hard – to – find bugs.

4. Aliasing happens whenever one variable’s value is assigned to another variable.

For ex:

a = [81, 82, 83]

PYTHON PROGRAMMING MREC

89

b = [81, 82, 83]

print(a == b)

print(a is b)

b = a

print(a == b)

print(a is b)

b[0] = 5
print(a)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-
32/pyyy/alia.py True

False

True

True

[5, 82, 83]

Because the same list has two different names, a and b, we say that it is aliased. Changes
made with one alias affect the other. In the example above, you can see that a and b refer to
the same list after executing the assignment statement b = a.

Cloning Lists:

If we want to modify a list and also keep a copy of the original, we need to be able to make a

copy of the list itself, not just the reference. This process is sometimes called cloning, to

avoid the ambiguity of the word copy.

The easiest way to clone a list is to use the slice operator. Taking any slice of a creates a new

list. In this case the slice happens to consist of the whole list.

Example:

a = [81, 82, 83]

b = a[:] # make a clone using slice

print(a == b)

print(a is b)

b[0] = 5

print(a)

print(b)

PYTHON PROGRAMMING MREC

90

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/clo.py

True

False

[81, 82, 83]

[5, 82, 83]
Now we are free to make changes to b without worrying about a

List parameters:

Passing a list as an argument actually passes a reference to the list, not a copy of the list.

Since lists are mutable, changes made to the elements referenced by the parameter change

the same list that the argument is referencing.

for example, the function below takes a list as an argument and multiplies each element

in the list by 2:

def doubleStuff(List):

""" Overwrite each element in aList with double its value. """

for position in range(len(List)):

List[position] = 2 * List[position]

things = [2, 5, 9]

print(things)

doubleStuff(things)

print(things)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/lipar.py ==

[2, 5, 9]

[4, 10, 18]

PYTHON PROGRAMMING MREC

91

List comprehension:

List:

List comprehensions provide a concise way to create lists. Common applications are to make

new lists where each element is the result of some operations applied to each member of

another sequence or iterable, or to create a subsequence of those elements that satisfy a

certain condition.

For example, assume we want to create a list of squares, like:

>>> list1=[]

>>> for x in range(10):

list1.append(x**2)

>>> list1

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

(or)

This is also equivalent to

>>> list1=list(map(lambda x:x**2, range(10)))

>>> list1

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

(or)

Which is more concise and redable.

>>> list1=[x**2 for x in range(10)]

>>> list1

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

PYTHON PROGRAMMING MREC

92

Similarily some examples:

>>> x=[m for m in range(8)]

>>> print(x)

[0, 1, 2, 3, 4, 5, 6, 7]

>>> x=[z**2 for z in range(10) if z>4]

>>> print(x)

[25, 36, 49, 64, 81]

>>> x=[x ** 2 for x in range (1, 11) if x % 2 == 1]

>>> print(x)

[1, 9, 25, 49, 81]

>>> a=5

>>> table = [[a, b, a * b] for b in range(1, 11)]

>>> for i in table:

print(i)

[5, 1, 5]

[5, 2, 10]

[5, 3, 15]

[5, 4, 20]

[5, 5, 25]
[5, 6, 30]

[5, 7, 35]

[5, 8, 40]

[5, 9, 45]

[5, 10, 50]

Tuples:

A tuple is a collection which is ordered and unchangeable. In Python tuples are

written with round brackets.

Supports all operations for sequences.

Immutable, but member objects may be mutable.

If the contents of a list shouldn’t change, use a tuple to prevent items from

PYTHON PROGRAMMING MREC

93

accidently being added, changed, or deleted.

Tuples are more efficient than list due to python’s implementation.

We can construct tuple in many ways:

X=() #no item tuple

X=(1,2,3)

X=tuple(list1)

X=1,2,3,4

Example:

>>> x=(1,2,3)

>>> print(x)

(1, 2, 3)

>>> x

(1, 2, 3)

>>> x=()

>>> x

()

>>> x=[4,5,66,9]

>>> y=tuple(x)

>>> y

(4, 5, 66, 9)

>>> x=1,2,3,4

>>> x

(1, 2, 3, 4)

Some of the operations of tuple are:

Access tuple items

Change tuple items

Loop through a tuple

Count()

Index()

Length()

PYTHON PROGRAMMING MREC

94

Access tuple items: Access tuple items by referring to the index number, inside

square brackets

>>> x=('a','b','c','g')

>>> print(x[2])

c

Change tuple items: Once a tuple is created, you cannot change its values. Tuples

are unchangeable.

>>> x=(2,5,7,'4',8)

>>> x[1]=10

Traceback (most recent call last):

File "<pyshell#41>", line 1, in <module>

x[1]=10

TypeError: 'tuple' object does not support item assignment

>>> x

(2, 5, 7, '4', 8) # the value is still the same

Loop through a tuple: We can loop the values of tuple using for loop

>>> x=4,5,6,7,2,'aa'

>>> for i in x:

print(i)

4

5

6

7

2
aa

Count (): Returns the number of times a specified value occurs in a tuple

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> x.count(2)

4

Index (): Searches the tuple for a specified value and returns the position of where it

was found

PYTHON PROGRAMMING MREC

95

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> x.index(2)

1

(Or)

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> y=x.index(2)

>>> print(y)

1

Length (): To know the number of items or values present in a tuple, we use len().

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> y=len(x)

>>> print(y)

12

Tuple Assignment

Python has tuple assignment feature which enables you to assign more than one variable at a

time. In here, we have assigned tuple 1 with the college information like college name, year,

etc. and another tuple 2 with the values in it like number (1, 2, 3… 7).

For Example,

Here is the code,

>>> tup1 = (' MREC', 'eng college','2004','cse', 'it','csit');

>>> tup2 = (1,2,3,4,5,6,7);

>>> print(tup1[0])

 MREC

>>> print(tup2[1:4])

(2, 3, 4)

Tuple 1 includes list of information of

MREC Tuple 2 includes list of numbers in it

PYTHON PROGRAMMING MREC

96

We call the value for [0] in tuple and for tuple 2 we call the value between 1 and 4

Run the above code- It gives name MREC for first tuple while for second tuple it gives

number (2, 3, 4)

Tuple as return values:

A Tuple is a comma separated sequence of items. It is created with or without (). Tuples

are immutable.

A Python program to return multiple values from a method using tuple

This function returns a tuple

def fun():

str = " MREC

college" x = 20

return str, x; # Return tuple, we could also

write (str, x)

Driver code to test above method
str, x = fun() # Assign returned
tuple print(str)

print(x)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/tupretval.py

MREC college
20

Functions can return tuples as return values.

def circleInfo(r):

""" Return (circumference, area) of a circle of radius r """

c = 2 * 3.14159 * r

a = 3.14159 * r * r

return (c, a)

print(circleInfo(10))

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-

32/functupretval.py (62.8318, 314.159)

PYTHON PROGRAMMING MREC

97

def f(x):

y0 = x + 1

y1 = x * 3

y2 = y0 ** y3

return (y0, y1, y2)

Tuple comprehension:

Tuple Comprehensions are special: The result of a tuple comprehension is special. You

might expect it to produce a tuple, but what it does is produce a special "generator"

object that we can iterate over.

For example:

>>> x = (i for i in 'abc') #tuple comprehension

>>> x
<generator object <genexpr> at 0x033EEC30>

>>> print(x)

<generator object <genexpr> at 0x033EEC30>

You might expect this to print as ('a', 'b', 'c') but it prints as <generator object <genexpr>

at 0x02AAD710> The result of a tuple comprehension is not a tuple: it is actually a

generator. The only thing that you need to know now about a generator now is that you

can iterate over it, but ONLY ONCE.

So, given the code

>>> x = (i for i in 'abc')

>>> for i in x:

print(i)

a

b

c

Create a list of 2-tuples like (number, square):

>>> z=[(x, x**2) for x in range(6)]

>>> z

[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]

PYTHON PROGRAMMING MREC

98

Set:

Similarly to list comprehensions, set comprehensions are also supported:

>>> a = {x for x in 'abracadabra' if x not in 'abc'}

>>> a

{'r', 'd'}

>>> x={3*x for x in range(10) if x>5}

>>> x

{24, 18, 27, 21}

Dictionaries:

A dictionary is a collection which is unordered, changeable and indexed. In

Python dictionaries are written with curly brackets, and they have keys and values.

Key-value pairs

Unordered

We can construct or create dictionary like:

X={1:’A’,2:’B’,3:’c’}

X=dict([(‘a’,3) (‘b’,4)]

X=dict(‘A’=1,’B’ =2)

Example:

>>> dict1 = {"brand":" MREC","model":"college","year":2004}

>>> dict1

{'brand': ' MREC', 'model': 'college', 'year': 2004}

Operations and methods:

Methods that are available with dictionary are tabulated below. Some of them have
already been used in the above examples.

Method Description

clear() Remove all items form the dictionary.

https://docs.python.org/3/tutorial/datastructures.html#tut-listcomps
https://www.programiz.com/python-programming/methods/dictionary/clear

PYTHON PROGRAMMING MREC

99

copy() Return a shallow copy of the dictionary.

fromkeys(seq[, v])

Return a new dictionary with keys from seq and

value equal to v (defaults to None).

get(key[,d])

Return the value of key. If key doesnot exit,

return d (defaults to None).

items()

Return a new view of the dictionary's items

(key, value).

keys() Return a new view of the dictionary's keys.

pop(key[,d])

Remove the item with key and return its value

or d if key is not found. If d is not provided

and key is not found, raises KeyError.

popitem()

Remove and return an arbitary item (key,

value). Raises KeyError if the dictionary is

empty.

setdefault(key[,d])

If key is in the dictionary, return its value. If

not, insert key with a value of d and

return d (defaults to None).

update([other])

Update the dictionary with the key/value pairs

from other, overwriting existing keys.

values() Return a new view of the dictionary's values

Below are some dictionary operations:

https://www.programiz.com/python-programming/methods/dictionary/copy
https://www.programiz.com/python-programming/methods/dictionary/fromkeys
https://www.programiz.com/python-programming/methods/dictionary/get
https://www.programiz.com/python-programming/methods/dictionary/items
https://www.programiz.com/python-programming/methods/dictionary/keys
https://www.programiz.com/python-programming/methods/dictionary/pop
https://www.programiz.com/python-programming/methods/dictionary/popitem
https://www.programiz.com/python-programming/methods/dictionary/setdefault
https://www.programiz.com/python-programming/methods/dictionary/update
https://www.programiz.com/python-programming/methods/dictionary/values

PYTHON PROGRAMMING MREC

10

To access specific value of a dictionary, we must pass its key,

>>> dict1 = {"brand":" MREC","model":"college","year":2004}

>>> x=dict1["brand"]

>>> x

' MREC'

To access keys and values and items of dictionary:

>>> dict1 = {"brand":" MREC","model":"college","year":2004}

>>> dict1.keys()

dict_keys(['brand', 'model', 'year'])

>>> dict1.values() dict_values(['

MREC', 'college', 2004])

>>> dict1.items()
dict_items([('brand', ' MREC'), ('model', 'college'), ('year', 2004)])

>>> for items in dict1.values():

print(items)

MREC

college

2004

>>> for items in dict1.keys():

print(items)

brand

model

year

>>> for i in dict1.items():

print(i)

('brand', ' MREC')

('model', 'college')

('year', 2004)

Some more operations like:

10

Add/change

PYTHON PROGRAMMING MREC

100

Remove

Length

Delete

Add/change values: You can change the value of a specific item by referring to its
key name

>>> dict1 = {"brand":" MREC","model":"college","year":2004}

>>> dict1["year"]=2005

>>> dict1

{'brand': ' MREC', 'model': 'college', 'year': 2005}

Remove(): It removes or pop the specific item of dictionary.

>>> dict1 = {"brand":" MREC","model":"college","year":2004}

>>> print(dict1.pop("model"))

college

>>> dict1

{'brand': ' MREC', 'year': 2005}

Delete: Deletes a particular item.

>>> x = {1:1, 2:4, 3:9, 4:16, 5:25}

>>> del x[5]

>>> x

Length: we use len() method to get the length of dictionary.

>>>{1: 1, 2: 4, 3: 9, 4: 16}

{1: 1, 2: 4, 3: 9, 4: 16}

>>> y=len(x)

>>> y

4
Iterating over (key, value) pairs:

>>> x = {1:1, 2:4, 3:9, 4:16, 5:25}

>>> for key in x:

print(key, x[key])

1 1

2 4

3 9

PYTHON PROGRAMMING MREC

101

4 16

5 25

>>> for k,v in x.items():

print(k,v)

1 1

2 4

3 9

4 16

5 25

List of Dictionaries:

>>> customers = [{"uid":1,"name":"John"},

{"uid":2,"name":"Smith"},

{"uid":3,"name":"Andersson"},

]

>>> >>> print(customers)

[{'uid': 1, 'name': 'John'}, {'uid': 2, 'name': 'Smith'}, {'uid': 3, 'name': 'Andersson'}]

Print the uid and name of each customer

>>> for x in customers:

print(x["uid"], x["name"])

1 John

2 Smith
3 Andersson

Modify an entry, This will change the name of customer 2 from Smith to Charlie

>>> customers[2]["name"]="charlie"

>>> print(customers)

[{'uid': 1, 'name': 'John'}, {'uid': 2, 'name': 'Smith'}, {'uid': 3, 'name': 'charlie'}]

Add a new field to each entry

>>> for x in customers:
x["password"]="123456" # any initial value

>>> print(customers)

PYTHON PROGRAMMING MREC

102

[{'uid': 1, 'name': 'John', 'password': '123456'}, {'uid': 2, 'name': 'Smith', 'password':

'123456'}, {'uid': 3, 'name': 'charlie', 'password': '123456'}]

Delete a field

>>> del customers[1]

>>> print(customers)

[{'uid': 1, 'name': 'John', 'password': '123456'}, {'uid': 3, 'name': 'charlie',
'password': '123456'}]

>>> del customers[1]

>>> print(customers)

[{'uid': 1, 'name': 'John', 'password': '123456'}]

Delete all fields

>>> for x in customers:

del x["uid"]

>>> x

{'name': 'John', 'password': '123456'}

Comprehension:

Dictionary comprehensions can be used to create dictionaries from arbitrary key

and value expressions:

>>> z={x: x**2 for x in (2,4,6)}

>>> z

{2: 4, 4: 16, 6: 36}

>>> dict11 = {x: x*x for x in range(6)}

>>> dict11

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

PYTHON PROGRAMMING MREC

103

UNIT – V

FILES, EXCEPTIONS, MODULES, PACKAGES

Files and exception: text files, reading and writing files, command line arguments, errors

and exceptions, handling exceptions, modules (datetime, time, OS , calendar, math module),

Explore packages.

Files, Exceptions, Modules, Packages:

Files and exception:

A file is some information or data which stays in the computer storage devices. Python gives

you easy ways to manipulate these files. Generally files divide in two categories, text file

and binary file. Text files are simple text where as the binary files contain binary data which

is only readable by computer.

• Text files: In this type of file, Each line of text is terminated with a special character

called EOL (End of Line), which is the new line character (‘\n’) in python by default.

• Binary files: In this type of file, there is no terminator for a line and the data is stored

after converting it into machine understandable binary language.

An exception is an event, which occurs during the execution of a program that disrupts the

normal flow of the program's instructions. In general, when a Python script encounters a

situation that it cannot cope with, it raises an exception. An exception is a Python object

that represents an error.

Text files:

We can create the text files by using the syntax:

Variable name=open (“file.txt”, file mode)

For ex: f= open ("hello.txt","w+")

• We declared the variable f to open a file named hello.txt. Open takes 2 arguments, the
file that we want to open and a string that represents the kinds of permission or
operation we want to do on the file

• Here we used "w" letter in our argument, which indicates write and the plus sign that
means it will create a file if it does not exist in library

PYTHON PROGRAMMING MREC

104

• The available option beside "w" are "r" for read and "a" for append and plus
sign means if it is not there then create it

File Modes in Python:

Mode Description

'r' This is the default mode. It Opens file for reading.

'w' This Mode Opens file for writing.

If file does not exist, it creates a new file.

If file exists it truncates the file.

'x' Creates a new file. If file already exists, the operation fails.

'a' Open file in append mode.

If file does not exist, it creates a new file.

't' This is the default mode. It opens in text mode.

'b' This opens in binary mode.

'+' This will open a file for reading and writing (updating)

Reading and Writing files:

The following image shows how to create and open a text file in notepad from
command prompt

PYTHON PROGRAMMING MREC

105

(or)

Hit on enter then it shows the following whether to open or not?

Click on “yes” to open else “no” to cancel

Write a python program to open and read a file

a=open(“one.txt”,”r”)

print(a.read())

PYTHON PROGRAMMING MREC

106

a.close()

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-
32/filess/f1.py welcome to python programming

(or)

Note: All the program files and text files need to saved together in a particular file

then only the program performs the operations in the given file mode

f.c lose() ----- This will close the instance of the file somefile.txt stored

Write a python program to open and write “hello world” into a file?

f=open("1.txt","a")

f.write("hello world")

f.close()

Output:

PYTHON PROGRAMMING MREC

107

(or)

Note: In the above program the 1.txt file is created automatically and adds hello

world into txt file

If we keep on executing the same program for more than one time then it append the
data that many times

Write a python program to write the content “hi python programming” for

the existing file.

f=open("1.txt",'w')

rite("hi python

programming") f.close()

Output:

In the above program the hello txt file consist of data like

PYTHON PROGRAMMING MREC

108

But when we try to write some data on to the same file it overwrites and saves with

the current data (check output)

Write a python program to open and write the content to file and read it.

fo=open("abc.txt","w+")

fo.write("Python Programming")

print(fo.read())

fo.close()

Output:

(or)

Note: It creates the abc.txt file automatically and writes the data into it

PYTHON PROGRAMMING MREC

109

Command line arguments:

The command line arguments must be given whenever we want to give the input before the
start of the script, while on the other hand, raw_input() is used to get the input while the
python program / script is running.

The command line arguments in python can be processed by using either ‘sys’ module,
‘argparse’ module and ‘getopt’ module.

‘sys’ module :

Python sys module stores the command line arguments into a list, we can access it using

sys.argv. This is very useful and simple way to read command line arguments as String.

sys.argv is the list of commandline arguments passed to the Python program. argv
represents all the items that come along via the command line input, it's basically an array
holding the command line arguments of our program

>>> sys.modules.keys() -- this prints so many dict elements in the form of list.

Python code to demonstrate the use of 'sys' module for command line

arguments import sys

command line arguments are stored in the form

of list in sys.argv

argumentList = sys.argv

print(argumentList)

Print the name of
file print(sys.argv[0])

Print the first argument after the name of
file #print(sys.argv[1])

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/cmndlinarg.py

['C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/cmndlinarg.py']

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/cmndlinarg.py

https://www.journaldev.com/17243/python-sys-module

PYTHON PROGRAMMING MREC

110

Note: Since my list consist of only one element at ‘0’ index so it prints only that
list element, if we try to access at index position ‘1’ then it shows the error like,

IndexError: list index out of range

import sys

print(type(sys.argv))

print('The command line arguments are:')

for i in sys.argv:

print(i)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/symod.py
== <class 'list'>

The command line arguments are: C:/Users/
MREC/AppData/Local/Programs/Python/Python38-32/symod.py

write a python program to get python
version. import sys

print("System version is:")
print(sys.version)
print("Version Information
is:") print(sys.version_info)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/s1.py =

System version is:
3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:21:23) [MSC v.1916 32 bit (Intel)]

Version Information is:

sys.version_info(major=3, minor=8, micro=0, releaselevel='final', serial=0)

‘argparse’ module :

Python getopt module is very similar in working as the C getopt() function for parsing
command-line parameters. Python getopt module is useful in parsing command line

arguments where we want user to enter some options too.

>>> parser = argparse.ArgumentParser(description='Process some integers.')

PYTHON PROGRAMMING MREC

111

import argparse

parser = argparse.ArgumentParser()

print(parser.parse_args())

‘getopt’ module :

Python argparse module is the preferred way to parse command line arguments. It provides a
lot of option such as positional arguments, default value for arguments, help message,
specifying data type of argument etc

It parses the command line options and parameter list. The signature of this function
is mentioned below:

getopt.getopt(args, shortopts, longopts=[])

args are the arguments to be passed.

shortopts is the options this script accepts.

Optional parameter, longopts is the list of String parameters this function accepts

which should be supported. Note that the -- should not be prepended with option

names.

-h ------------ print help and usage message

-m ----------- accept custom option value

-d ------------ run the script in debug mode

import getopt

import sys

argv = sys.argv[0:]

try:

opts, args = getopt.getopt(argv, 'hm:d', ['help', 'my_file='])

#print(opts)

print(args)

except getopt.GetoptError:

Print a message or do something
useful print('Something went wrong!')
sys.exit(2)

PYTHON PROGRAMMING MREC

112

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/gtopt.py ==

['C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/gtopt.py']

Errors and Exceptions:

Python Errors and Built-in Exceptions: Python (interpreter) raises exceptions when it

encounters errors. When writing a program, we, more often than not, will encounter errors.

Error caused by not following the proper structure (syntax) of the language is called syntax

error or parsing error

ZeroDivisionError:

ZeroDivisionError in Python indicates that the second argument used in a division (or

modulo) operation was zero.

OverflowError:

OverflowError in Python indicates that an arithmetic operation has exceeded the limits of

the current Python runtime. This is typically due to excessively large float values, as integer

values that are too big will opt to raise memory errors instead.

ImportError:

It is raised when you try to import a module which does not exist. This may happen if you

made a typing mistake in the module name or the module doesn't exist in its standard path.

In the example below, a module named "non_existing_module" is being imported but it

doesn't exist, hence an import error exception is raised.

IndexError:

An IndexError exception is raised when you refer a sequence which is out of range. In the

example below, the list abc contains only 3 entries, but the 4th index is being accessed,

which will result an IndexError exception.

TypeError:

When two unrelated type of objects are combined, TypeErrorexception is raised.In example

below, an int and a string is added, which will result in TypeError exception.

PYTHON PROGRAMMING MREC

113

IndentationError:

Unexpected indent. As mentioned in the "expected an indentedblock" section, Python not

only insists on indentation, it insists on consistentindentation. You are free to choose the

number of spaces of indentation to use, but you then need to stick with it.

Syntax errors:

These are the most basic type of error. They arise when the Python parser is unable to

understand a line of code. Syntax errors are almost always fatal, i.e. there is almost never a

way to successfully execute a piece of code containing syntax errors.

Run-time error:

A run-time error happens when Python understands what you are saying, but runs into

trouble when following your instructions.

Key Error :

Python raises a KeyError whenever a dict() object is requested (using the format a =

adict[key]) and the key is not in the dictionary.

Value Error:

In Python, a value is the information that is stored within a certain object. To encounter a

ValueError in Python means that is a problem with the content of the object you tried to

assign the value to.

Python has many built-in exceptions which forces your program to output an error when

something in it goes wrong. In Python, users can define such exceptions by creating a new

class. This exception class has to be derived, either directly or indirectly, from Exception

class.

Different types of exceptions:

ArrayIndexOutOfBoundException.

ClassNotFoundException.

FileNotFoundException.

IOException.

InterruptedException.

NoSuchFieldException.

NoSuchMethodException

PYTHON PROGRAMMING MREC

114

Handling Exceptions:

The cause of an exception is often external to the program itself. For example, an incorrect

input, a malfunctioning IO device etc. Because the program abruptly terminates on

encountering an exception, it may cause damage to system resources, such as files. Hence,

the exceptions should be properly handled so that an abrupt termination of the program is

prevented.

Python uses try and except keywords to handle exceptions. Both keywords are followed by

indented blocks.

Syntax:

try :

#statements in try block

except :

#executed when error in try block

Typically we see, most of the times

Syntactical errors (wrong spelling, colon (:) missing ….),

At developer level and compile level it gives errors.

Logical errors (2+2=4, instead if we get output as 3 i.e., wrong output …..,),

As a developer we test the application, during that time logical error may obtained.

Run time error (In this case, if the user doesn’t know to give input, 5/6 is ok but

if the user say 6 and 0 i.e.,6/0 (shows error a number cannot be divided by zero))

This is not easy compared to the above two errors because it is not done by the

system, it is (mistake) done by the user.

The things we need to observe are:

1. You should be able to understand the mistakes; the error might be done by user,

DB connection or server.

2. Whenever there is an error execution should not

stop. Ex: Banking Transaction

3. The aim is execution should not stop even though an error occurs.

PYTHON PROGRAMMING MREC

115

For ex:

a=5

b=2

print(a/b)

print("Bye")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/ex1.py

2.5

Bye

a=5

b=0

The above is normal execution with no error, but if we say when b=0, it is

a critical and gives error, see below

print(a/b)

print("bye") #this has to be printed, but abnormal termination

Output:

Traceback (most recent call last):

File "C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/ex2.py",

line 3, in <module>

print(a/b)

ZeroDivisionError: division by zero

To overcome this we handle exceptions using except keyword

a=5

b=0

PYTHON PROGRAMMING MREC

116

try:

print(a/b)

except Exception:

print("number can not be divided by zero")

print("bye")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/ex3.py

number can not be divided by zero

bye

The except block executes only when try block has an error, check it below

a=5

b=2

try:

print(a/b)

except Exception:

print("number can not be divided by zero")

print("bye")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-

32/pyyy/ex4.py 2.5

For example if you want to print the message like what is an error in a

program then we use “e” which is the representation or object of an exception.

a=5

b=0

try:

PYTHON PROGRAMMING MREC

117

print(a/b)

except Exception as e:

print("number can not be divided by zero",e)

print("bye")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-

32/pyyy/ex5.py number can not be divided by zero division by zero bye

(Type of error)

Let us see some more examples:

I don’t want to print bye but I want to close the file whenever it is opened.

a=5

b=2

try:

print("resource opened")

print(a/b)

print("resource closed")

except Exception as e:

print("number can not be divided by zero",e)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/ex6.py

resource opened

2.5

resource closed

PYTHON PROGRAMMING MREC

118

• Note: the file is opened and closed well, but see by changing the value of b to 0,

a=5

b=0

try:

print("resource opened")

print(a/b)

print("resource closed")

except Exception as e:

print("number can not be divided by zero",e)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-

32/pyyy/ex7.py resource opened

number can not be divided by zero division by zero

• Note: resource not closed

• To overcome this, keep print(“resource closed”) in except block, see it

a=5

b=0

try:

print("resource opened")

print(a/b)

except Exception as e:

print("number can not be divided by zero",e)

print("resource closed")

Output:

PYTHON PROGRAMMING MREC

119

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/ex8.py

resource opened

number can not be divided by zero division by zero

resource closed

• The result is fine that the file is opened and closed, but again change the value

of b to back (i.e., value 2 or other than zero)

a=5

b=2

try:

print("resource opened")

print(a/b)

except Exception as e:

print("number can not be divided by zero",e)

print("resource closed")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/ex9.py

resource opened

2.5

• But again the same problem file/resource is not closed

• To overcome this python has a feature called finally:

This block gets executed though we get an error or not

Note: Except block executes, only when try block has an error, but finally

block executes, even though you get an exception.

a=5

b=0

try:

PYTHON PROGRAMMING MREC

120

print("resource open")

print(a/b)

k=int(input("enter a number"))

print(k)

except ZeroDivisionError as e:

print("the value can not be divided by zero",e)

finally:

Output:

print("resource closed")

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-

32/pyyy/ex10.py resource open

the value can not be divided by zero division by

zero resource closed

• change the value of b to 2 for above program, you see the output like

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/ex10.py

resource open

2.5

enter a number 6

6

resource closed

• Instead give input as some character or string for above program, check the

output

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/ex10.py

resource open

2.5

enter a number p

resource closed

Traceback (most recent call last):

File "C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/ex10.py",

line 7, in <module>

k=int(input("enter a number"))

ValueError: invalid literal for int() with base 10: ' p'

PYTHON PROGRAMMING MREC

121

a=5

b=0

try:
print("resource open")

print(a/b)

k=int(input("enter a number"))

print(k)

except ZeroDivisionError as e:

print("the value can not be divided by zero",e)

except ValueError as e:

print("invalid input")

except Exception as e:

print("something went wrong...",e)

finally:

print("resource closed")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-

32/pyyy/ex11.py resource open

the value can not be divided by zero division by

zero resource closed

• Change the value of b to 2 and give the input as some character or string (other

than int)

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/ex12.py

resource open

2.5

enter a number p

invalid input

resource closed

Modules (Date, Time, os, calendar, math):

• Modules refer to a file containing Python statements and definitions.

PYTHON PROGRAMMING MREC

122

• We use modules to break down large programs into small manageable and organized

files. Furthermore, modules provide reusability of code.

• We can define our most used functions in a module and import it, instead of copying

their definitions into different programs.

• Modular programming refers to the process of breaking a large, unwieldy

programming task into separate, smaller, more manageable subtasks or modules.

Advantages :

• Simplicity: Rather than focusing on the entire problem at hand, a module typically

focuses on one relatively small portion of the problem. If you’re working on a single

module, you’ll have a smaller problem domain to wrap your head around. This makes

development easier and less error-prone.

• Maintainability: Modules are typically designed so that they enforce logical

boundaries between different problem domains. If modules are written in a way that

minimizes interdependency, there is decreased likelihood that modifications to a

single module will have an impact on other parts of the program. This makes it more

viable for a team of many programmers to work collaboratively on a large application.

• Reusability: Functionality defined in a single module can be easily reused (through

an appropriately defined interface) by other parts of the application. This eliminates

the need to recreate duplicate code.

• Scoping: Modules typically define a separate namespace, which helps avoid

collisions between identifiers in different areas of a program.

• Functions, modules and packages are all constructs in Python that promote code

modularization.

A file containing Python code, for e.g.: example.py, is called a module and its module

name would be example.

>>> def add(a,b):

result=a+b

return result

"""This program adds two numbers and return the result""“

PYTHON PROGRAMMING MREC

123

Here, we have defined a function add() inside a module named example. The function

takes in two numbers and returns their sum.

How to import the module is:

• We can import the definitions inside a module to another module or the

Interactive interpreter in Python.

• We use the import keyword to do this. To import our previously defined module

example we type the following in the Python prompt.

• Using the module name we can access the function using dot (.) operation. For Eg:

>>> import example

>>>

example.add(5,5) 10

• Python has a ton of standard modules available. Standard modules can be imported

the same way as we import our user-defined modules.

Reloading a module:

def hi(a,b):

print(a+b)

hi(4,4)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-

32/pyyy/add.py 8

>>> import add

8

https://www.programiz.com/python-programming/function

PYTHON PROGRAMMING MREC

124

>>> import add

>>> import add

>>>

Python provides a neat way of doing this. We can use the reload() function inside the

imp module to reload a module. This is how its done.

• >>> import imp

• >>> import my_module

• This code got executed >>> import my_module >>> imp.reload(my_module) This

code got executed <module 'my_module' from '.\\my_module.py'>how its done.

>>> import imp

>>> import add

>>> imp.reload(add)

8

<module 'add' from 'C:/Users/ MREC/AppData/Local/Programs/Python/Python38-

32/pyyy\\add.py'>

The dir() built-in function

>>> import example

>>> dir(example)

[' builtins ', ' cached ', ' doc ', ' file ', ' loader ', ' name ', ' package ',

' spec ', 'add']

>>> dir()

[' annotations ', ' builtins ', ' doc ', ' file ', ' loader ', ' name ',

' package ', ' spec ', ' warningregistry ', 'add', 'example', 'hi', 'imp']

It shows all built-in and user-defined modules.

For ex:

PYTHON PROGRAMMING MREC

125

>>> example. name

'example'

Datetime module:

Write a python program to display date, time

>>> import datetime

>>> a=datetime.datetime(2019,5,27,6,35,40)

>>> a

datetime.datetime(2019, 5, 27, 6, 35, 40)

write a python program to display date

import datetime

a=datetime.date(2000,9,18)

print(a)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/d1.py =

2000-09-18

write a python program to display time

import datetime

a=datetime.time(5,3)

print(a)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/d1.py =

05:03:00

#write a python program to print date, time for today and now.

import datetime

PYTHON PROGRAMMING MREC

126

a=datetime.datetime.today()

b=datetime.datetime.now()

print(a)

print(b)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/d1.py =

2019-11-29 12:49:52.235581

2019-11-29 12:49:52.235581

#write a python program to add some days to your present date and print the

date added.

import datetime

a=datetime.date.today()

b=datetime.timedelta(days=7)

print(a+b)

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/d1.py =

2019-12-06

#write a python program to print the no. of days to write to reach your birthday

import datetime

a=datetime.date.today()

b=datetime.date(2020,5,27)

c=b-a

print(c)

Output:

PYTHON PROGRAMMING MREC

127

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/d1.py =

180 days, 0:00:00

#write an python program to print date, time using date and time functions

import datetime

t=datetime.datetime.today()

print(t.date())

print(t.time())

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/d1.py =

2019-11-29

12:53:39.226763

Time module:

#write a python program to display time.

import time

print(time.time())

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/t1.py =

1575012547.1584706

#write a python program to get structure of time stamp.

import time

print(time.localtime(time.time()))

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/t1.py =

PYTHON PROGRAMMING MREC

128

time.struct_time(tm_year=2019, tm_mon=11, tm_mday=29, tm_hour=13, tm_min=1,

tm_sec=15, tm_wday=4, tm_yday=333, tm_isdst=0)

#write a python program to make a time stamp.

import time

a=(1999,5,27,7,20,15,1,27,0)

print(time.mktime(a))

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/t1.py

= 927769815.0

#write a python program using sleep().

import time

time.sleep(6) #prints after 6 seconds

print("Python Lab")

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/t1.py

= Python Lab (#prints after 6 seconds)

os module:

>>> import os

>>> os.name

'nt'

>>> os.getcwd() 'C:\\Users\\

MREC\\AppData\\Local\\Programs\\Python\\Python38-32\\pyyy'

>>> os.mkdir("temp1")

PYTHON PROGRAMMING MREC

129

Note: temp1 dir is created

>>> os.getcwd() 'C:\\Users\\

MREC\\AppData\\Local\\Programs\\Python\\Python38-32\\pyyy'

>>> open("t1.py","a")

<_io.TextIOWrapper name='t1.py' mode='a' encoding='cp1252'>

>>> os.access("t1.py",os.F_OK)

True

>>> os.access("t1.py",os.W_OK)

True

>>> os.rename("t1.py","t3.py")

>>> os.access("t1.py",os.F_OK)

False

>>> os.access("t3.py",os.F_OK)

True

>>> os.rmdir('temp1')

(or)

os.rmdir('C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/temp1')

PYTHON PROGRAMMING MREC

130

Note: Temp1dir is removed

>>> os.remove("t3.py")

Note: We can check with the following cmd whether removed or not

>>> os.access("t3.py",os.F_OK)

False

>>> os.listdir()

['add.py', 'ali.py', 'alia.py', 'arr.py', 'arr2.py', 'arr3.py', 'arr4.py', 'arr5.py', 'arr6.py', 'br.py',

'br2.py', 'bubb.py', 'bubb2.py', 'bubb3.py', 'bubb4.py', 'bubbdesc.py', 'clo.py', 'cmndlinarg.py',

'comm.py', 'con1.py', 'cont.py', 'cont2.py', 'd1.py', 'dic.py', 'e1.py', 'example.py', 'f1.y.py',

'flowof.py', 'fr.py', 'fr2.py', 'fr3.py', 'fu.py', 'fu1.py', 'if1.py', 'if2.py', 'ifelif.py', 'ifelse.py',

'iff.py', 'insertdesc.py', 'inserti.py', 'k1.py', 'l1.py', 'l2.py', 'link1.py', 'linklisttt.py', 'lis.py',

'listlooop.py', 'm1.py', 'merg.py', 'nesforr.py', 'nestedif.py', 'opprec.py', 'paraarg.py',

'qucksort.py', 'qukdesc.py', 'quu.py', 'r.py', 'rec.py', 'ret.py', 'rn.py', 's1.py', 'scoglo.py',

'selecasce.py', 'selectdecs.py', 'stk.py', 'strmodl.py', 'strr.py', 'strr1.py', 'strr2.py', 'strr3.py',

'strr4.py', 'strrmodl.py', 'wh.py', 'wh1.py', 'wh2.py', 'wh3.py', 'wh4.py', 'wh5.py', ' pycache ']

>>> os.listdir('C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32')

['argpar.py', 'br.py', 'bu.py', 'cmndlinarg.py', 'DLLs', 'Doc', 'f1.py', 'f1.txt', 'filess',

'functupretval.py', 'funturet.py', 'gtopt.py', 'include', 'Lib', 'libs', 'LICENSE.txt', 'lisparam.py',

'mysite', 'NEWS.txt', 'niru', 'python.exe', 'python3.dll', 'python38.dll', 'pythonw.exe', 'pyyy',

'Scripts', 'srp.py', 'sy.py', 'symod.py', 'tcl', 'the_weather', 'Tools', 'tupretval.py',

'vcruntime140.dll']

Calendar module:

PYTHON PROGRAMMING MREC

131

#write a python program to display a particular month of a year using

calendar module.

import calendar

print(calendar.month(2020,1))

Output:

write a python program to check whether the given year is leap or not.

import calendar

print(calendar.isleap(2021))

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/cl1.py

False

#write a python program to print all the months of given year.

import calendar

print(calendar.calendar(2020,1,1,1))

Output:

PYTHON PROGRAMMING MREC

132

math module:

write a python program which accepts the radius of a circle from user and

computes the area.

import math

r=int(input("Enter radius:"))

area=math.pi*r*r

print("Area of circle is:",area)

Output:

PYTHON PROGRAMMING MREC

133

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-32/pyyy/m.py =

Enter radius:4

Area of circle is: 50.26548245743669

>>> import math

>>> print("The value of pi is", math.pi)

O/P: The value of pi is 3.141592653589793

Import with renaming:

• We can import a module by renaming it as follows.

• For Eg:

>>> import math as m

>>> print("The value of pi is", m.pi)

O/P: The value of pi is 3.141592653589793

• We have renamed the math module as m. This can save us typing time in some cases.

• Note that the name math is not recognized in our scope. Hence, math.pi is invalid,

m.pi is the correct implementation.

Python from...import statement:

• We can import specific names from a module without importing the module as

a whole. Here is an example.

>>> from math import pi

>>> print("The value of pi is", pi)

O/P: The value of pi is 3.141592653589793

• We imported only the attribute pi from the module.

• In such case we don't use the dot operator. We could have imported multiple

attributes as follows.

PYTHON PROGRAMMING MREC

134

>>> from math import pi, e

>>> pi

3.141592653589793

>>> e

2.718281828459045

Import all names:

• We can import all names(definitions) from a module using the following construct.

>>>from math import *

>>>print("The value of pi is", pi)

• We imported all the definitions from the math module. This makes all names except

those beginnig with an underscore, visible in our scope.

Explore packages:

• We don't usually store all of our files in our computer in the same location. We use a

well-organized hierarchy of directories for easier access.

• Similar files are kept in the same directory, for example, we may keep all the songs in

the "music" directory. Analogous to this, Python has packages for directories and

modules for files.

• As our application program grows larger in size with a lot of modules, we place

similar modules in one package and different modules in different packages. This

makes a project (program) easy to manage and conceptually clear.

• Similar, as a directory can contain sub-directories and files, a Python package can

have sub-packages and modules.

• A directory must contain a file named init .py in order for Python to consider it as a

package. This file can be left empty but we generally place the initialization code for

that package in this file.

• Here is an example. Suppose we are developing a game, one possible organization of

packages and modules could be as shown in the figure below.

https://www.programiz.com/python-programming/modules

PYTHON PROGRAMMING MREC

135

• If a file named init .py is present in a package directory, it is invoked when the

package or a module in the package is imported. This can be used for execution of

package initialization code, such as initialization of package-level data.

• For example init .py

• A module in the package can access the global by importing it in turn

• We can import modules from packages using the dot (.) operator.

• For example, if want to import the start module in the above example, it is done as

follows.

• import Game.Level.start

• Now if this module contains a function named select_difficulty(), we must use the

full name to reference it.

• Game.Level.start.select_difficulty(2)

https://www.programiz.com/python-programming/function

PYTHON PROGRAMMING MREC

136

• If this construct seems lengthy, we can import the module without the package

prefix as follows.

• from Game.Level import start

• We can now call the function simply as follows.

• start.select_difficulty(2)

• Yet another way of importing just the required function (or class or variable) form

a module within a package would be as follows.

• from Game.Level.start import select_difficulty

• Now we can directly call this function.

• select_difficulty(2)

Examples:

#Write a python program to create a package (II YEAR),sub-

package(CSE),modules(student) and create read and write function to module

def read():

print("Department")

def write():

print("Student")

Output:

>>> from IIYEAR.CSE import student

>>> student.read()

Department

>>> student.write()

Student

>>> from IIYEAR.CSE.student import read

>>> read

PYTHON PROGRAMMING MREC

137

<function read at 0x03BD1070>

>>> read()

Department

>>> from IIYEAR.CSE.student import write

>>> write()

Student

Write a program to create and import
module? def add(a=4,b=6):

c=a+b

return c

Output:

C:\Users\ MREC\AppData\Local\Programs\Python\Python38-32\IIYEAR\modu1.py

>>> from IIYEAR import modu1

>>> modu1.add()

10

Write a program to create and rename the existing module.

def a():

print("hello world")

a()

Output:

C:/Users/ MREC/AppData/Local/Programs/Python/Python38-

32/IIYEAR/exam.py hello world

>>> import exam as

ex hello world

